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Ahstract

Let P be a set of n colored points distributed arbitrarily in B*. The chromatic distribution of the k-nearest neighbors of a query
line segment £ is to report the number of points of each color among the k-nearest points of the query line segment. While solving
this problem, we have encountered another interesting problem, namely the semicircular range counting guery. Here a set of
i points is given. The objective is to report the number of points inside a given semicircular range. We propose a simple algorithm
for this problem with preprocessing time and space complexity O ), and the query time complexity O(log n). Finally, we propose
the algorithm for reporting the cftramatic disteibution of & nearest neighbors of a query line segment. Using our proposed technigque

B % . i ~ ¥ .
for semicirelar range counting guery, it runs in O(log=n) time.

1. Introduction

Let P be a set of n points arbitranly distributed
in B2, Each point is colored with any one of m given
codors (1 < m = n). In the chromatic version of the
nearest neighbor problem, for a given query point g,
the objective is to answer the following queres among
its & nearest neighbors of g: (Q1) the color that oc-
curs most frequently, and (Q2) the number of distinct
colors. Different variations of chromatic nearest neigh-
bors moblem are studied by many mesearchers [4.5,
F-10]. Of these, in [4.8,9], the problem of answering
the query Q1 is studied in the context of practical ap-

plications, and not from the perspective of worst case
asymptote complexity analysis. The reason is that it
is not clear how to determine the most common color
among the & nearest neighbors without exphcitly ob-
serving all & nearest neighbors of that point [10]. In the
same paper, an algorithm is also proposed for answering
the query Q1 under the assumption that the color ¢lasses
form spatially well separated clusters. Assuming that
the number of color classes is constant, the proposed
algorithm can preprocess the point set P in Qirlogn)
ume using Ofn) space, and can answer the guery in
(J'{Ingln -+ {%}Ilngi%}} tume, where 4 15 a measure of
the well-separateness of the color classes. The value of
& increases with spatial separation of the color classes.
Gupta et al. [7] considered the query problem Q2. Graf
and Hinnchs [5] studied another version of the chro-
malic nearest neighbor problem, where the query point
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is associated with a color and the problem is to find the
nearest neighbor of a different color.

We consider a general version of the chromatic k
nearest neighbors problem where the query object 1s
an arbiwary straightline segment. Here, the number of
colors m 15 assumed o be a constant, but & may be
an input along with the query line segment. Except the
general position assumption, no other assumptions have
been made about the given point set. Our objective 15 o
count the number of points of each color i, 1 <i < m.
The preprocessing time and space complexities of our
method are both O(n?), it can answer an arbitrary query
in O(log® n) time.

Along the way o solving this problem, we hawe
encountered an inleresting range searching problem,
namely the semiciular range counting guery problem
in B2, [t asks to preprocess the given set P of points in
a suitable data structure which can efficiently count the
number of points in P that lie inside any arbitrary query
semicirele without inspecting all of them.

We propose an algorithm for the semicircular range
counting problem. lis time and space complexities for
preprocessing are both Ofn?), and the query time com-
plexity 18 Oflog r). This matches with the complexity
results of the classical circular mnge counting query
problem [1.2]. The semicircular mnge counling query
may find its applications in many other problems.

2. Problem lformulation

Let o = [a, f] be a ling segment with @ and & as its
end points. Distance of a point p from o is defined as
follows:

From p, draw perpendicular on the line containing
the line segment o. If it intersects o properly (at a
point, say g), then the distance from p o o is dip, g),
where di(.,.) denotes the Euchdean distance between
two points, Otherwise, 10is minid{ p,a), d{p, 5.

The shape of the region R containing a specified
number (&) of nearest neighbors of o 15 like a hippo-
drome as shown in Fig. 1, and its width w is determined
by the farthest among its k nearest neighbors. Obvi-
ously, width of this region is monotonically increasing
function of the value of k. The region B can be split into
three parts as follows:

Rmig: the rectangular region of width 2w, where the
ling-segment o joins the mid-point of one pair of
its parallel edges £ and £7, each of length w, and

Fig. 1. Region containing d-nearest nei ghbors of a line segment.

R, and Ry: two semicireles, each of radius w, with
centers at @ oand b, respectively, and diameters
aligned with £ and £, respectively.

The subset of points which are propedy inside B4
(mot on £ and £2) 15 denoted as A, and those in B,
and By, (including those in £ and £, respectively), are
denoted as Ay and A, respectively. Note thal, | Agal| +
|Aq] + | Ap| = k.

Our solutions for the two variations of the chromatic
distrbution of k nearest neighbors problem for a line-
segment are based on the algorithms of the following
two subproblems:

Rectangular range counting gquery: Givena line-seg-
ment o and a real number w, repont the number of
points inside the rectangle of width w whose one
side 15 ahigned o o.

Semicircular range counting query: Givena line seg-
ment £, report the number of points lying within the
specified semicirele with € as diameter.

The rectangular range counting guery can be an-
swered in O(log n) time with O(n?) preprocessing time
and space [6]. Here, we develop an algorithm for the
semicircular range counting guery which pedforms in
logn) tme, but the preprocessing tme and space are
bath O(n?).

3. Geometric preliminaries

We vse geometric duality for solving the problems
mentioned above. A point p = (a, b, ¢) € B is mapped
o a dual plane T p): z =ax + by — ¢, and conversely
the image T3z} of such a plane z = ax + by — ¢ is the
point p = {a, b, o). Notice thata point p is above (resp.,
on, below) a non-vertical plane z if and only if T p)
is below (resp., on, above) Diz). For the set of points
P £ B, the comresponding dual planes are denoted by
T P). The arrangement of the planes in T P), denoted
by A{TN P)), decomposes the entire space inlo convex
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cells of dimensions 0, 1, 2, 3, If the points in P € B*
are in general position, then the total number of cells in
APy is O(r?) [3]. where n = | P).

Result 1. Given a set of non-vertical parallel planes
in the primal space (in ), the corresponding points
in the dual space lie along a line perpendicular on the
xy-plane.

In the armngement A(TNP)) in B, a point g is
said o be at level 8 (0 < & < n) if there are exactly
& planes in T P) that lie strictly below g. The dth level
of A{D{P)), denoted by Jg, is the closure of the points
on the planes of T P) whose levels are exactly & in
AT P)Y). Thus, A 15 a collection of faces which form
a polyhedral wrraimn. In other words, a hine perpendicu-
lar on the x y-plane intersects Aq al exactly one point.
Further information on geometric duality and levels of
an arrangement of the duals of a set of points in B are
available i [3].

Circular range counting guery

We now describe the preprocessing of the points in
P £ B* such that given any arbitrary circular range, the
number of points inside it can be reported quickly.

We project the points in P on an unit paraboloid 7
in B? with origin of the coordinate system as vertex of
the paraboloid. Thus, for a point p = (x,v) € P, the
transformed point is p’ = (x, v, x* 4+ ¥7). We name this
sel of tansformed points as P Next, we consider the
arrangement AT P)) of the duals of pointsin P, and
construct the levels of arrangement as follows:

Use an arvay of size n whose 9th element containg the
pointer toa data structure stoving the jaces of the ter-
rain wepresenting the level b,

For any query circle y (in B2), a plane (say x ) can
pass through the projection of y on the paraboloid 7.
Thus, the subset of points lying inside the circle
{in B?) is same as those of the projected points below
the plane x (in B). This can be obtained in O(logn)
time using the preprocessed data structure of size O(n?),
and this preprocessing needs (J{nl}l tme [1.2]. It may
be mentioned that, the preprocessing tme and space
of the circular range query algorithm can be reduced
somewhat, approximately by a factor log” n, keeping the
query tme unchanged [11].

4. Semicircular range counting guery
d.1. Prepimcessing

We sort the pomts in P owith respect to therr x- and
v-coordinales separately, and create two hight-balanced
bmary trees, namely T and T2 We desenbe the con-
struction of 7. The same procedure is adopted for the
constructon of 73,

The root of T} corresponds o the entire set P. The
points attached o the nodes at the next level are ob-
tamed by splitting the points in P oo two subsets of
almost equal size with a vertical line £ through the me-
dian x-coomdinate of the point-set P. The splitting con-
tinues and the nodes of the tree are defined recursively
in this manner until the size of a set becomes unity. The
keaf nodes contain the respective points in P. Each non-
leaf node v contains the following information:

(1) the set of points P, attached to that node,
(1t} the vertical line £, sphitting the points m Py,
(iii) an integer field p, = | Py, and
(iv) pointer w a secondary structure 5, stonng the
arrangement A(D(F))), where P, is the set of
transformed points in B corresponding 1o the
points n Py,

This is needed for the circular range query with the
points in P, We need to further augment the secondary
structure using the following lemma.

Lemma 1. Let v be a node in T\, and w be a successor
afnode v. A cellin &, is completely contained in exactly
one cell of 5y,.

With each cell C £ §,. we attach two pomters,
cell_ptry, and cell_ptrg. These point o the cells Oy £
5, and Cy € §,,. respectively, in which the cell C is
contained. Basically, this can be done by attaching the
pointers with each face f e D FP)). If the face f is
apart of a face f* e Cp,thenits cell_ptrp pointsto f*.
We draw a vertical line at a bounding vertex of [ in
downward direction. Let it hits the face j** € Cp. The
cell_ptrg points o f** I f is a parl of a face in Cg,
the cell_ptre and cefll_ptry are sel in a similar manner.

Lemma 2. The time and space required for creating
and stoving the preprocessed data structwre T arve both
O(n).

Prool. The initial binary tree T can be constructed
in Oin logn) time and space. The number of nodes at
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ith level of Ty is 2', and each of them contains n/2’
points, i =0, 1,..., logn — 1. For each non-leal node v
at level i, the size of the secondary stucture §, is
O((n/2)"), and it can be constructed from the point set
assigned to that node in O(in/2°)") time. So, the to-
tal time and space required for creating the secondary
structures for all nodes in T is (}{Z‘I-n__'l"rﬁ_l 2 {::,-’2"}'1'} =
O(n?).

In the last stage of preprocessing, we use topologi-
cal line sweep w set cell_ptry and cell_ptr g attached
to each edge of &, This requires an additional (J{nl}l
amount of time. [

In a similar fashion, using the points in P sorted by
their y-coordinates, we construct the binary tree T3 in
which the sphiting lines are horzontal. We also anach
secondary data structures to all non-leaf nodes of T2 as
descnbed for T,

4.2, Query

Let x be a semicircle specified by a tuple (£, ¢),
where £ = [a,b] 15 a line-segment describing the di-
ameter of the semicirele, and ¢ = 0 or 1 depending on
whether the required semicircle is 1o the same/different
side of the origin with respect 1o the line containing £,
Our objective is 1o count number of points of P in-
side .

Let £ is not parallel to any of the two axes. We draw
a horizontal and a vertical chord of the semicircle from
a and b, respectively, as shown i Fig. 2. This decom-
poses x mlo bwo arcs. We use the term aic range 10
mndicate the megion enclosed by an are and the corre-
sponding chord. Thus, we need o solve the counting
query for two are ranges and one triangular range. We
shall refer an arc range having hodzontal (resp., verti-
cal) supporting chord as the f-are range (resp., vare
range). Observe that if £ is hodzontal (resp., vertical)
then the we get only an fii-aie range (resp., v-are range),
and no triangular range.

[

We now descnbe v-are range counling query using
T} data structure.

4.2.1. vearc range counting guery

Without loss of generality, we assume that, the query
veare range corresponds 1o a circle yx, and is 1o the left
of its supporting chord. The plane comesponding o the
projection of ¥ on IT is x', and its dual (point) is de-
noted as Ty ).

We traverse the preprocessed data structure T from
its root with the query v-arc range. A global COUNT
field (initialized with ) is maintained during the raver-
sal. When the search is finshed, ths field will contain
number of points lying inside the query v-arc range.

We first locate the cell containing Dx') in the
secondary structure attached 1o the ol node of 7.
Dunng subsequent raversal, when search moves from
anode i to one of its children, the cell containing 70 ")
in the secondary structure attached to that child of u
are reached wsing celf_ptry, or cefl_ptrg in O(1) time.
When the search reaches a node i and i 15 leal node, the
COUNT field is incremented by one if the corespond-
ing point lies inside . If & is a non-leal’ node, then we
need to consider the following three cases:

Case 1. The chord supporting the v-are range matches
with the split line attached o node w: We reach the cell
containing T4 x") in the secondary structure attached 1o
the left child of « 1o determine the number of points ly-
mg within x among the points attached o that node,
and the COUNT field is increased by that number. We
need not proceed further and the search stops.

Case 2. The supporting chord lies to the right of the
split ine attached w node w. Here, two subeases may be
considered depending on whether the split line attached
o node i cuts the v-are range, or nol.

In the first subcase, the circular range counting query
is pefformed with the circle ¥ among the points which
are attached o the left child of @, and the result is added
i COUNT; next the search proceeds to the right child
of w in T}. In the second subcase, the search proceeds

Fig. 2. Semicircular mnge and its decomposition.
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to the right child of & without performing any circular
FANZE qUery.

Case 3. The supporting chord lies to the left of the
sphit linge. The processing of this case 15 exactly the same
as in Case 2.

Lemma 3. v-arc range counting guery can be solved in
Oflog ) time.

Proof. Al the root node we spend O{log ) time for the
point location query to identify the cell of the secondary
structure containing the point T4 x '), Ateach of the sub-
sequent move in the search path, we spent O(1) tme for
this purpose. The number of points inside y among the
set of points attached to that node is obtained by observ-
ing the level of the cell containing T3 x '), This needs
O(1) time. As the height of Ty is O(logn), worst case
counting query time for a v-are range is Oflogn). 0O

The same method applies for the h-are range count-
g query in the data structure 72, Thuos, we have the
following theorem.

Theorem 1. Let P be a set of n points in the plane.
We can preprocess P in O{n?) time and space such that
an arbitrary semicircular range counting guery can be
sofved in M logn) time.

5. Chromatie distribution gquery

In this secton, we shall concentrale on our main
problem, where each member of P is assigned one of
the m given colors, and the aim s o answer the gqueries
Q1 and Q2 for an arbitrary query straightline segment,
and a given value £.

Let F; £ P be the set of points in P having color i,
i=1,2 ... .m. Aparl from the construction of T and
T2 with the set of points P, we also construct TII and
T! with the points P; for each color i, as described in
the earlier section. The necessary data structures for rec-
tangular range counting query is also w be prepared for
each set B . But, the total time and space complexities
for the preprocessing 15 dominated by those for P Thus,
we have the following lemma:

Lemma 4. The preprocessing time and space complexi-
ties for the chromatic distribution query are both O(n).

Let o = [a, & ] be the query line segment. This creates
a corridor around o. We have o find a width w such
that the region R{w) (the hippodrome of width w), as
defined in Section 1, contains exactly & points of P.

After computing w, we need 1o find the number of
points of each color inside the region R{w). This an-
swers both the versions of chromatic distibution guery.
As mentioned earlier, we would use P and P o de-
note the given sel of points and their projections on I7,
respectively.

5.0, Computing the width w

Consider the levels of arrangement A{D(P)) (in EY.
Let £ denote the line contaming the segment o . Locate
the point THE, ) in AT P)), and draw a vertical ray
from the point D¢ ;) downwards o consider the subset
of edges of A(D{ P)) that are hit by the ray. These edges
are at different levels of A(T{P)). Let us refer this set
by E. Lete € E be an edge atlevel 8, and Dip)(p € P)
be the line containing the edge ¢, We draw a line paral-
kel to o oat the point poin the primal plane. Let w be the
distance of this line from £{o). As mentioned earier,
we can compute the number of points in the hippo-
drome B{w) around o by pedomming one rectangular
mnge counting query around o, and two semicircu-
lar range counting queres at the two end points of 0.
In [6], a binary search 1s applicd among the members
in £ 1o compute the height of a rectangle on o that con-
s exactly & points. We apply the same method 1o
wentify an e £ E such that the corresponding point in
the primal plane decides an width w of the hippodrome
which contains either exactly & points or a pair of edges
ej, ej+1 € E such that the corresponding counts ane less
than k and greater than k, respectively. In the former
case, w15 the width of the hippodrome, and the search
stops. In the latter case, we need to perform the same
exercise with the edges of A(D(P)) intersected by the
vertically upward ray from the point D(E ;). If this also
fails 1o setthe the width of the hippodrome such that it
contains exactly & points of P, we may need w adjust
the diameter of the semicircles at both the ends of o
as follows. Note that, during this adjustment of width,
the number of points in the rectangle around o will not
change.

Suppose we have obtained two values (say uy
and w4 ) of the width of hippodrome such that the count
corresponding o wy (resp., waz) 1s less (resp., greater)
than k. Now, consider the set of semicircles with cen-
terat the left end of o and radius equal to all real values
from wy to wy. Now we have the following observa-
Lons:

(1) If we choose any width w & [w, wz], the number
of points in the rectangle of width 2 » w around o
will be same.
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{2) The dual of the planes in BY comresponding to the
circles with center at @ and radin in [wq, we] le on
aling perpendicular to the xy-plane (by Result 1),

Consider the cirele y comesponding 1o w) at one
end of . The COUNT field indicates the number of
points mside the hippodrome K {w ), which 1s surely
less than k. Let " be the image of y on the unit
paraboloid I7, and the point ") be the dual of the
plane corresponding to it. We identify T ") in the sec-
ondary structure attached to the root node of 77 and Ts.
Next, we identfy the nodes of T (resp., T3) in which
we need to perform the v-are (resp., fi-arc) range query.
In order to obtain the radios w* € [w., w'] such that the
COUNT attains the exact value k, we need o pedorm
binary search on the planes in A{D{ P')) attached with
root node of Tj (resp., T3) which are intersected by the
upward vertical ray shot from point T4 x ") in the dual
plane. As mentioned in Section 4.2.1, this can easily be
performed in Oilogn) time. If this also can not sette
the desired width of the hippodrome, then we may have
to perform the same exercise at the other end-point b of
the ine-segment .

Lemma 5. The time reguired to find the desived width w
such that the region R{w) containg exactly & points is

Olog® n).

Proof. At each step of the binary search, (i) we choose
an edge from the set E and construct the correspond-
ing hippodrome around o, and then (ii) we find the
number of points inside that region by applying two
rectangular range counting queries and two semicircu-
lar range counting queres. Since each of these queries
takes Oflog n) time, the lemma follows. [0

After determining the width w so that the corre-
sponding region Riw) conlains & nearest neighbors
of a, we find number of points of colori (1 <i < m)in
the same region R{w) using the same technique on the
respective data structure for point set Py, As the num-
ber of colors m 1s assumed o be constant, this takes
O(log n) time. Thus, we have the final result:

Theorem 2. Given a set of n colored points in B with
a fived m (1 < m = n) number of cofors, it can be
preprocessed in Q(n?) time and space such that for
an arbitrary guery line segment o chromatic distrib-
wiion of k-nearest neighbor of o can be determined
in D{Ingln} time, where k is an input at the guery
time.
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