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Abstract

This paper presents simple and deterministic algorvithms for partiad point set petten matching in 2D, Given a set P of i points, called
sample set, and a query set @ of & points (n k), the problem is to find a matching of @ with a subset of P under rigid motion. The
match may be of two types: exacr and approximate. IF an exact matching exists, then each point in @ coincides with the corresponding
point in P under some translation and/or rotation. For an approximate match, some translation andfor rotation may be allowed such that
each point in @ lies in a predefined r-neighborhood region around some point in 2. The proposed algorithm for the exact matching needs
Oin?) space and Oin log 1) preprocessing time. The existence of a match for a given query set @ can be checked in (k% log a) time
in the worst-case, where 2 is the maximum number of equidistant pairs of point in P. For a set of n points, 2 may be @2y in the
worst-case. Some applications of the partial peint sef pattem matching ave then illustrated. Experimental results on random point sets and
some fingerprint databases show that, in practice, the computation time is much smaller than the worst-case requirement. The algorithm
is then extended for checking the exact match of a set of & line segments in the query set with a k-subset of n line segments in the sample
set under rigid motion in (ks log a) time. Next, a simple version of the approximate matching problem is studied where one point of
{ exactly matches with a point of P, and each of the other points of @ lie in the s-neighborhood of some point of P, The worst-case time
and space complexities of the proposed algorithm are (Jl{nzkz log i) and in), respectively. The proposed algorithms will find many

applications to fingerprint matching, image registration. and ohject recognition.

Kevwards: Point set pattern matching: Approximate matching: Fingerprint matching: Computational geometry: Algorithms; Complexity

1. Introduction

Incomputer vision and related applications, point sets rep-
resent soume spatial features like spots, comers, lines, curves
in various images pertaining to fingerprints, natural scenery,
air traffic, astronomical maps, ete. Pose estimation involves
assessment of object position and onentation relative o a
model reference frame. In many problems of pattern recog-
nition, such as registration and identification of an object, a
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suitably chosen set of points may efficiently preserve the
desired attributes of the object. In all such cases, the problem
can be transformed to matching point sets with termplates.

The objective of the point set parern matching (PSPM)
problem is to determine the resemblance of two point sets P
and @ (representative of two different objects), under differ-
ent transformations. The most simple kind of transformation
is translation. If rotation is allowed along with translation, it
15 called ngid motion or congruence. Other transformations
include reflection and scaling. The latter refers to magnify-
ing (or reduocing) the object by a certain factor =, Combina-
tion of rotation, translation and scaling 1s called similarity.
Under these ransformations, the problem can be classified
it three groups [1]:

Exact PSPM- Let P and @ be two sets of points in [
with |P| = |@] = n (say). The objective 18 o report the
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existence of a congruence between the two sets under some
transformation. In other words, whether each point in @ can
be positioned on a point in P under the said ransformation
of the entire set .

Fartial PSPM: Let |P| = n, |Q]| = &, and &k < n, the prob-
kem is W ascertain whether a subset of P matches with @ un-
der some transformation. Here P is referred to as the sample
ser, and ¢ is the guery ser. The subset or partial matching
15 a difficult problem than the equal cardinality matching as
there can be {"E]I possibilities and also no condition can be
fixed about the centroid of the points.

Approximate PSPM: Here, given two fimite sets of pomts
Pamd Q(|P|=n, |Q| =k and k= n), the problem is w0
find an approximate matching under some transformation,
Le., for each point g; € @, find its match p; € P such that
g; lies m the g-neighborhood of p; (a predefined &-region
centered at p;), where & 15 specified as an input. The most
commaon g-region is a cirele or an axis-parallel square.

Owr study on PSPM has been motivated by an important
application, namely fingerprint minutiae matching, used as
a ool for biomeric authentication. It requires very fust con-
gruence checking. There may be more than one sample set.
Given a query point set, the objective 15 to report the sample
sets whose at least one k-subset exactly matches with @ in
an efficient manner. Another important apphication of PSPFM
15 image registration, where the objective 15 to match the
feature points extracted from a sensed image to ther coun-
erparts m the reference image. An efficient robust heuris-
tc for the partial PSPM s proposed by Mount et al. [2]. It
15 based on a mice blend of branch-and-bound and Monte
Carlo algonthms, and the experimental results (on remote
sensed data) show favorable performance. In computational
molecular biology, PSPM is extensively used for molecular
docking, where the objective 15 to decide whether the ligands
(small molecules) can stencally fit into 1ts designated cavi-
tes (the active sites of some protein) [3]. The approximate
version of PSPM finds many useful applications in patlemn
recognition and computer vision [4-9]. A detailed survey on
FSPM along with many important applications was reported
by Alt and Guibas [1].

1.1, Prior works

The study on the exact point set pattem matching prob-
kem was initiated by Atallah [10]. Here the two sets Poand
o IJ%I, |P| = |Q] = n. and the objective was to check the
existence of 4 one-to-one matching in the sense that if each
point in 2 15 joined by its matched point in P by straight line
segments, then the r line segments become non-inlersecting.
The proposed algorithm runs in (n Iug:'I n) tme. Atkinson
[11] showed that exact point pattern matching under Eu-
clidean congruence (Le., with appropriate rotation followed
by translation and then using reflection, if needed) in 3D can
easily be reduced to string matching [12], and can be solved
in Oin log n) time. In M"r, the problem is first studied in

Ref. [13]. The time complexity of the proposed algorithm
is O(n?~? log n). Later, the time complexity of the general
problem was improved o On el /2] log n) [14]. The best
known algorithm for this problem runs in O{n'* log n)
time [15].

The one-dimensional version of the exact partial PSPM
problem can be solved by sorting the points in both P and ¢
with respect to their coordinates on the respective real lines,
and then performing a merge like pass among the two sets
by considenng the distances of consecutive members in the
respective sets. Using the same wea, Rezende and Lee [16]
showed that given a query set O of k points, the existence of
its match in a sample set P of n (= k) pointsin B¢ can be re-
ported in @} {kn) time under translation and rotation. They
also extend the idea to include scaling. The implementation
of ther algonthm needs the circular ordenng of points in
P {p;} around each point p; € P; this needs O{n*) time
for all the points in P [17]. The algonthm proposed in Ref.
[16] solves the 2D version of the partal PSPM problem
in ({kn”) time using O (n”) space. For testing the congru-
ence in 2D (e, if only tanslaton and rotation are consid-
ered), the tme complexity of the best known algorithm s
ﬂ{kn'”'j’ log n 4+ =7) [ 18], where .o/ is the time complexity
of locanng rth smallest distance among a set of n points in
the plane. In Rel. [19]. it is shown that = is f}{.l'!-”}l{}gﬂﬂ.!!}
in the average case, and 0{114""1’":} in the worst-case. Deter-
mination of .« needs parametric searching technigue [20].
Though efficient implementation of some specific problems
using parametric search technigue s proposed [21], 1t s
hard to implement m general [21-23]. The Las Vegas ex-
pected nme of the algonthm proposed by Akutsu etal. [18] 15
(){n"”h}g“ﬂ n—+ mr}i{k”"_'-'ru La43 log n, PRIES logn}), which
also uses parametric searching. Thus, the algorithms pro-
posed in Ref. [18] are nice theoretical results on the ime
complexity of the problem, but are not suitable for practical
applications.

The approximate PSPM 15 more realistic in many actual
applications. Baird [4] did some pioneering work on this
ared, but the problem of designing a polynomial time algo-
rithm was left open. All et al. [13] solved the one-to-one
version of this problem (Le., where £=n) in 115 most general
selting using intersection of curves of high degree and lipar-
tite graph matching. Better algonthms for some restrcted
cases and with &£ =n were given in [24]. An effort of the ap-
prosimate matching of partial point set under ngid moton
and using Hausdroff distances appeared in Ref. [7]. It de-
termines the smallest & required for a match of Q (|0 =k&)
with 4 subset of size & from P. Later, the time complexity
of the same problem s mproved in [25] vsing parametne
searching technigue [20]. The proposed algorithm runs in
0 n’k k}gz.{'n}l tme. It may be noted that the technigues
used in Refs. [13.24.25] involve either computing the in-
tersection of curves of high degree making it numerically
unstable o wse parametne searching, Thus, the algorithms
are conceptually complex, difficult 1o implement and have
usually high running time [7].
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Apart from point patterns, research has been done on de-
tecting resemblance of more complex patterns, for example
line segments or polygons [45,46]. The approximate pattern
matching of polygonal shapes is studied in Ref. [26]. It as-
surmes that the number of vertices in the two polygons P
and @ are same, and it minimizes the Havsdorff distance of
P oand T(0Q), where J{Q) s the ransformation of @ under
rgid motion. If P and @ are two sets of polygons with n
and & line segments respectively, then the minimum Haos-
dortl distance between P and @ is 2 if the vertices of @ lies
in the s-neighborhood of a &subset of Po An algorithm for
computing the minimum Havsdorfl distance between two
sets of polygons s given in Ref. [25]. This also uses para-
metric searching, and runs m G{kP’:i?’Ithlk:i} time. In Ref.
[27], an {n) ame algorithm is given for compuling the
Hausdorft distance of a pair of convex polygons. The Haus-
dorff distance of two arbitrary sets of line segments can be
computed in O(n log n) time [26]. In additon, several poly-
nomial time algonthms for checking approximate resem-
blance between two polygons with possibly different num-
berof vertices are given in Refll [26]. Severl applications of
line segment matching can be found in map matching [28].
cartography [29], aerial scene matching [30], edge linking
problems of image processmg [31], to name a few. Polygon
matching problem finds its use in shape retneval from image
databases [32].

1.2, Main results

We present a simple and easy o implement deterministic
algorithm for the partial PSPM under translation and rota-
tion. Our proposed algorthm creates efficient data structure
for each sample point set in the preprocessing phase, and it
keads to an efficient query algorithm which does not need
the complicated pammetric searching lechnigque. The time
and space complexities of the preprocessing are O (n” log n)
and O(n®), respectively, and the query time complexity is
O(kx log n) in the worst-case, where 2 15 the maximum
number of equidistant pairs of pomnts in the set P. In Refl.
[33], it 15 shown that & may be G{n""‘j’}l in the worst-case
for a point set of size n. Thus for the applications whene re-
peated quenes need w be answered, our algonthm is an im-
provement over the best known existing algorithm where the
query time complexity is @ (n*? log®®n + ka logn) [18],
and which uses parametric searching technigue. Our empir-
wcal evidences show that 18 much less than G{n""""}. The
algorithm presented by Rezende and Lee [16] appears to
be the most efficienty implementable algorithm. Thus, we
have compared our proposed algonthm against Refl [16].
We have run experiments on mndom point sets and also for
some actual applications, like fingerprint matching. In all
the cases, our algorithm performs much better than that of
Rezende and Lee [16].

We then extend the exact matching algonithm to match a
set of query line segments with a k-subset of 4 sample set

under rigid motion. This algonthm runs in Q{kn log n) bme
in the worst-case using ((n) space.

In actual applications, a more useful problem is the ap-
proximate matching of partial point set. By approximate
matching of a pair of points @ and b, we mean that each one
(say a) lies in the circle of radius £ centered at the other point
fowhere 215 specified as an input. Here a match exists if each
point in the query set @ approximately matches with a point
in the saumple set P under ngid motion of . The existing
algonthms for approximate matching of point set patterns in
2D are computationally unstable since they use computation
of mtersections of high degree curves. Moreover, earlier al-
gorithms often vse parametne searching, which is difficult
to implement. We have studied a simplified vanation of this
problem, where an g-approximate match is searched under
rigid motion with the constraint that one member of & ex-
actly matches with a member in P. This type of approximate
matching 1s useful in image registration problems by con-
trol points [34]. Under this restncted scheme, if a match is
not found with an approximation factor 2z, we can safely
say that there does not exist any £-subset in P that has an -
approximate match with @ in the conventonal sense. But the
converse 15 not true, 1.e., the existence of a 2e-matching using
our scheme does not guarantee a conventional s-approximate
matching.

The rest of the paper s organized as follows. The problem
of exact matching for partial point set under ngid motion s
studied in Section 2. The exact matching problem for line
segments 15 studied in Section 3. Finally, a vanation of the
approximate matching problem for point set s studied i
Section 4. Concluding remarks appear in Section 5.

2. Point set pattern matching

Let P = [p1.p2s-cxs Pe} be the sample set and
O ={q1.92.---. gi} be a query set, k < n. The objective is
to find a subset of size £ in P that exactly matches (& under
translation andfor rotation. The most rivial method 15 in-
specting all p{msiblu{‘; ) subsets of P for a match with Q. The
time complexity 15 improved in Ref. [16] by extending the
concepl of circular sorting [ 17] to higher dimensions, which
facilitates an ordery traversal of the point sets. It may be
noted that the points in [ L =2, lack a total order. A char-
acterization of canonical ordering of a point set in B is first
reporied in Ref. [35]. In Ref. [16], the authors pointed out
that the method given in Refl [35], though elegant, may not
be of much vse in subset matching. But, the idea of canon-
ical ordering of Rel. [35] can be extended to the concept of
circular sorting [17], which basically imposes a partial order
on the points. The algorithm in Rell [16] stores the circular
order of the points in P\{ p; | with each point p; € P. Then
it selects a point, say gp. from the query set @, and com-
putes the ercular order of the pointsin O {g} around g It
anchors g with each point in P, and rotates (0 o identify a
k-subset mateh in P. This scheme can detect 8 mateh (if any)
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under translation, rotation and scaling. In 2D, the space and
query time complexities of this algorithm are (}(n?) and
G{n1+.{' log k+knin— 1}}:0{.&'”1}, respectively.

We follow a different scheme for detecting a match un-
der congruence (translation and rotation only ) by selectively
choosing a few points i P for anchoring with g . We adopt a
preprocessing method on the sample set and use the follow-
ing facts to design an efficient query algorithm with reduced
number of anchonngs.

Fact 1. As the distances amongst the points in a set are pre-
served under transfational or wrational transformations, a
sufficient condition for a match of Q with a k-subset of P un-

der translation andfor mwotation is that all the ('5, ) distances

in the point set Q should occur among the (5 ) distances in
the paint set P.

Fact 2 (Szekelv (33]). For a sample set P of n points, the
number of equidistant pairs of peints is Q(n™'?) in the worst-
case.

2 1. Pwprocessing

Let P={p1.p2.---. Pal be a sample set, where cach
point in P is assigned a unigue label. In the entire text, we
shall denote a line joining a pair of points @ and & by {(a. &),
the corresponding line segment by ab, and the kength of the
line segment ab by i(ab).

The distances of all (5 ) pairs of points are computed, and
4 height balanced tree 37 is created with the set of distinet
distances. Each node & € # is atached with a pointer to an
array y5. whose cach element is the pair of points separated
by a distance 4. Each element of the aray y; contains a
triple (p;. pj. W;;), where p; and p; denote the labels of the
pair of points contributing distance 4, and I’I‘I'Ij denotes the
angle of the line (p;. p;) with the x-axis.

An armray 5 of size nois also wsed dunng the query. Its
ith element (comesponding to the point p; € F) holds the
address of the root of a height balanced wee 5, containing
exactly n — | ¢lements. Each element is a tuple (. ;).
where rij = Aprp;) and @; is the angle made by the line
(p;. pj) with the x-axis.

The total space used by F is O(n®). The structure %
also needs G{nl}l space since it has n oelements, and each
S takes @(n) space. The ume complexity for the prepro-
cessing 1% domimated by sorting the {g} distances, which is
f}{nl log i) in the worst-case.

22, Query answering

Given a set of points @ = {g1. g2.... . gi}. the query is
o ascertain whether o k-subset of P matches with ¢ under
ranslation and/for rotation. The technigue for matching used
i$ based on Fact 1. We select any two points, say g, g2 €
2, and search whether the distance Algrge) is in 5. I not,

then no k-subset of P matches with @ (hy Fact 1), If such
an entry is found, the following steps are needed:

Let A{gygz) = 4 We consider each member in y; sepa-
rately. Assume that A(prpy) € 75 is under processing. We
anchor the line segment g1g2 with the line segment pip; by
positioning g on g (if it fails we would position gz on p;)
and search in % (data structure comesponding to gy in )
to identify the presence of a match.

For each point g, € @, the tuple ({g.q1q92, Agigz)) is
searched in 5. If such an element (Lpepip ;. A(pipe)) is
found (iLe., the triangle Apg p; p; In P is congruent with the
triangle Ag, g g2 n ), pp; matches with g, If all the points
in 2 are matched with & points of P, then O matches with
P (see Fig. | for an illustration).

2200 Query time complexity

Searching for the distance A(gigz) in F needs O(log n)
time. If the search is successtul, i, Aggz) =4 € 7, then
one needs to consider each member pyp; € y5. The line
segment g gz 15 anchored with the line segment py p;. and
forcach pointg, € @Y g1, g2}, the wple ({q.9192, Algiga))
15 searched o %5, which needs O(log n) time. For £ — 2
points in (2, the total tme required s Ok log n). I the
match fails, the same steps are repeated by anchoring grg;
with pjp;, Le., searching in 5.

In the worst-case, one may need o check for all the ele-
ments of 750 As the number of elements in 75 can be al most
(3(n*?) (see Fact 2), the worst-case query time complexity
of this algorithm is O (kn*"? log m).

2.3, Experimental results and applications

2.3.1. Experiments on randomly generated point sets

We have implemented the proposed algorithm as well as
the one reported n Refl [16] on a Sun Ulra-5_10), Sparc,
233 MHz: the O8 s SunOS Release 5.7 Generic. In most
of the pattern matching problems in general, and fingerprint
matching in particular, there are two different problems: (i)
venfication and (i1} identification [36]. A verification system
authenticates a person’s ientity by condwcting a one-lo-one
companson o determine whether the dentity ¢ lumed by the
individual s true. Verification is basically a query of type
“Am ITwhom [efaim Tam . On the other hand, dentification
systems recognize an individual (without self-identfication)
by searching the entire sample database by performing a
one-to-many comparison. ldentification is basically a query
of type “Who am I'7". In keeping with the above, we do
two types of experiments. The first experiment, whose re-
sults are summarized in Table 1, is designed for verification
purposes. We randomly generate sample point sets having
cardinality n as shown in the first column of Table 1. From
that set, we again mndomly pick up points o generate the
query set whose cardinality & is vaned as shown in the sec-
ond column of Table 1. It can be seen from Table 1 that the
proposed algorithm is fast and also depends on the number
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Comparative results for verification with respect to CPU time
CPU time in ps
Mumber of points Mumher of points Mumber of Rezende and Proposed (%)
in =ample, » in query, & anchonings, o Lea's method | 16) miethod Savings
20 Sl | T 200 Q7.0
1 | BT 40 2340 97.0
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500 1 2 19{15.1 22 Gy
200 | 1937 20 no 9490
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Comparative results for identification with respect to CPU Time

Maximum number of equidistant pairs in a point set

CPLU time in =
Mumber of sample Rezende and Proposed (%)
sets, K Lee's method [16] method Savings
1 ] 1.28 96.70
20 E502 L 95.90
11 23824 11.78 94.83
10 54803 19.75 96.39
{1 17598 k. R 960,35

of anchorings, @, Table 2 illustrates the experimental per-
formance of the two algorithms for identification purposes.
We considered K sample sets B,i=1,2,..., K. each of

Mumber of points i) 10 200 500 1000
4 465 1170 e 1001
Muximum number of -+ f A 53

equidistant pairs observed

Experiment is performed for randomly genermed paint sets for different
values of 1.

size ranging from 50 w 80, Thereafter, a particular sample
set P;ois selected at random; a subset from that set i then
chosen which under random translation and motation forms
the query set . Thus, a match of @ with at least one Py 15
ensured. Next, both the algorithms for partial PSPM are ex-
ceuted with each of the K sample sets. The time reported is
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Reference fingerprint

Cluery fingerprint

Fig. 2 An example of a subset matching in a fingerprint.

averaged over a number of expenments for different values
of K. Also, no false match was reported. It may be noted
that, as exact matching is not possible in the real coordinate
system, a small tolerance on the distances and angles is al-
lowed. In other words, around each point of the query set,
we consider a circle of radius £; if a point of the gquery set
falls mside the circle corresponding to the desired point, it
15 considered to be a match. Such a matching is always use-
ful in matching minutiae in fingerprint images. The drastae
mmprovement in the execution time, as reported in the last
columns of both Tables 1 and 2, 15 due to the fact that, in
general, the maximum number of equidistant pairs of points
in 4 point-sel i very small compared o its theoretical upper
bound (see Table 3).

2.3.2. Experiment with real fingerprint minutiae

The proposed algorithm is also ested vsing real finger-
print minutae, extracted from fingerprints in the NIST 14
sdb [37.38]. The one pixel thick ndge lines are extmcted
from a grayscake fingerprint image using the algonthm re-
ported in Refl [39]. Thereafter, minutiae (the lerminations
amd bifurcations on the ndge lines) are extracted using the
method in Ref. [40] (see Fig. 2). We analyzed 100 images of
the NIST 14 sdb [38] for extructing minutiae. A fingerprint
image 15 then chosen al rmndom; its minobae are extracted
o form the query set (see Fig. 2). The query set 1s then
searched in the database using our proposed algorithm. It al-
ways reported a match, and no false mateh 1s reporied. The
preprocessing stage for the database containing 100 images
requires 2.3 s on an average, and the search for a particular
minutiae point et in the database takes on an average 0.7 5.

3. Line segment matching
We now tailor our earlier algorithm for the partial match-

g of a query set containing & line segments with a k-subset
of the sample set P eontaining n line segments. Here the pre-

processing phase consists of creating two data structures: (i)
a Voronoi diagram VOR({P) with the end-points of the line
segments in P, and (1) a height-balanced bmary search tree
F containing the length of the line segments £ =p;p,, € P
The members in . are all distinet. If more than one line
segment are of the same length 8, then they are stored in the
structure x5 attached to the node 8. Each entry of 75 stores
a line segment £ = prp, € P Each entry of 35 contains
a d-tuple {pi. pw. ptry, piral, where ptrp and ptr; point
to the faces of VOR(P) containing p; and py,. respectively.
Construction of VOR(P) and its storing need in log n)
time and (X{n) space.

Dunng a query operation, a line segment, say £ =g142
(7, is chosen from the query set. Let § =length of £ If
d € .7, then for each line segment in x5, we need to check
for a match. We anchor g gz with cach member prp; € 75
(1f the match fails, we need o anchor §igz with pip;), and
check the presence of the line segments n O4{£, ] among
the members in Po This anchoring gives us the pammeters
of the ngid moton, and we transform the members in (2
accordingly. For each line segment ¢ = gg° € @\{£} (in
the transformed plane), we search for the faces of VOR{P)
containing g and g'. Let the points in P representing these
two faces be p and p’, respectively. If pp’ € P then we have
a match. The total time required for scarching in VOR(FP)
for all the members in 15 Ok logn). Thus, the worst-case
query tme complesity 15 (k|5 bogn), where |5 (the
number of elements in ;) may be O{n) in the worst-case.

4. Approximate matlching under rigid motions

As mentioned earlier, the exact subset matching problem
considered in the previous sections 1s not realistic in prac-
tice, and there is no theoretical guarantee for any exact al-
gorthm to give correet results when bounded precision real
coordinates are used in actual implementation. This moti-
vates our study in this section for developing algonthm with
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theoretical guarantee for a more mealistic version of the
matching problem with some tolerance. Given the sample
set P(|Pl=n)and a query set O] Q|=k) of points, k <n, we
consider the following problem: decide if there exists a rigid
motion that maps each point in @ to a closed e-neighborhood
of some point in P in 4 one-to-one fashion (see Fig. 3).

Fact 3 (Al et al. [13]). If there exists a transformation
T, which gives an g-approximate partial maiching of the
points in O with a k-subser of P, then there exists another
transformation T'(Q) where at least two points gi, q; € O
fie on the boundary of the e~circle centered at points p,, pp, €
P and can produce the same matching (see Fig. 3 for an
illustration).

The existing algorithms for the approximate matching of
point sets in the one-to-one case involve computing the in-
tersection of curves of high degree making it numerically
unstable or use parametric searching. Thus, the algorithms
are conceptually complex, difficult to implement and have
usually high running times [7].

Mote that our algorithm for the exact case in 2D s fast
because it chooses a correct anchoring point of @ with an
approprate point in P very fast. Though Fact 3 is a neces-
sary and sufficient condition for the existence of an approxi-
mate matching, it does not say any rule of anchoring for the
searching of a match. This motivates us to study the special
case of the problem. We present a simple algonthm for the
following special case of approximate matching problem.

One poimnt of @ exactly matches with a point i P, and
each of the other points of @ lies inside the e-circle centered
at some point in P. This problem is important i the case of
image registration [34] where there 15 a reference point.

» = sample point & = guery point

O

Fig. 3. Hustration of Fact 3.

From now onwands, this will be referred to as restricred
appmximate matching pmblem.

4.1 Algovithm

In this section, we first assume that the point set P s
sparse enough in the sense that the g-cireles do not overlap
each other. The lemma, stated below, suggests an anchonng
scheme for the restricted approximate matching problem.

Lemma 1. If there exists a transformation T{Q), which
gives an g-approximate partial matching of the points in (2
with a k-subset of P, and one point i € Q coincides with
a point p' € P, then there exists another transformation
T Q). which can produce the same matching, where T'{(gq)
is obtained by coinciding g; with p’ and placing at least one
other point g; € Q. on the boundary of the e-circle centered
at some other point p" € P, p" £ p'.

Prool. If there exists a transformation T as said, then let
g; € @ match exactly with p° € P and all other points
g; € igi} lie within an g-circle centered around some
point in P. Now, fixing g; at p’, start rotating all points
g;j € Q%g;} in anticlockwise dircetion, until @ point g;
hits an g-circle. Note that, at this moment, every other
point gp € O{gi. g} les mside the corresponding &
-circle. 0O

Lemma 1 indicates the following algonthm for the me-
stricted approximate matching problem. Let the point g; €
(? be anchored with a point p° & P. Consider each element
g; € O and draw a eircle Cj; centered at g; and with radius
gigj. As each of these circles may intersect On) e-circles,
we may have O(kn) such intersections in the worst-case.
For each such intersection (event-point), we need to do the
following:

Al an event-point, if Cj; intersects the ecircle of p” € P
al a point 7, then transform (& by placing g; on point p" and
g al point 7 and search for a match with the remaining
k — 2 pomts m (. This needs Ok log n) time.

Thus the total Gme required for checking the existence
of an instance of a match with g; anchored with p' is
(}{nk® log n) in the worst-case. As each point in (0 is 10 be
anchored with each member in P, the worst-case time com-
plexity of this algorithm is @ (n’k" log n).

The time complexity of this problem can be improved as
follows. Let g; € @ be the farthest point from g;, and the
existence of 4 match implies the existence of at least one ¢-
circle centered at some pont in P that will intersect the crele
Ci; . We ientify such an g-circle. Let it be centered at a point
g’ e P, and it intersects Ci; at two points 7 and w2 (say).
We shall denote the angle £ g;m by 0. Now, we align g7g;
with p'm, and determine the co-ordinates of points in @
exactly among the points in P with the necessary translation
and rotation. Now, rotate the entire point set 0 by an angle
{F fixing ¢; on point p’ (i.e., until gig; is aligned with p'm).
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Fig. 4. llustmtion of Lemma 2.

and consider all the ares Cp obtained by the movement of
ge. £ £ 1, j. Thus, each point in O\ {g;} generates an are
satisfying the property stated in the following lemma.

Lemma 2. The number of e-circles intersected by each of

these aes is € 1),

Proof. Note that g; is the farthest point from g;, and length
of the line segment Tymz 18 less than 28 Consider another
point gp which is moving around g; by an angle 1. Let its
locus be an are [a), az] of a cirele of madius g;g; and cen-
lered at gp (see Fig. 4). We need o prove that the number
of g-circles intersected by the are [, 22] 15 bounded by a
constant number.

There may exist two g-circles touching the points o and
oz, respectively. Next, consider all the g-cireles whose cen-
ers are in one side of the are [, 22], and are cut by the
mteror of the are [, 22]. Let us join their centers with
g 4% shown in Fig. 4, and mark the points of intersec-

ton of these lines with the are [, 22] by 7. 72... . . Note
that the length of the line segment 7,7, 1s al least &

This proves the fact that the number of such s-circles is at
most 3.

Similarly, the number of such g-circles having center w
the other side of the arc [2), 2] and intersecting the are
[at1. at2] can also be at most 3. Thus, the number of g-circles
intersecting the are [2), 22] cannot exceed 8. O

We create a sel o, each element of which is an arc comre-
sponding to the locus of a pointin 0% {g; | inside the g-circle
of some point in P. Surely, [0, 0] £ .o and it comesponds 1o
the point g;. The members in ./ can define an interval graph
[41]. As the g-circles comesponding to the points in P oare
assumed to be non-intersecting, 1if more than one member m
A correspond o the same member of (2, then they must be
non-overlapping. We compute all the cligues of this graph.
If there exists a clique of size £ — 1, there exists a matching.

4.2, Complexity analysis

Theorem 1. The time complexity of our proposed algo-
rithen for the restricied approximate matching problem is
hn 2 log n).

Table 4

Results on CPU times for approximate matchi ng

Mumber of MNumber af CPLU time

points in sample, # points in query, k in seconds

501 1z 0. 102621
a5 414141
37 0.M1578

1041 25 10838
501 5.37816
15 7.902%4

200 501 20,4028
11 BE.0108
1501 139 606

Prool. The anchoring of each g; € (@ is 1o be made with
all the members of P. While anchoring g; with a member
g€ P.if g; is farthest from g;, then the circle of radius
giq; and centered at gy may intersect al most (in) g-circles.
For each such intersection, we need to find the chgues of
an interval graph with a set of intervals =" as mentioned
above. By Lemma 2, || = O(k), and each member in o
can be recognized in Olog n) time by wsing the Vorono
diagram of the point set P. Thus, we have the proof of the
result. O

4.3, Experimental resulty

In order to demonstrate the efficacy of the above algo-
rithm, some experiments are performed with randomly gen-
erated point sets. Let P be such a point set. To ensure dis-
Jointness of the g-neighborhoods of P, we do the following:
(1) compute the distance & between the closest pair of points
in P, and (ii) set & as strictly kess than 8/2. Next, to construct
(2, we choose o subset of the points from P randomly; it is
then translated, rotated and perturbed with a tolermance of & o
generate (2. Thus, with such a data set. the algorithm should
report a match. The implementation of the algonthm re-
quires several geometric computations, and we used LEDA
[42.43] for this purpose. The entire experiment 15 performed
on the same setup as was done for the exact PSPM prob-
lem, and the results are shown in Table 4. In our experi-
ment, evenif a matchis found during the execution, we have
continued searching for multiple matches. Thus, the CPU
time estimates also mdicate the worst-case scenano, consid-
ering the fact that & match may not be found in an actual
data sel

4.4, Applications

The direct application of the restricted version of approx-
imate matching problem can be found in the image reg-
istration problem [34]. Another motivation of swdying the
problem arises from its melationship with the conventional
problem of approximate PSPM, where 4 match of a query
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Fig. 5. Wustration of Fact 4.

set @ with a &-subset of P is said to occur if there exists
a transformation T(Q), which bangs each g; € @ within
an g=circle centered at some point py € P in a one-to-one
sense. The following facts are relevant in this context.

Factd4. If there exists a transformation T{ Q) for an approx-
imate matching under the conventional sense, then there ex-
ists another transformation T'(Q), where (1) one point, say
gi € Q. lies at the center of the gcircle of a point in P, (ii)
each of the other members in ( lies within the 2z-circle of
some point in P (see Fig. 5).

Fact 5. As the distances amongst the points in a set are
preserved under rigid motions, a sufficient condition for a
match of O with a k-subset of P under vigid motion is that
Jor a distance Ay among any two points in ) there should
exist a distance Ay among any two points in P satisfving
Ay —2e£ A4, 4 e

These facts lead to the following result:

Resull 1. Ifa 2z appmximate matching of O with a k-subset
af P does not exist in the restricted sense, then there does
not exist an g-approximate maiching of O with a k-subset of
Fin the conventional sense. But the converse is not true.

This result has a significance in identification problems
{as mentioned in Section 2.3) in the case of approximate
matching that looks for a match by pedoming a one-lo-
many comparson. It can also be wsed for faster rejection
of point sets. If our algorithm reports a match, then fur-
ther accurale confirmation can be achieved by running
other high-complexity approximate matching  algorithms
[13.24].

5. Conclusion

In this paper, new algorithms for the exact and approxi-
mate PSPM problems in 2D have been proposed. The algo-
rithms are simple and easy o implkement. They can handle
multiple gquenes on the same sample set, and do not need
complicated tools used for parametric searching and com-
putation of intersections of high degree curves. Experimen-
tal results on exact matching of partial point set reveal that
although the worst-case time complexity of the algonthm is
3 (kn*? log n), it terminates very fast in most of the practi-
cal cases. Similar results are also observed for approximate
matching. An inleresting open problem is w design a ro-
bust and implementable algonthm for the general problem
of approximate matching of partial point set (ie., a match-
ing implies when each query point appears in the z-cirele of
some point in the sample set).
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