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Abstract

This note solves a problem (related to proving a convergence which is stronger than convergence in total variation nonm
in the contexts like that of the celebrated Poisson convergence of binomial probabilities) stated towards the end of Simons
and Johnson [1971. On the convergence of binomial to Poisson distribution. Ann. Math. Statist. 42, 1735-1736], using an
approach different from theirs. The present method is simple, goes beyond the context of Poisson convergence and is
expected to be more widely applicable.

i 2005 Elsevier B.V. All rights reserved.

1. Introduction and main resuolt
Let

b (n;p) = (f)f”“ =PV pld) = exp(—AT /.

Assuming mp, = 4 € (), o). Simons and Johnson (1971) showed that

Z b p ) —p i) = 0 asn— oo, (1)
r=i}

whenever
Z hirjp{i)=oc  and h(r)=0 ¥r. (2)

r=ly

Taking hir) = expltr) for =10, they concluded that if p, = i/n,

Zexp{!r]{b,,{n:p,,]—p,{i}f — 0 as n — o0, (3

r=ly
and posed the problem of showing analogs of (3) in cases other than the Poisson convergence of binomial

probabilities. Chen (1974) generalized the result of Simons and Johnson (1971) to the case of Poisson
binomial, and Wang (1991) generalized the same to the case of compound Poisson, both using essentially the
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approach of Simons and Johnson (1971); note that this result is stronger than the fact that convergence holds
in the total variation norm. However, there seems to be no similar result in contexts other than the usual
Poisson convergence. It is worth pointing out that analogs of (3) can be established in a large number of cases
in a natural and straightforward way. The key idea is to use Lemma 2 which is a variation of a classical result
of Scheffe (1947), and is of independent interest (we supply a proof since it is very short); for this purpose, we
first state a useful consequence of Fatou’s Lemma which will be used in Example 3 also.

Lemma 1. For each nzl, et ky and K, be of-measurable real-valued funciions on (o8, p). If
k,=K,, K, — K ae [u. K is p-integrable, [ K, (e)plde) exisis for all sufficiendy large n and

f Kylenp(de) — f K{e)p(dew),
then

lim sup—[k,,{w]_u{dw]& f{lim sup &y e el des).
I, moreover, 0=k, and ky — 0 ae. [p, then

/ ko(enp(de) — 0.

Proof. Apply Fatou's lemma to (K, —k,). O

Lemma 2. For cach nzl, let ., 0 and I be of-measurable real-valued funciions defined on (2, .04, u); let
O<a=<oc. If

Jo—fae [y (4)
andd

f OO, () F pld ) —> f O 1 () () < oc, s)
then

f OIS 400) — ) pldx)— 0 as 5 — oo, ©)

Proof. It suffices to prove the result when & = 1; the general case then follows by considering ff, and if'in
place of [, and f, respectively. But then the result follows by applying Lemma 1 with &k, = |, —f|* and
K, =2[fF + 1"l O

To get the analog of (1), one simply takes = 1 and f,, fprobability density functions (w.r.t. ) and iz 0. In
our approach, one has to show, in addition to an analog of (2), that

f.’:{.t]_f',,{.\.‘]}:{d_r]—h f.’:{.t}_f'{.t]p{d.t]: (7

in this case, it may be noted that (6) implies (7). In the set-up of (3), assuming that np,— 24 (in place of
P, = A/n) and taking i x) = exp(ix) where ¢ =1, we have

LHS of (T) = (1 — p, + p, explf))"—s exp[ilexp(f) — 1)] = RHS of (7).
and so (3) holds whenever np, — A which is a wseful extension of the last result of Simons and Johnson (1971).
Example 1. Let X ,~72 and f, be the Lebesgue~density function of (X, — n)/+/2n. Then it is well-known that
[fo(x) = exp(—x*/2)/+/2n = f(x), say; moreover,

fexp{:x],.l""{.r]dx = exp(—n'”!;’ﬁ){l — 2124 g2t () 2)N2

— exp(f/2) = fexp{:.r},l‘"{x}d_re:m.
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and so for any ¢ =0,

f&xp{!.t][f'"{.t} —fix) de—0 asn— oo {®)
Example 2. Let X, follow Student’s t-distribution with # degrees of freedom; let [, be the Lebesgue-density
function of X,. Then f,—f where f{x) is as in Example 1. Take &(x) = |x|" for some r>0; then one can
verify that

ff:{.r}j',,{.t]d.r—h f.":{.\.‘],.l"{.t} dx=oc
so that for any r=10

f|.1'E’[,.I",,{.t]—_f'{.t]ﬁd.r—rﬂ' as 0 — o0,

Clearly, in this Example, (8) does not hold for any ¢ =0.

Example 3. Let
d 1 t X
Ful®) = (” : j{l ~4.'g,
for =012 ..., O=g,=<1 and ng, — 4 € (0,oc). Then it is wellknown that f (x) — p (i) as n — o
MOreover,

Z explex)f,x) = (1 — g )" — g, exp(i)™

x=i
—s explilexp(f) — 1)] = Zexp{:x}pﬂi}{ o,
=}

so that 377 expleo)lf (x)— p (4] — 0 as n— oc.
Example 4. Let

]
n .
. " ¥ . L |
Fl P re) = r—|!_..r,;!P"""'P’”’FH""'

where 1 =n— Zf=| rand ppy,=1— Zﬁ;,pm be the multinomial probabilities; let

k
ftr,. o) =T pota.
=1

Let np,, —+ 4 e(oc) foreachi=1,..., k. Then it is well-known, and easy to verify using induction on k,
that for each ry,....r
Fulris..or) = fln,....rx) asn— oo,

Also, one has

=

Z expltir) + -+ teredfdr, .. i)

Fla-aty =l
= (praexpli) + - + prexplie) +F."<+I4rrr

E
" fop[‘i:{fxr’“i] arE 1]]
=1

a0 &
= Z expliiry 4+ -+ fere) 1_[ Pr,-{‘;'f] < 0.

Flae. iz =l =1



1135

So

==

Z expltirs +- -+ el rn o) =l ool = 0 as e — o

Fllaedy =0

Example 5 (Fisher's Transformation). We continue with the notation of Example 1, and put

Uy =428, —

whose Lebesgue-density g, is given by

Xp [—% (u + Jﬂ)l] (H + ﬁ)"_l e U R

1
= T

{ 4 being the indicator function of the set 4.
Then (X, —n],-’v@ =, + Ufj{?ﬁ}. Also, for any real ¢,

¥ o ’
".,_—/; h_f"ip !(H’+N—{.ﬁ) Q'"{H] —_,|Ir (H+ﬁ) (1 +E)
- explro)|f, (v)— flo)| dv

ot

du

— 0 asn— oo (by Example 1).
We shall show below that

,,Ff exp[ ( J_)]pq"{u] —fiw)|du — 0 asn— oo, {9

which will imply that for any =0

f expl i) |g, (1) — flu)| du—0  as n — oo {1101
But
~ % £\
st [ eli(ue i) (orsim) (- 75) vl
—n 3 —ofnj2
+f exp [!(u+_’\ﬁ—)]f{u]du+—[ expl ) (1) du. {11)
— LW LR —

To show the second term of the right side of (11) goes to zero, we apply Lemma 1 to

=l (o355 o 555) 1+ ) o

. e m :
Kilu)= exp |:! (H+ﬁ):| |:_,||r (M+E) (1 +E) .!'1_‘@1:{”} +_J'r1:u]:|
Kiw) = 2explru)f{u);

— '-'.lr :I\_]{ }

then0<k,<K,. &k, — 0, K, — Kand Kisintegrable; moreover, [ K(u)du — [ K(u)du = 2exp(r’/2), since

[rollesm)y (ra7m) (7)o

- explto)f (v)f (v)dv — f exp(to)f (v)do = exp(£/2),
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and
el

f. p |:" (” + .’j,:.’—) ]f'{H}du = auexpltios /2) — exp(t?/2),
- 2./ 7n

where a-2 = 1 — (2n)""2. Thus (9) holds.
We finally remark that we are not able to establish (10) for ¢ <.
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