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Optimality of AIC in inference
about Brownian motion

Abstraet In the usual Gaussian White-Noise model, we consider the problem of
estimating the unknown square-integrable drift function of the standard Brownian
motion using the partial sums of its Founer series expansion generated by an ortho-
normmal basis. Using the squared L; distance loss, this problem is known to be the
same as estimating the mean of an infinite dimensional random vector with [ loss,
where the coordinates are independently normally distributed with the unknown
Fourier coefficients as the means and the same variance. In this modified version
of the problem, we show that Akaike Information Criterion for model selection,
followed by least squares estimation, attains the minimax rate of convergence.

Keywords MNonparametric regression - Minimax - AIC - Oracle - Brownian
motion - White-noise

1 Intreduction

The Akaike Information Criterion { ALC), the now well-known penalized likeli-
hood model selection erterion, was introduced and studied by Akaike (1973,1978).
Different asympiotic optimality properties of ALC have been proved in the litera-
ture by several authors in the last three decades. In the first line of work, Shibata
(1981, 1983) proved the optimality of AIC as a model selection rule in the infinite
dimensional problem of nonparametric regression, where the goal is to find out
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the optimum number of terms to retain, for the purpose of prediction, in the Fou-
rier series expansion of the unknown function generated by a given orthonormal
sequence. Shibata (1983) has shown that AIC does as well as an oracle introduced
by him in this problem. In a second line of work, Li(1987) and Shao (1997) proved
the asymptotic optimality of AIC as a model selection rule in the context of selec-
tion of vanables from a given set of variables in a Linear model setup. But the
optimal rate of convergence of ALC has not been studied in the literature. The nov-
elty of our paper is to show that model selection by ALC followed by least squares
estimation achieves the minimax rate of convergence in one form of nonparmametric
function estimation problem.

We study ALC in the following problem of inference about an unknown signal
or drift ' € L,[0, 1] of a Brownian motion and prove it attains the optimal rate of
convergence in two different senses. Given n, one observes {Z(1)} given by

dBir)

n

dZit) = firdr + O=r=1, (1)

where Bir) is the standard Brownian motion. This is essentially the problem
(Eg. 31) of Ibragimov and Has minskii (1981, p. 343). In problem (Eqg. 1), we
consider a complete orthonommal basis {¢. 7 = 1,2, ...} of La[0, 1]. Then one
can write

fy =78, (2)

with equality in the sense of L convergence, where 8, s are the Fourier coefficients
ziven by

I a0
& = f‘i’a{fjf{f}dl’, and Zﬁlf - O, (3
0 =1
Then we need to study the somewhat simpler problem as follows:
€ Lid.
I = 6'1 — ] N ﬂ, 1y, 4
¥ F T € {0, 1) (4)

]

A s A o A
Let # = {6} be an estimate of @ and let f{r) = ¥ &b (1) the corresponding
=1

estimate of . Then by Parseval’s theorem,
R =

IF = F17=>"6 -6, (5)
1=l

where ||| is the usual Ly nomm. So estimating f in model (Eq. 1) is the same asesti-
mating # in model Eq. (4) in terms of the above losses. We use the setup of Eq. (4)
in this paper and use the squared error > loss. We show that model selection by ALC
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followed by least squares estimates attains the minimax rate of convergence for
convergence in probability over the usual Sobolev balls E, (8) (defined in Sect. 2),
for any 8 = 0. This result is based on a strong property of AIC with lower trunca-
tion. Under lower truncation it is shown that AIC is asymptotically equivalent to
an oracle uniformly in E,({8#), where the oracle provides a lower bound to the loss
in a certain class of decision rules. We also show that model selection by ALC with
upper truncation followed by least squares estimation, atlains the minimax rate of
convergence, i.e, n "4+ gver the Sobolev balls mentioned before.

[tis worthw hile 1o mention here that the definition of A1C [see Eq. (7)] does not
require the knowledge of the order of smoothness g or the constant 8 appearing
in the definition E,(8) (in Sect.2) of the class of functions being considered. Yet
model selection by ALC followed by least squares estimation yields the minimax
rate over £, (£); showing that AIC is adaptive.

It is not hard to show that the Bayes Information Criterion (BIC) cannot have
this kind of optimality. A counter-example is presented in Sect. 4.

Problem (1) has been shown in Brown and Low (1996) 1o be an equivalent
version in a decision theoretic sense, upto the minimax rate of convergence, of the
following nonparametric regression problem

'.rll =.-fl( : )+fhfali\ff f“ﬂ'{ﬂ,l},f: l,l...,n. ['ﬁ::l
n+1

Using Eq. (1) through Eq. (6), Zhao (2000} has pointed out that nonparametric
regression can in principle be studied through the v's. Her main result is to intro-
duce a hierarchical prior on the parameter space and show that the corresponding
Bayes estimator achieves the minimax rate of convergence. The relation between
Eqs. (1) and (6) suggests that our A1C for Eq. ( 1) can be lifted in principle to provide
an asymptotically minimax method of estimation for nonparametric regression.
This is discussed in the last section.

Section 4 alsoincludes a discussion on how touse the theoretical results derived
for continuous path data, when one observes the process | Z (1)} only at a finite num-
ber of equally spaced points.

2 Preliminaries, notations and theorems

Suppose, as in Eq. (4), one has random variable w's which are independent
N, 1/n), i =1,2,3, ..., where } |- 8 < oo. Using y's one has to come
up with estimates &, and the loss is L = ¥ (@, — 8,)%. We consider a resiricied
parameter space in our study, as in Zhao (2000), which is a Sobolev-type subspace
of I given by E, = {8 = {6} : Y.72,i%87 < oo}, g = 1/2. We then study
the asymptotic rate of convergence of model selection by AIC followed by least
squares estimation in the Sobolev ball

o0
EB)y=16:) i%' < B
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With respect to the usual trigonometric basis, for ¢ an integer, £, corresponds
to all perodic L,[0, 1] functions with absolutely continuous {g — 1)th derivatives
and g-th derivatives with bounded L, norm.

The AIC is not well defined in this case since we have an infinite sequence of
observations. However, if we take fj, = Oforalli = n, the contribution to error for
8 in E,(B) is

Sd=Y

1 =i =g

i}

3

l.'li] g
.-_.; <Bn+1) ¥ =0 (n_m) as n — 00,
i2

since & & E (B). So at least for the problem of finding decision rules that
attain the minimax rate, we can ignore observations beyond the nth. With this
modification one can define AIC as follows. Let

M ?
m™C = argmin S{m)  where Sim) = Z _1"2 + ﬂ (7

| e <t n
- m+l

The estimate of &; is v; for i = m™ and zero thereafter. The loss is ET«“‘
=60 + X arc, & + Lo O

One may interpret this as first choosing a model M, forwhich 8, = 0fori = m
and then estimating &; by least squares, i.e., by v fori < m.

We will now introduce some notations before we state our theorems. Define
L, (m) by

L, im)= Z{}" —8)7 + ZH‘E 1l =m=n, (8)
|

m+ 1

the loss in choosing model M, and then using least squares estimates. Let

o
ra®) ==+ "4, ()

w1

the risk of the estimate descnbed above.
We next define two oracles based on L, (m) and r, (&) as follows.
Define mry as

mryp = argmin L, (m). (10

| == =i

MNote that L, {m ) is a lower bound to the loss of any decision rule that first
picks a model M, and then estimates & by zeroif i = mand by v for i < m.
Define the second oracle myg as

mg = argmin ry (4). (11

| =men

Intuitively one expects m and mg 1o be close but my 15 easier to deal with. Note
that both my and m depend on 8.
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Let AICY be the model selection procedure which is ALC with upper truncation.
It chooses the model M« where

m" = argmin  S(m). (12)

I
l=m=[n T+ ]

where [n'/2+1] denotes the largest integer less than or equal o n'/29+!

Notation. Henceforth “a, ~ b, asymptotically”™, will mean that there exist
positive constants 0 < k) = & such that for all sufficiently large n, ki b, = a, =
kaby,.

Consider now any sequence {m, } of integers such that m, — oo asn — o0
as slowly as we wish but m,, < m* where m* ~ n'/24+! asymptotically, and is
defined in the proof of Theorem 2.1,

Now define mi, and m! as

mi, = argmin ry, (§), mJ' = argmin L, {m) (13)
and define m' as
m' = argmin S(m). (14)

So m' is the model chosen by AIC!, the model selection procedure which is
ALC with lower truncation as described in Eq. (14).
We now state the main results proved in this paper. (Note that we are suppressing

the dependence of 8 on n for notational convenience.)
Theorem 2.1 For the case m = m,, we have, (a)
Ly(m')(1 + 0p(1)) = Lulm)(1 + 0,(1)), (15)

where the o,(1) terms on both sides of Eq. (15) tend to () in probability asn — o0
uniformly in# € E (B), and

Ly (m') = La{m)(1 4 0,(1), (16)
where the equality Eg. (16) holdy on a set whose probability tendy to | asn — oo
uniformly in 8 € E (B) and the o,(1) term on the ch.s. of Eq. (16) tends 1o O in
probability as n — oo uniformly in 8 € E (B).
Also, for this case,

() ::3:“_*' L) = 2, 1) uniforrmly in 8 e E (B).

Theorem 2.2 Uniformly in 8 € E;(B), we have

n% L (m™C) = 0,(1).
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Theorem 2.3 Let 8 be the estimate af 8 .r{,ffer a maodel iv chosen by AICY, ie,

& = O fori = m" and 8, = v; fori = m". Then 8 achieves the minimax rate af
convergence, i.e., forany B < oo,

, e -
lim sup nZ T E(|8 -8 < oc.
n—oo Gek (B

Remark The lower truncation in Theorem 2.1 cannot be removed. This is easy (o
see by considering what happens for 8, = (1/,/n, 0,0, ...).

Proofs are given in the next section.

3 Proofs

Proofof Theorem 2.1 . 1n the following, ¢; = v —8;,i = 1,2, ... and 8 =
without any loss of generality. The proof has been divided into three steps for the
purpose of clarity.

Step 1. In this step we will look at a simple minimax rule as follows. Consider
rule ry, for a fixed m: Form < n, estimate &; by v, for | =i <m andfori = m,
estimate & by 0.

Risk of r,, at & is r,, (8) as defined in Eq. (3). Note that we can wrile

m dac B
rm(8) = — 4+ i
H f
s+

Then,

a0
1 " 1
sup Pl = — + Sup (Z !_qu'qu!?"l) = ; + m

HeE (1) R oseEil N, T

MNow choose m* as

¥ = aremin = - 1 (17
I (PSP T

It is easy to show that m* ~ n'/2+! agympiotically, whence the maximum risk of

the rule ry,- 15
m* 1

Sup rpe(f) = — 4+ ——— ~p e asymptotically,
feEg (1) n {m* 4 1)=4
’ s =
e, im ni& 0 sup ry.(8)<o0. (18]
L #eE (1)

Thus ry,» is 8 rule which atains the asymptotic minimax rate of convergence. Now
note that r, (#) = re-(8), V8 € E (1), 1e.,

wolB) = sup r.(8) ~ ATET asympiotcally, (19
HeE 0l HeE, il

sup r,

whence the rule ry,, based on the oracle mg does at least as well as the rule ry,»
asymptotically.
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Step 2. In this step we will consider the lower truncated AIC and derive several
properties associated with it

Firstrecall the definitionsof L, (m) and §(m) from Eqs.(8) and ( 7) respectively.
Note,

L“{H‘I:IZZE" +ZH —f.llr{'-‘-"l::"i'(zeq_%)-
1 e+l 1
Again,

S(m) = ie'f - ié} + Zié,e, + ?

m+ nit+ | m+1

_Ze —Ze +Ze +'?Zau«,+ﬂ

m+1 m+ |

= L,(m) + R,(m) + Ze- Z&-

1

= L,(m) + B,(m) + {"Cnn.'s[ﬂ.tlts independent of m),

where
R,,{m]l:?ia‘e‘_z iez_f )
s | | : m

Hence, minimizing S{m) with respect to m is equivalent to minimizing L, {m) +
R, (m) over m. So we have, with m’, mi, and m’l asin Egs. (13) and (14),

Lu(m"y + Ry(m') < L,(m}) + R,(m}) (20)
and
Lu(m'y + R,(m") < L,(m}) + R,(m)). (21)

Letus now prove three lemmas which essentially show that the remainder terms
R (m', R, {mi,} and R, {m’,} in Egs. (20) and (21) are negligible. These lemmas
are crucial for proving the theorem.

Lemma 3.1

o

Y6l == = 0p(r(®)) (22)

and

ZHJ'E'J = ”,l.'{r.'rr{H}L [.23}

m+l
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uniformly 8 € E, (1) andform, <=m = nasn —+ oo

So, for such a seguence {m ), we also have,
Ry(m) = ”,l.'{rm{'-'?” {24}
uniformly in# € E (1) and form, < m < nasn —+ o0

Proof E {ZT&% —mfn)=0.Fix € = 0. Then,

( Yrel—min

y 5) LE(STE —min)

r(®) e7r2(g)
But,
L 2 i -
. 2 M 2 m 1 2m
E (ZI:E', - F) =VEI(ZI: r —;) = mVar (¢]) = —-
Also,
i : m: 2m e
3
e+ 1 s+ |
So,

I: {Zl el — m{'n} _1| 2m/n*

€r2 (@) (X0 82)° +m2fn? 4 2m/n (X205, 62)
2 2

3 = 2
ESm T Ty,

foreach 8 € E, (1), proving Eq. (22). Similady,

— 0  as n — 0o,

A

E(Zﬂ,e,) =0 and Var (Zﬂ.m) (ZH )l
41 s+ | i+l b
whereby
Var {Em+| '-él 'E'J:J e {Em+| i :J i
jm{f_}]l m= |"r” g {Em+| H } + J"'ir” {E-'“'"'I H‘j}
{%E%—Fﬂﬂﬁﬂ—*m

for each 8 € E, (1), proving Eq. (23). Equation (24) now follows trvially from
Eqgs. (22) and (23) as

R{m}l—?Z&‘ﬁ—Z(i € —g)

m+ I

So, Lemma 3.1 is proved. |
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Corollary 3.1
Lu(m))(140,(1)) = Fut (801 + 0,(1)) (25)

almaost surely, where the 0,(1) terms on both sides of Eg. (25) tend to zew in
probability as n — oo uniformly in & € E,(B).
Proof Using Lemma 3.1, we get

m

. m ;
Lmﬂ=mm+(ZE—;)—mmu+WML

uniformly in & € E (1) and form, =m = nasn — co.
As my is a nonrandom integer in [m,,, n], it also follows from the above obser-
vation that

e :IP I
L, (my) = r,q () + Zﬁ—%)

!
= r'm:';{t?}l{l + op(1)) uniformly in# € E, (1) asn — oo
Now observe that, from definition, L, (m}) < L,(m}), Fut (8) < 1,y (8). Alsonote
that
JIT'; ’nI
Zez gl Op(Fy (), uniformly in & € E; (1) asn — o0.
n

The last state ment follows using the same argumentemployed in proving R, (m') =
0y (1 (8)) uniformly in 8 € E,(1) as n — oo in Lemma 3.3. Combining all the
abowve facts, one gets after some algebra,

Ly(m') < rag (801 +0,(1)) = rg (@)1 +0p(1))
= L, (m)(1 + o, (1)) almost surely,

where all the o,(1) terms tend to 0 in probability as n — oo uniformly in 8 &
E (8). The proof of Eq. (25) now follows immediately from the above sequence
of inequalities. o

Lemma 3.2 R,(m) = ou{L,(m)) uniformly in & € E;(1) and form, = m = n
and as n — 00,

Proof Fix() = ¢ = L.

PF@% 4=PFwﬂ q%m&l_*
Ly (m) Ly(m) Fin(8)
R, () Ly}
+4Lmﬂpﬁnﬂ}}H*
R, (m) L, (m)
= ) i'd 2
+PI Tty | - o EHf}' 2
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The first two terms on the rhes. of Eq. (26) converge 1o zero as L (m)/r, (8) =
1+ ou(1), uniformly in 8 € E, (1) and for m, = m = n asn — oo, The third
term is less than
Ry(m)
r 8
by Lemma 3.1 uniformly in & € E (1) and for m, = m = n. This proves
Lemma 3.2,

f{l—f}}—rﬂﬂsn—r oo,

Lemma 3.3 R, (m') = r.r,,{L,,{mJ}l}l uniformly iné € E,(1)asn — oc
Proof We first prove that
Ry(m') = 0,(r, (8)), uniformly infe E (1) asn — oo. (27)
Now write,
Rylm) = Kyim) + Rya(m),
where

R.iim) =2 2T} ond Bsimy =25 "te.
() (Ze‘ = an aim) Z e

I 1

Fix € = (). Then,

|
PI R.'||{’n::| f}f PI G -'i:'.f.l||{"’;r.l:I 'EI
Fil {ﬁll ::l g S | Py {H ::|
Ry lm) 1 E M{HI::I::I
= i Z.'rr:wl I f""{aj } = i Zm:".n E_q m{l.'?::l )

Noting that {3 ¢ —m/n, m = 1} is a Martingale, we have, by a result
proved in Dhammadhikari et al. (1968),

E(ief—g)d

I

4

; 1 i

D,mgfz(ef — —) for a positive constant £
n

3
Dym~
n

Dym?
y , for some new constant 0 as m?‘ Xr 1y

E{:mll — 1}4

n

In the above J{.ln refers to a central chi-square distribution with one degree of
freedom.

H“ {m]l]l - 16D3m* fn

i < S - S {’nl'f’! + E:?T;+|H12:Jq
160

2z, kil
[ 2

I A
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as n — oo, whenee B, (m') = op(rw(8)), uniformly iné € E (1) asn — oo,
MNow consider 8,2 (m) and note that

%R,.zl[m] = iﬂ.e, ~N ({}, (iaﬁ) 5) )

m+l mt |

So we get, (X" 6e)" = 3(2.,6%)° - 1/n This implies, by a simple
algebra, that

{Zm+| i d 1

riig) i 2m?

Using the last inequality in the same way as we did for R, (m'), we have R,2(m') =
oy (e (8)) uniformly in 8 € E (1) as n — oo, proving Eq. (27).

We are done if we can show that L,(m') = r (801 + o, 1)) uniformly in
# e E (1) asn — oo, because then B m') = r.rp{L,,{mJ]l}l will follow by using
exactly the same logic as in the proof of Lemma 3.2,

Fix ¢ = (. Then, by a simple argument,

PI L, (m") g 1‘ }f} & Z 1 E{E’"E' —Jln,;"n}l'l R

Pt {H ) fd Fie {H:I
asn — oo for all # € E, (1), as already shown before. So, Lemma 3.3 is proved.
O

LR e

Step 3. In this step we combine the results in Step 1 and Step 2 o finally prove
Theorem 2.1,

Equation (13} of Part (a) of Theorem 2.1 follows by applying Lemma 33 o
the left-hand side of Eq. (20) and Lemma 3.2 to the right-hand side of Eq. (207, by
just noting that m:, is a nonmandom integer in [m,, n|.

Equation (16) is then proved as follows. By Egs. (15}, (25) and the facts that
L,,{mi,}l = (1 + 0,(1)) uniformly in & & E (1) as n — oo and L,,{mﬂ}l =
L, (m"y, one has

Ly(m)(1+40,(1) = Ly(m')(1+0,(1) <1 (140,(1))= Ly (m})(1+0,(1)).

where the above holds on a set whose probability tends to 1 asn — oo uniformly
in &  E,(8). (Note that all the o,(1) terms in the above statement tend to 0
in probability as n — o0 uniformly in & € E, (8).) Equation (16) then follows
immediately from the above.

We shall now prove Part (b) of Theorem 2.1. To prove this, we first recall the
definitions of mi,, mt* and the asymptotic minimaxity property of r,- as in Egs. (13),
(17) and ( 18) respectively. Then it follows that

It (8) < rye(8) < Dn~24/24+D

for some D = 0 foreach & € E (1) for all sufficiently large n in the same way as
one shows in Eq. (19). Part (b) then follows easily by applying this fact wgether
with Corollary 3.1 in part (a) of Theorem 2.1.
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Remark If we choose m, = m* in Theorem 2.1 and then combine with it the result
of Theorem 2.3, Theorem 2.2 follows immediately. To see this one has to note that

B w E L, i
(i) P |::-‘-1_|':'L,, (m") = Kl Enﬁ_' % for each K = 0,

(i1} n!hl*l' E{Ly(m"))is bounded for each # € E, (1) foreachn, and

{iii) L, (m™%) = mﬂxIL,, {(m"), L,(m"), L, Qnmc, |=m «::m')} if m*= nﬁ,

[ T
L,(m*€) < max L, (m*), L,(m")} ifm* < n5,
sag g
and E(L,(m)) = Fn~ %+ for all large enoughn,  if [n%77] = m < m®*,
where F is a positive number. In the above,

m™E = argmin S{m),

I
[t T+ i e 1
[t Ta+T | <t = i

where Sim) is as in Eqg. (7). (|

But we present a more direct proof of Theorem 2.2 which does not require
Theorem 2.3 and which explains the interesting behaviour of ALC for relatively
small m.

Proofof Theorem 22 Fix ¢ = 0 and 5 = 0 arbitrary. We can choose m large
enough such that

P{Z ié‘,e,

st |
= ALC i i
Pln%W L, {m ) = K.t = 1 —n, for all large enough n > m, ¥8 € E (B)

{EL,,{:E}} =1— g Wn=m, Y8 € E,(B)

and
e =it

for some suitably chosen K,, where mﬁf- is defined as

o

AIC

M, = argmin Sim).

i e

The above two probability statements follow directly from the arguments used in
the proof of Theorem 2.1. We shall henceforth write m&f = m»C_. For each

8 € E (B), define
K{H} = max 4 [ Zg‘l - 'E”—lq;'|2q+|] i
=1

where the maximum is taken over the range [1, #t .
Now note, for each # € E,(B), the following two cases oceur.
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Casel. y Hll = en~ /Mt ifl = m! = K@) — 1.

|

Lid
Case2. ¥ Hll < en ¥/ 0 K = m! < .
w41

Consider Case 2 first. Let st = m' = K(8). Then

L.m"y = L,(m)— R (m"), where

Rim"Y =3 (v —8) - iaﬁ.

we b1 L |

Now fix ' = 0,arbitrarily small. Itiseasy to show, by noting that n Z:'r:. =
02 ~ 2 1, and it is fixed, that for all large enough n,

d

Letting S(m) = S(m) — (Y] e? — Y0 87). henceforth, we have

22+ 1) ol I
iy 12+ 1)
il R (m')

gk} =1—n'. ¥8eE,B)and K(#) =m' <.

I
Ll

S‘{’nl}=Lalhnl}+2i&ﬁ+zi&f‘—2 Ze}—_l

et fe+l I

Now note that rit is a fixed number, 8, ~ N(0, 8*/n) independently and & — 1 /n
are independently distributed with mean 0 and varance 2/n”. Using these facts
and the last equality, it is easy o show that

Ll

ZH,E, .

i1

JIEE"'J'IEE‘H-I:IL“{H’II} = :13%”3“"""3'{:”'} 426 + 2“3,‘.;-|2q+|:|

for all large enough n with probability at least 1 — 2n', for each 8 € E (B) and
K =m' < .
We now consider Case 1. Note that

- | st
H—m
S = Sim'y + 2( )— Z\f
o el 41
and
0 ; mi—m'Y pl ; : i |
Z}',‘—Z =— Ix;l-r_m|_|]+'|-"r"'—3{m—m }]
n n
mel+1
where
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Since.m' = K{#)— 1.n Zm i Hf = en'*t1 5 o0 asn — oo, So, again, we
can choose n large enough so that

z}

ml £

E{m—n:r}}ﬂ n l—rjl

forall @ E,(B) and | <m' < K(6) — 1, implying

bed | . AlC AlC
Sim) < S(m’), ie, mo . =mgy,
where m™% | = aremin 5(m), with
new,m! = HCE - s

L

JIT=||ITI

probability bigger than 1 — y' each 1 =m' < K () — 1.

Finally note that the fact S(mAC) = L, (mAC) 4+ R, (mAL), where R, (m) is
as defined in the proof of Theorem 2.1, implies, by an easy argument, that each of
the following events

de

— £

n m L {m ok

u|d. :J +

and
g {mﬁ‘ﬁc} = (l+e)L, {m":"[f

holds with probability bigger than 1 — /3, forall # € E, (8) and ¥n = m.
Now, consider, for each & & E,(8), the probability of the following occurring
simultaneously

forall K(@)=m' <,

i Ge;

nivt |

a A N
|nﬂ_'£.,, {ml]l = n%=T §{m' )4+ 26+ 2nn

Ly
I RJII {m'} ‘ =2 forall Ki#h = m' < m,

L, {mm_w ey :] = {mnu forl =m' = Ki#)—1,

4
AIC
ald :J + 1

nt -1+ L {”'nld

2 iﬁ‘.f‘.

nir+1

S(mA€) < (14 )L, (mAO)}.

—F

- -
< €L, (m),n= L, (mAE) < K.,

The probability of this event can be shown to be larger than | — 11,65 — 47"
for all large enough n for each & € E,(B). So the above event, in turn implies, the
following event,

1+ de
K.+

i, (n) < K
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The above statement follows by observing that

mAC = mmc or mﬁ‘lgw forsome 1 < m' < .

Now we are done, as m is a fixed number for a given 5 and € and so 5' can be
chosen 1o be /2440, 0 start with, making the quantity 1 — 11,/65 — 4mn' equal
to 1 — 25, This completes the proof of Theorem 2.2, o

Proof of Theorem 23 Fix any C = (). Define A(#) as in Zhao (2000), ie.,
= 3,
AH) = max {f : Zéf = (B4 Cn~ 5+ } )
i=f

It is easy 1o see, vide Zhao (2000), that A(8) = n'/24+1),
MNow recall the definition of m* from Eq. (12). Note that

E (116 —617) = E(Lutm*))

—.‘:{Zh,—ﬂ} +Za}

ne

N‘-m E{L“{HI’"}I} — E{Lu{’n"}lI'.lrr"*_'-llf.rj]:' + E{L|.,{H‘J'":I1|m-l_-_.)_[|l,-]]]|. BUL::

et
E{L“{H‘I"}Lm-l_-_.lrh-:,]]l = .E {Z{_ﬂ _ga::lz]-l'arr":-il'h’]]}
1

N
+E { (Z 9.?) L ey
s 4 |

The second term in the r.h.s. of Eq. (28) is trivially less than (B 4+ C)n—29/24+ 1),
The first term is less than or equal o E |E||"|'_ﬂl'|3{_r, —H,}El [n'/2a+D) in

< n~29/29+0 whence E(L,(m") puosspy) < (B 4+ C + 1},!—34,"f3=‘r+|1_
Again,

(28)

[ AlHD
E(Ln(m*) Lpne saopy) = E Z{n —6) 4+ D 6+ Z 6 | lurron
e+l AL+ 1

AlH)
<(B+C+1)n 51 4 .e{ ¥ g}) 1,,,,..,_._1[,1.”} . (29)

"+l
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Now consider any number K > +/2. The second expression in Eq. (29) equals

ALY
. 2
£ {( Z H. ) l(m-- ‘-:JLIH:I'Z::'III-I Hf_‘_‘-ﬁ'ln-lq.-u.u-llj }

s+
AL
- bed
s { (E f ) lilaxl}
"+
5 AIH)
= Kin ma + E { (Z 9,2) 1{m“-»z).r-‘r].Z::-"._|H,-J-'*ﬁ'1"""!" -:l-n-ll]l }
s+ |

|4

Ai—1 LI
_ 3 ———
Kin % 4 Z BP(m" =mii (Z le = Kgn_z"”ﬂ'“'l‘) ;

m=1 e+

asd e E (B).

Now for any m < A{8),

ALY

Pim" =m) = P{S(LH)) = Sim)} =P {H Zl‘l = 2{A(#) —m) } R i1]]
st |
.  RETITTI
Noting that n Y4 2 2 X iy WS when W N (,",n"n bR 1),

the expression in Eq. (30) is less than

P|Wq V’E,,mlgﬂzq{ﬁ—mnmﬁ],

where Z ~ N(0. 1), using the fact that Ef;::", 82 = Kin24/B4+D gnd J(8) =
”I;’rlq+|:|_ BL:II‘.,,

Pz < /2 Kynieie2a]

= L Tmexp— 120K —J3t gt MY
= (K — /Tyl 204291 .

So,

Aif—1 LI

Z BP(m" =mil (Z Hf = Kln_l"m'ﬁ'l])
m+1

BH|_,"|3[|+3¢;]§

m=1

- = C—|”—3q;’ﬂq+|]1
T WVIT(K — Dy expll/2(K — 220029} T

for some constant €. Hence Theorem 2.3 is proved. o
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4 Discussion

A counter-example to show the nonoptimal behaviour of BI1C
Consider ¢ = 1, B = 1. Define Hin) = [ﬁ:*ﬁ'], where 0 = § =< 1.

Consider a sequence 8" as follows.

I | —4/2
H=8a"= HJ:%_IZIZH{H]lﬂﬂdg_f:ﬂlfj}H{H}}
Fact [. Easy to check that for large enough n, 8" £ E,(1).

Him) §
Fact 2. For 6 = 8" as defined above Y &,° = {H(n) — 1}_”"3"1' o
=2

L

Consider now the upper tuncated BIC defined as follows:

m" = argmin { Z ¥t il Ingn} i
n

L=m=[u! ) 1=+

Then the estimate of this rulke followed by least squares estimates is &, = v, fori <
m* and &, = 0 otherwise. It is easy 1o see that the expected squared error loss for
this estimate is greater than or equal 1o

Him) Hin) Hin) [#7)
.&( ¥, H,E):_?E (( ¥ aﬁ) f.,,,.-=|) ={Zaﬁ} 1= Pim" =)t

i=m" 41 ="+ =2

Now evaluating at 8 = &' the last expression is

{logn)'—* [+'7] .
(Hm) —1}——— {1 - JZ_; Pim" = j)

Note that P(m" = j) = P(Y] = logn/n).

Now P(Y} = logn/n) = P(¥; = J/Togn/n) + P(Y¥; = —/Togn/n). Using
tails of standard normal probabilities, itis easy to show that foreach 2 = j < Hin),
under # = &", the above probability is less than 4n LIBWE g

oy ©
|£§P{ B o l,n'r“l.‘}g”}.ﬁ,fl
m = | —
j=2 i \.-'I'.‘.lg n ¥ (nl®)

Then it immediately follows by a simple algebra that

4]
(1 - Z Pim" = _,r'}) =

i=2

b | —

for all sufficiently large n.
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But note that

; l 1 &
P H(n) — 1}& — OO0 A8 B — 00,
n

Using the above facts it follows that "Iinﬂuh sup n*?E (E:’;l (& — H,}j) = &0,
TR ED
So the upper truncated BIC does not achieve Lht,1 minimax rate of convergence.

In fact, a careful inspection reveals that this same sequence 8" can be used
to show that BIC does not attain the minimax rate of convergence for any kind
of upper truncation. More importantly, the same sequence can be used to show
unrestricted BIC followed by least squares also does not achieve the minimax rate,
even in the sense of convergence in probability as shown o be true for AIC. But
we do not present those arguments in the present paper.

We explore below the connection between the problem studied in our paper
and nonparametric regression, vide Eq. (7). Define

g i i — 1 '
f{rj:f‘(ﬁ), il’r” Erc::—! fori=12,....n—1

n 1 —1
- if = - = F = 1.
f(n+1) I n =r=

It is shown in Brown and Low (1996) that under certain conditions, estimating
{f(0)} in problem (1.1) through {Z(1)} is asymptotically equivalent to estimating
{ Fin)} through {Z{1)}, where

d B(1)
W

They also observe that {5 = n {2,;,, — 2._”,.} Li=12, ..., n}are sufficient for

LO=r=1.

dZ(r) = firdr +

Z(r). Now note that n(Z;;, — Z,_14) 2y, i=1,2,...,n and the ¥'s are
trivially sufficient for the problem (Eq. 7). So any decision rule based on 5,'s can
be replaced by the same decision rule based on the ¥, 's and both will have the same
properties. 1t is also easy to verify, at least heudstically, that the minimization cri-
terion for AIC studied in our theorems is close (up o ©,(1/ 1)) in distribution to
the minimization criterion for AIC based on the ¥;s and so the models selected by
AlC in these two problems are also expected to be close.

We briefly explain below how the theoretical results about the rate optimality
of ALC obained for continuous path data can be applied w the situation when one
observes the process { Z(f)} only atpoints {ry = K/N : K =0, 1, ..., N}, where
N = Ny:ie, N depends onn.

Let {gh - i = 1} be the usual Fourier basis of L, [0, 1]. Analogous to the v s, let

us define
=20 (0 (3)-=(7)

i =1,....n; which can be rewntten as
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where 8 = i [y i wd(K/N)f@)du and 6 = =Ty ¢i(K/N)
(BIK/N)— B{K — 1/N)); where B(.) is the Brownian motion. It follows that
|8 — 8| = 5 for some positive constant ¢ which does not depend on i, 8's and
8"sande/ ~ N0, 1/n-1/NYN_ d2(K/N)). So. if N is large compared 1o n as
n — oo;itisexpectedthat 8] and & will be close; €] will be approximately N (0, }}l
i.e., distributionally close to €; and then any result/procedure obtained from using
the continuous data will be expected to be asymptotically close to the comrespond-
ing analogous one based on the discretized version of the problem. Towards that,

let us define

M

: 2m
Siim) = Z _\"2 + T:

=+

the criterion function based on the v/s corresponding to §{m ). Let us heuristically
define the “Akaike Information Critedon” for the discrete problem as

mf‘lc = argmin §(m)

| == =i

AN 3
and the loss L), (m'%) = 3770 (37 — 607 + X0, 6] + 25, 87, which is
defined in a manner analogous to L, (m™) (as in Sect. 2). Note that L (m) is the
loss in estimating & by v/ if § = m and by 0 otherwise and L] (m) = || f — _fHE,
where f(1) = 3_i1, yigilr).

We have a rigorous argument (not presented here, so as 1o not increase the
length of the paper) which shows, that

1=l

.L“ {H’IALC} _ L:,{m‘rlc} — {}P {H_]q..l.-ﬂqé-”} : f31:|

H-2g/29+ 11

uniformly over 8 € E,(B); provided ———— = O(1) as n — oo. This implies
that L (m?'€) = 0,(n=2/24+ 1) uniformly in 8 £ E,(B) using our previous
result (Theorem 2.2). ( The heart of the argument in proving Eq. (31) lies in show-
ing that with probability tending to 1 (uniformly over & € E (B))asn — o0;
S(m)— 8 (m)and L, (m)— L, (m) are uniformly small inmagnitute for | = m =n
(upto the minimax rate n 24 /3441 3.

In summary, we heuristically apply the analogous definition of AIC based on
the ¥"s and define the natural loss function based on the same observations. We
are able to establish that this transformed version of the ALC for the discretized
process does as good a job as the ALC based on the ordginal continuous process, in
terms of minimax rate of convergence, provided we observe the discrete process at
enough number of equally spaced points. So the results proved for the continuous
path data are adaptive to the need for adjustment for discrete data.
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