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1. INTRODUC 1 1ON

Consider a VL3I layout having rectangular boundary, as shown in Figure 1. It
consists of a set of rectangularcircuit blocks B = {by, ba, ..., b}, and a set of nets
N = {1, 5z, ...,y }, where each block b; iz azsociated with a list of nets B; < C,
as shown in parentheses in Figure 1{a). A nef is a set of electrically equipotential
terminals on blocks that are to be interconnected. In the important step of global
routing [Burman et al. 1991; Sherwani 1993] for state-of-the-art gigaseale
technology, a sequence of subregions, or generalized channels, is determined for
each net, through which its terminals are to be connected in order to minimize
wire length and chip area, as well as congestion. The shape of the regions
strongly influences the quality of the solution [Sun et al. 1996].

In a given placement of blocks, a staircase channel may be defined as an
empty polygonal region bounded by two monotonically inereasing (or decreas-
ing) staircase paths formed by connected isothetic line segments from one cor-
ner of the layout to its diagonally opposite corner [Dasgupta et al. 2002]. In
Figure 1(a), the region bounded by the pair of dashed line segmentz is one such
staircase channel. A VLS floorplan is often envisaged as a rectangular dissec-
tion of a bounding rectangle by isothetic cut lines. For simplicity, we model a
staircase in a floorplan F by a monotone rectilinear path without any width,
as shown in Figure 1(b), from the bottom-left corner of F to its top-right cor-
ner. This partitions the set of blocks in F into two parts, namely, left-sef and
right-zet, respectively. A mincost staircase cuf (MSC) iz a staircaze such that the
number of distinet nets attached to the blocks on both the lefi-sef and right-zef,
iz minimum [Majumder et al. 2004]. Monotone staireases, henceforth referred
as ms-cufs of a floorplan ¥, have been shown to be particularly advantageous
to efficient routing [Guruswamy and Wong 1988; Sur-Kolay and Bhattacharya
1991; Majumder et al. 2004].

A maxflow-based algorithm [Majumder et al. 2004] ean determine in poly-
nomial time a series of ms-cufs with minimum number of crossing nets, that is,
distinet nets with terminals on either side. These ms-cuts recursively biparti-
tion a given rectangular floorplan until degenerate staireaszes, that is, straight
cutlines are obtained. Thus a hierarchy (binary tree) of ms-cuts is defined as
shown in Figure 2. In this scheme, the problem of assigning nets to ms-cufs
iz solved by postorder traversal of this binary tree, thereby reducing routing
congestion in the longer ms-cuts toward the top of the tree. This in turn, saves
routing area. More often than not, the above algorithm [Majumder et al. 2004]
yields an unbalanced tree, which may reduce the efficacy of the scheme. In gen-
eral, a balanced physical hierarchy [Chang et al. 2003] is preferable for reducing
overall time complexity and congestion. A maxflow-based balanced bipartition-
ing method [King et al. 1995] is employed in this article to obtain a balanced
hierarchy of ms-cuts, as heuristics like Kernighan-Lin [Sherwani 1993] eannot
capture the topological constraints of the floorplan and thus cannot guarantee
ms-cul geometry.

Two main criteria for balance in floorplan bipartitioning are (a) the number
of blocks, and (b) the area of partitions. While the first one affects the depth
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Fig. 2. Hierarchy of monotone staireases in a floorplan.

of the hierarchy, the second reflects that the number of terminals and hence
the routing area around a block are proportional to its area. The solutions for
the two criteria differ considerably if the floorplan has few very large blocks
and many small blocks. It is well known that even finding a number-halanced
mineut in a graph, disregarding the geometry of the cut, is NP-hard [Garey
and Johnson 1979].

This article (i) establishes that the problem of finding an area-balanced mas-
cut in a floorplan is NP-complete even if minimization of cut-size iz not con-
sidered, and (ii) proposes an efficient maxflow-based heuristic for generating a
balanced hierarchy of ms-cuts, with as few nets crossing the ms-cuts as possi-
ble. This method provides a framework in which either of the above two types
of balanced hierarchy ecan be produced. As the problem involves optimizing
the balance as well as the cut-size, our proposed method aims at optimizing a
convex combination of the balance and the cut-zize.

The organization of this article is as follows. In the next section, we discuss
some important paradigms of VLSI physical design that motivate the MSC
problem. Section 3 gives the formulation of the optimization problems consid-
ered in this work. The NP-completeness result for area-halanced bipartition
appears in Section 4. The heuristic algorithm for generating a balanced hier-
archy of monotone staireases with minimal eut-size is presented in Section 5.
Experimental results and concluding remarks are presented in Sections 6 and
7, respectively.
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2. MOTIVATION FOR THE M5C PROBLEM

The MSC problem is very pertinent to the repeater placement issues frequently
encountered in interconnect-centric floorplanning used for deep-submicron
VLSI physical design [Sarkar and Koh 2001; Cong et al. 1999a; Chu and Wong
1997; Okamoto and Cong 19956]. It iz also relevant to global routing.

2.1 Repeater Placement Problem

Owing to the continued scaling of VLSI technologies, interconnects appear to
play a dominant role in determining system performance, power, reliability,
and cost [Cong et al. 1996]. It has been observed that repeater block insertion
isone of the most effective methods to optimize signal delay [Cong et al. 1999a;
Chu and Wong 1997; Okamoto and Cong 1996]. Judicious insertion of repeaters
reduces the delay from quadratic to linear in terms of wire length [Cong et al.
1999h]. Usually, most interconnect synthesis techniques are designed for post-
placement interconnect optimization. Over 700,000 repeaters may be needed
in a single chip for the 70-nm technology [Cong 1997]. Insertion of many re-
peaters may significantly change the floorplan and placement of a design, which
was optimized earlier in the floorplanning stage. This leads to the problem of
designing an efficient routability-driven repeater block placement method. As
repeaters for the signal nets are to be placed on the silicon layer, one needs
to identify the unoccupied regions on it. A recent method of repeater place-
ment uses monotone paths [Sarkar and Koh 2001] similar to monotone stair-
case channels. Minimizing the congestion in a monotone stairease channel, and
hence the MSC problem, has the potential to strongly influence the repeater
placement strategy.

In Figure 3 we show how the monotone stairease framework can help in
repeater insertion through a typical example. The multiterminal net a in
Figure 3(a) has terminals on either zide of a monotone staircase region, and
it crosses the staircase only once. A repeater has to be inserted within the
staircase region whenever the length of the wire crossing the channel exceeds
the permissible threshold. Note that the repeater iz inserted in the device
layer, whereas the wire passing through the repeater iz in the metal layer
Further, for any net, there is a feasible region for repeater placement, as in-
dicated in Figure 3(b). It may be necessary to place more than one repeater,
either for the same net or for different nets, within the same staircase region
depending upon the length of the net(s). If the width(s) of a staircase region is
{are) not sufficient (Figure 3¢)) to accommodate all the repeaters required for
meeting the timing requirements, the two partitions can be moved apart along
the monotone staircase to create more space in the device layer, as shown in
Figure 3(d). Monotone staircases offer this advantage as there does not exist any
cyclic dependency among the channels in their routing order [Guruswamy and
Wong 1988; Sur-Kolay and Bhattacharya 1991]. Hence “rip-up and reroute”
iz never required during postorder traversal of the staircase tree, even if
a particular channel needs to be stretched in order to accommodate more
repeaters.
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Fig. 3. Atypical example of repeater placement.

2.2 Channel/Global Routing

The hierarchy involved in the MSC problem is useful for solving both channel
and global routing. A floorplan is sliceable if it is obtained recursively by using
through-cuts only. Hierarchical partitioning by the cut lines may be used to
facilitate global routing. Nonsliceability of floorplans leads toinfeasible channel
routing order [Sur-Kolay and Bhattacharya 1991], so in a general floorplan
either the width of certain channels are overestimated, or multiple iterations
of detailed routing are performed. In the former case, the wasted area in the
chip may inecrease, and hence a minimal set of channels needs to be chosen for
widening, whereas the latter option requires more CPU time.

If, on the other hand, the routing region is generalized to a monotone stair-
case, the routing order is always acyclic, and can be easily obtained by identi-
fying staircase channels hierarchically [Sur-Kolay and Bhattacharya 1991] A
monotone channel also guarantees a feaszible routing order and ean be widened
easily, whereas for a nonmonotone channel, stretching routing regions along
the x- or y-axis by simply moving the two parts away may not always help. In
addition, this may require rip-up and reroute. Thus, the solution of the MSC
problem offers a very good solution to channel routing. Efficient algorithms
for routing through stairease channels using the manhattan-diagonal wiring
model are available [Das et al. 2004]. Routing may be done in a single itera-
tion without overestimation of the width for any channels. A related problem
of finding the widest staircase channel among a set of isothetic obstacles can be
solved in O(n®) time [Nandy and Bhattacharya 2003], where r is the number of
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vertices of all the obstacles placed on the floorplan. This can be applied to the
successful routing of a maximum number of nets. Needless to say, with five or
six metal layers in the modern VLSI technology, channel routing may be mainly
relevant in the device layers but the size of the problem is significant.

The MSC problem is also relevant to the global routing problem. The stair-
case channels separating the terminals are identified in a hierarchieal manner,
and then the nets in the hierarchy are routed in a bottom-up fashion. The nets
crossing the staircases, which appear at the top of the hierarchy, are routed at
the end, and hence should have less congestion in the corresponding portion of
the metal layer. The nets in smaller partitions, which cross the staircases to-
ward the bottom of the hierarchy, need only loeal routing and are easier to route.
Therefore, the hierarchy of the MSC problem identifies an order for global rout-
ing. The rationale behind choosing a minimal number of crossing nets as one of
the two optimization criteria is that the minimization of routing congestion is
highly desirable in global routing.

3. PROBLEM FORMULATION

In our routing model, given a floorplan ¥ with rectangular boundary and
rectangular blocks, the routing region is the set of lines defining the boundary
of the blocks. Our approach is to define a hierarchy of ms-cuts comprising of
thesze lines. In the detailed routing step [Das et al. 2004], an ms-cuf acquires
finite width proportional to the number of tracks required for the nets assigned
to it by the global router With respect to staircase bipartitioning, a net is
said to be crossing the stairease if it has terminals in both the partitions and
the cuf-size of the staircase is equal to the number of crossing nets, Let ny (i, )
and A;{A,), respectively, denote the number and area of the blocks on the left
(right) of the ms-cut.

Fact [Majumder 1996]: given a floorplan with i blocks, (i) the total number
of possible ms-cuis is exponential, (ii) a hierarchy of ms-cuis always exiztz with
exactly n — 1 ms-cuts.

Given F anditsnetlist, the following problems on ms-cuefs may be formulated:

—Min-cut Problem P, [Majumder et al. 2004]: an ms-cuf with minimum
cut-size;
—Number-balance Problem P, [Dasgupta el al. 2002]: an ms-cuf maximizing
min (hy e,

the number-balance ratio, 20 e

—Area-balance Problem Pji: an ms-cuf maximizing the area-balance ratio

min(A; A}

max (A, A7

Noting that problems P. and P, are polynomial time solvable, the two prob-
lems studied in this article are the mixed optimization problems concerning
both balance and cut-size, namely, Number-balanced Min-cut P,. and Area-
balanced Min-cut Psy.. The goal is to find an ms-cuf maximizing the cost C
which is a normalized convex comhination of the respective balance-ratio and
the cut-size. We, therefore define cost as C = y - (balance-ratio) +({1— y) - (1 —
cul-gize (#nets), y € [0,1].

ACM Tranaactions on Design Autamation of Electronic Systema, Vol. 12, No. 1, Article 7, Publication date: January 2007,
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The parameter y is termed the control factor, which determines the tradeoff
between balance-ratio of the bipartition and the eut-size. Fory = 0, the cost Cis
nothing but the min-cut; both P, and P4, reduce to P.. Similarly, for y» = 1, the
emphasis iz on balance alone so the two problems reduce to Py, or P4 depending
on the type of balanee-ratio.

4. AREA-BALANCED MOMNMOTONE STAIRCASE BIPARTITIONING

We prove that problem Py, is NP-hard by showing that problem P4, the special
case with y = 1, is NP-hard. We actually consider the decision problem P
corresponding to Pa:

Definition 1. Area-balanced ms-cut (P}): does there exist an ms-cutf in a
given floorplan F such that A; = A7

The convention is that all junetions in the floorplan are T-junctions, and a
cross-junction is a pair of T-junctions with an infinitesimal skew. Starting from
point P, the bottom-left corner of ¥, we move either upward or to the right. At
each T-junction encountered, we choose nondeterministically either the +x or
+ v direction if both options exist, till we reach ¢, the fop-right! corner. The
path traversed is a rising ms-cuf. The time taken is O(n) as the number of
operations is equal to the number of T'-junctions visited, and the total number
of T-junctions in F iz 2n — 2 [Sur-Kolay 1991]. Further, given an ms-cuf, we can
check in O(n) time whether 4; = A, Hence P} = NP. A polynomial reduction of
the Set Partitioning Problem, which is known to be NP-complete [Garey and
Johnson 1979], to P} is established next.

Definition 2. Sef Pariitioning Problem (SPP): given a finite zet 4 and a
size sla) £ Z7 for each a £ A, does there exist a subset A" € A such that

2aeasl@) =3 ycn o8@)?

Given a set A = |ay,as, ..., a;}, we construet an equivalent instance of the
problem P in three stages. First, we place a set 5 = {by, bz, ..., Iy} of square
blocks along the diagonal of a square floorplan (Figure 4(a)), where, for each
a; € A, the area of block b; iz s(a;), and its side is of length [; = \@. In order
to cover the entire floorplan, we place a set By = Uf:,l {bir, big} of k — 1 pairs
of additional rectangular blocks (fillers) in the floorplan. Az the shapes of all
blocks b; are square, the width w(by ) (along x-axis) is equal to the height Aibg ),
which in turn is I;. It is also evident that the height Ak ) is equal to the width
wibg); thus Arealby) = Arealbp)for 1 =i = k — 1.

For any rising ms-cuf, there is a corresponding partition of the set A. We need
to find the area-balanced ms-cut for which the difference in the weight of the
two corresponding partitions of A is zero. This correspondence holds if and only
if the ms-cut passes through the point By in Figure 4(a), because in that case,
foralli e (1,2, . .k —1), by and by, respectively, belong to the left and right
partitions and hence 3 _, Arealby) =3, ., o Arealbp), thus ascertaining
that the additional filler blocks cannot bias any partition.

In the second stage (Figure 4(b)), we ensure that the area-balanced ms-cut
passes through Ry by placing two more square blocks S; and Ss along the

ACM Tranzactions on Deign Auntomationof Electronic Syatema, Viol. 12, No. 1, Article 7, Fublication date: January 2007,
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Fig. 4. Constructing an instanee of a floorplan equivalent to a given instance of SPP: (a) first stage,
(b} second stage.

diagonal of F such that Area(S;) = Area(S;) = K' = K = }_, _,s(a;). The
desired rectangular floorplan F is obtained by adding four more rectangular
blocks by, b, S, and Syg, as shown in Figure 4(h).

Lenma 1. Foran area-balanced ms-cut y in F, the blocks 8y and Ss cannot
both be in the same partifion.

Proor. Suppose an area-balanced ms-cut y passes through the points
and ¢z (Figure 4(b)) keeping both S; and Sz in its left partition. Even if
all the blocks by, ba, ..., b, lie in the right partition, the difference in area be-
tween the two partitions is | 4 — A, | = 2K'— K = K’', which is a contradiction.
On the contrary, for any ms-cut that keeps blocks S; and S; in different parti-
tions, we have | 4, — A, |= K = K'. Thisiscertainly trueif y is an Area-balanced
me-cuf and | 4 — A, | =0. Such an mes-cuf has to pass through the points Ry,
Rs and Ry, keeping Sy and S on either side. O

The above lemma shows that, for an area-balanced ms-cut, the additional
blocks do not bias the area of either partition. Finally, we replace the cross-
junctions with T'-junetions in the floorplan ¥, such that neither of the partitions
gets biased in this process. As shown in Figure 5, the same nonzero skew of o
isintroduced at each cross-junction by (i) increasing the height of 515 and each
bir block by d /2, and (ii) introducing another & pairs of additional rectangular

blocks &) and b for1 = i =k, and S}, and S7, with the following dimensions:

w'[bfgj = wibjp) —d and fL{b;Rﬁ =d /2;
w(Sip) = w(Sir) —d and h(S},) = d/2;

ACM Tranaactions on Design Autamation of Electronic Systema, Vol. 12, No. 1, Article 7, Publication date: January 2007,



Hierarchical Partitioning of VLS| Floorplans by Staircases . 9

2
= Ed
L 2
K""--. I\Il]'.. L

L A
1 g o
EATES .
//
LT NIk
o - v
U
-
»
= e
I
4]
&
Al od s
Pt bER
Sl f
L ]
2
- i 1 '-._h:|.-
T b 1K
. hl
E

I.l
Fig. 5. Final stage in the reduction of SPP to area-balanced ms-cwd in a floorplan F: removal of
Cris s unetions,
wiby) = d and hib) = hiby) —d /2;
w(St,) = d and h(S;,) = h(Siz) —d /2.

Now for any i, while the introduction of the block b leads to an increase
in area of the right partition and bjp = B, the increase in area of the left
partition is due to the block b}, . The square shape of the floorplan F is, however,

preserved.
Let the length of each side of F be L. Then considering the eross-junction

between blocks by and bs:

Arealbyp)— Arealby )= (L —1Iy)-d /2,
Arealbip)=(L -1y —d)-d/2, and Area(b; ) =d - (L —I; —d /2).

In other words,

{Arealbyp) — Arealbyp ) + ﬁrea{hjﬁ.ﬁ
=(L-0;)-d/24+(L -1} —d)-d /2
=(2L -2, —d)-d/2
=(L—-I; —d/2)-d
= Arealby; ).
Therefore, Area(byr ) + Area(bj,) = Area(by;) + Area(bj, ). For any i, we can
show similarly that the above method of replacing cross-junctions between b;

and b; .y does not bias the area of either of the partitions, irrespective of the
value of d.
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Hence, an area-balanced ms-cut in F corresponds exactly to a solution of
SPP for zet A. The time required to construct such an instance of the floorplan
iz O] A |) which is linear. From the above construction, we have the following
theorem:

Tueorem 1. Problem Pj is NP-complete.

Proor. Consider an area-balanced monofone stairease in the floorplan con-
structed as above. This corresponds to the partitioning of A for which the
difference in the sum of integers in the two partitions is zero and viee versa. The
time required to construct such an instance of the floorplan is O A |). Hence
P is NP-hard and as we already have P, € NP, P} is NPcomplete. O

5. HEURISTIC FOR MIXED OPTIMIZATION

The NP-hardness of problem P, mandates the design of an efficient heuristic
for solving it. At this juncture, we also conjecture the following:

ComgecTure 1. Problem P, is NP-hard.

For the problems P,. and Pa., a common heuristic framework is therefore pro-
posed. An instance of Py, with unit area blocks is equivalent to an instance of
P,.. As we require a balanced mes-cuf, we construct a graph, similar to that for
problem P. [Majumder et al. 2004], and we apply a maxflow-bazsed balanced
bipartitioning method [Yang and Wong 1996].

5.1 Monotone Staircases

Given a floorplan F with the set of 1 blocks B = {b;, |1 = i = n} and netlist
N, the adjacency digraph G = (V, E) has a node v; for each block b and an
arc e;; from v; to v; if block & is either to the top or left of &;. The nodes for
the two blocks at the top-left and bottom-right corners of F are designated as
source & and sink ¢, respectively. Next, (7 is augmented as below to a digraph
Gaug = (Vaug, Eaue) so that multiterminal nets are also represented.

51.1 Graph Augmentation. Foreachnetn, € N, let V* be the set of nodes
in Ve corresponding to the set of blocks having terminals of the net n,. We
add two additional nodes s, and {, in Vg, and call them pseudosource and
peeudosink, respectively for the net 5,. Thus the augmented set of nodes is
Vaug = V 1, ew 8¢ |, e fe With [Viue| = n + 2k, k being the number of distinet
nets. The set of ares K., comprises the following:

—a set of ares e, (o) (dashed lines in Figure 6);
—for each net »,, we add three sets of new arcs:

— .e{ﬂ'-:l = {{UI, SU:IEU;' ] V”},

—Ei(a) = {(ty, vi)lvi € VT,

—an arc e.lo) from s, tof,.

Thus E..y = E U, en(Ea)U Ei(a), eqfa)). The total number of arcs in Eq,
is Oln+ &+ 1) = Ot), t being the number of terminals. The capacity of the

edges ey o) is set to 1 and that of all other ares in K, to oc. Figure 6 shows a
typical (G4 with three nets a, ¢, and d.
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The methodology for the mixed optimization problems Ps. and P, is based
on Theorem 2 below, proven in Majumder et al. [2004]. A monofone st-cut in
G oy is a cut [Papadimitriou and Steiglitz 1982] in the graph that partitions
the set of nodes V,,; in two sets S (left partition), and T (right partition), such
thats € S and{ € T, and the ares crossing the cut having infinite capacity are
directed from T to 5. For a monotone sfcuf in Gy, a net 5, contributes unit
cost only if the blocks with net 5, are present on either side of the corresponding
monotone staircase.

TrEoREM 2. A mincuf in Gayg is a monotone st-cul of minimum cost and
corresponds to the monofone staircase in the floorplan crossed by the minimum
number of distinet nets.

5.2 Flow-Based Balanced Bipartitioning

Given a network having weights associated with its nodes, a bipartition is said
to be balanced if the weights of the two parts are each equal to W /2, where W is
the sum of the weights associated with all its nodes. The key idea is to improve
the balance ratio of a bipartition incrementally by determining the mineut [King
et al. 1995] on the given network, then collapsing all nodes in the smaller
partition with a randomly chosen node of the other part, and finding the mineut
for the collapsed network. This can be implemented efficiently by computing
the flow in the collapsed network incrementally instead of starting the maxflow
algorithm all over again. The algorithm terminates when the weight of the left
partition lies between (1 — ¢ )W /2 and (1 + ¢ )W /2, where the deviation factor
¢ = 1 18 choszen to be very small. It has been proved [Yang and Wong 1998]
that the number of iterations and the final cut-size are nonincreasing functions
ofe.

5.3 Overview of Heuristic
We describe below the plan of the heuristic for solving problems P, and Py,
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Table I, Details of MCNC

Floorplan Benchmarks

| Name | #Blocks | # Nets |
apte 9 97
XEMOX 10 208
hp 11 83
amidd a3 123
amidd 49 408

function MOP(F, y, btype, €)

Input: (i) A floorplan F with its netlist N, (ii) control factor y,

{iii) type of balance btype, and (iv) deviation factor .
Output: An ms-cut that satisfies the balance criterion

as well as maximizes the convex cost C {(as defined in Sec. 3).

Step 1. Construct (g for given F'; initialize list L to ¢.

repeat

Step 2. Find a mincut x ' using maxflow algorithm on G,

Step 3. Compute balance-ratio depending on biype.

Step 4. Store y' and its cost in L; update Gaug by collapsing all nodes in its
smaller part corresponding to ¥’ to a node randomly chosen from the
other part, adjacent to x', to form the new source or sink accordingly.

until cut x' yields balanced bipartition of G ...

Step 5. return the cut in L with maximum cost.

The cut thus found yields two subgraphs of (Ga.,, and, with minor adjust-
ments for definition of source and sink, the above function MOP can be called
again. Thus a balanced hierarchy of ms-cuis is obtained by recursively calling
MOP on each of the two subgraphs obtained, till the floorplans corresponding
to the subgraphs have no nondegenerate staircases. The main algorithm
Staircase Hierarchy is given below.

Algorithm Staircase_hierarchy

Input: A graph G,z corresponding to given floorplan F.
Output: A tree of monotone staircases Sg;.

Step 1. If F has more than three blocks and at least one valid staircase exists,
then y := MOP(F, y, btype, ¢) else return NULL.

Step 2. Determine s, the ms-cut in F corresponding to y,
producing the two subfloorplans Fp, and Fp.

Step 3. 8y = Staircase_hierarchy(Fy )

Step 4. Sg = Staircase_hierarchy(Fg)

Step 5. return staircase tree S; with root 55, and
S; and Sk respectively as the left and right subtree of 55.

6. EXPERIMENTAL RESULTS

We have implemented the heuristic for the mixed optimization problem and
have run it on the five MCNC floorplan benchmarks given in Table I. We have
been able to generate the hierarchy of ms-cuts in each case. Further, the effect
of the control factor  on the tradeoff between number of nets crossing ms-cut
and the balance-ratio is evident from the resulis presented below.
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Table II. Number-Balanced Stairease Hierarchies of ami33 for Varous Balance-Ratios

Cut [ [ Bal. Net | Cost Cut # # Bal. Net | Cost
# Blk. | Nets | ratio cut [ # Blk. | MNets | ratio cut [
y=0 y =02
1 33 80 1/32 b 0.94 1 a3 Bl 132 b 0.76
2 a2 70 131 2 0.98 2 a2 70 131 2 0.79
3 a1 70 130 T 0.91 3 31 70 130 T 0.74
4 30 76 129 b 0.93 4 30 76 129 b 0.75
5 20 T 128 8 0.89 5 20 T4 128 8 0.72
G 28 T2 127 5 0.93 G 28 T2 127 5 0.75
T 27 71 126 12 0.83 T 27 Tl 621 13 0.71
8 26 65 125 7 0.89 8a i3 12 33 7 0.53
9 25 64 124 4 0.94 &b 21 bR 120 T 0.71
10 24 64 123 5 0.92 9 20 56 119 6 0.72
11 23 61 122 7 0.89 10 19 54 1/18 7 0.71
12 20 60 121 T 0.88 11 18 51 2116 T 0.72
13 21 57 120 B8 0.86 12 16 47 11156 B8 0.68
14 20 55 1/19 T 0.87 13 15 44 1/14 G 0.71
15 19 52 1118 G 0.89 14 14 40 311 7 0.72
16 18 51 117 8 0.84 15 11 34 38 G 0.73
17 17 48 2156 T 0.85 16 8 a2 uT b 0.70
18 15 44 213 i3 0.86 17 T a1 34 G 0.80
19 13 as 112 G 0.84 18 4 25 13 16 0.36
20 12 34 1111 3 0.91
21 11 34 29 5 0.85
20 9 a3 18 b 0.85
23 8 a2 7 5 0.84
24 T 31 16 16 0.48
25 i3 15 24 3 0.80
26 4 10 L1 7 0.30
y =04 y =06
1 33 B0 924 [ 21 0.59 1 a3 Bl 1320 | a7 0.61
2a 24 61 11/13 | 21 0.73 2a 13 18 58 12 0.51
da 11 16 249 4 0.54 2h 20 46 812 18 0.64
b 13 a5 310 G 0.62 3a 8 12 44 9 0.70
4a 9 16 45 8 0.62 3b 12 24 BT 8 0.69
4b 10 a3 a7 9 0.61 4a 4 4 43 4 0.60
b 4 8 43 8 0.40 4b b 20 23 18 0.44
y =08 y =10
1 33 B0 1320 | a7 0.63 1 a3 Bl 1320 | a7 0.65
2a 13 18 '8 12 0.57 2a 13 18 58 12 0.63
2 20 46 812 18 0.66 2h 20 46 812 18 0.67
3a 8 12 44 9 0.85 3a 8 12 44 9 1.00
b 12 24 B 8 0.71 3b 12 24 BT 8 0.71
4a 4 4 LT 4 0.80 4a 4 4 43 4 1.00
4b b 20 243 18 0.55 4b b 20 23 18 0.67

As g typical case, we present the results of the entire run of our proposed
heuristic on floorplan ami3.3 in Tables IT and 111 for number-balance and area-
balance, respectively. For brevity, we have omitted the detailed tables for the
other benchmark floorplans but the outcome of our experiments is presented
in a comprehensive manner in the plots shown in Figure 7. Finally, Table IV
gives an idea about the time taken by our heuristic.
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Table ITI. Area-Balanced Stairease Hiemrchies of emi33 for Various Balance-Ratios

Ct. Num. | Area | Ct Ct. Num. | Area | Ct.
# |B| | |N|| rat. rat. S C # |B| | |N|| rat. rat. B C
y=0 y=02
1|33 | 80 132 | 0.022 5| 0.94 1 33 | &0 132 (0022 | 5 0.75
2132 |79 a1 | 0.011 2 | 0.98 2 a | T 31 (0011 | 2 0.78
3|31 |79 130 | 0.005 71091 3 3| 7 130 (0005 | T 0.73
4 | 30| 76 129 [ 0.077 5 | 093 4 3 | 76 129 (0077 | 6 0.76
5|20 | T4 128 | 0.035 8 | 0.B9 5 20 | T4 28 (0035 | 8 0.72
6 |28 | 72 127 | 0.015 5 | 0.93 G 28 | T2 127 (0015 | & 0.75
T127F | T 126 | 0.040 | 12 | 0.83 T 271 |1 M &21 (0304 | 13 | 0.T1
8 | 26 | 65 125 | 0.019 7 | 0.89 Ba 6| 12 | 33 0447 | 7 0.42
9 | 25 | 64 124 | 0.046 4 | 0.94 8b | 21 | BB 20 (0079 7 0.72
10 | 24 | 64 123 | 0.013 5 | 0.92 9 20 | &5 1419 [ 0.068 | 6 0.73
11 | 23 | 61 122 | 0.027 7 |0.89 || 10 19 | G4 1118 (0023 | T 0.70
12 | 22 | 60 121 | 0.069 7 |0.88 || 11 18 | 51 216 (0038 | 7 0.70
13 | 21 | &7 120 | 0.137 8 | 0.86 || 12 16 | 47 1415 (0033 | 8 0.67
14 | 20 | 655 1419 | 0.021 7 |0.87 || 13 15 | 44 1414 (0013 | 6 0.69
15 | 19 | 52 1418 | 0.069 6 | 0.89 || 14 14 | 40 | 2112 (0143 | 6 0.71
16 | 18 | 51 117 | 0.031 B | 0.84 || 15 12 | 34 | 39 0865 | 6 0.83
17 | 17 | 48 | 2156 | 0.039 7 | 0.85 || 16 9| 32 18 0.166 | 3 0.76
18 | 156 | 44 | 213 | 0.140 6 | 0.86 || 17 B | 32 | 44 0662 | 7 0.76
19 | 13 | 38 112 | 0.015 6 | 0.84 || 18 4 | 25 13 0593 | 16 | 041
20 | 12 | 34 1111 | 0.082 3|09,
21 |11 | 34 | 29 0.640 5 | 0.B5
20 9| 33 18 0.113 5 | 0.B5
23 8| 32 7 0.255 5 | 0.84
24 7] 31 16 0343 | 16 | 0.48
25 6| 156 | 24 0.B04 3 | 0.8B0
26 4| 10 | 22 0.021 7 | 0.30
y =04 y =06
1 33 | B0 | 1320 | 0.696 | 37 | 0.60 1 33 | B0 | 1320 | 0696 | 37 | 0.63
23 | 13| 1B 112 | 0.202 3 |0568) 2a | 13 | 1B &7 0792 ( 13 | 0.59
2b | 20 | 46 | B2 | OGRZ | 22 |OBO || 2b | 20 | 46 812 | 0682 | 22 | 0.62
3a | 12| 16 | 48 0966 | 10 | 0.61 da T 6 34 | 0.919 2 | 0.82
b 8| 19 | 35 0.695 4 | 0.75 || 3b G G 24 | 0.556 2 | 0.60
4a 4 T 13 0.990 7 |0.40 || 3e 8| 19 F5 | 0.695 4 | 0.73
4b 8 4 | 35 0.943 3 (053] 4 5| 19 23 |[0.798 | 18 | 0.50
4¢ 5| 19 14 0482 | 14 | 0.35
y =08 y=10
1 33 | B0 | 1320 | 0.696 | 37 | 0.66 1 33 | B0 | 1320 (0696 | 37 | 0.T0
2a | 13 | 1B &7 (0792 13 | 069 (| 2a | 13 | 18 &7 (0792 13 | 0.79
2b | 20 | 46 812 (0682 | 22 | 066 (| 2b | 20 | 46 | B12 | 0.6GB2 | 22 | 0.68
da T G 34 | 0.919 2 | 0.87 || 3a T G 34 | 0.919 2 | 0.92
b i3 i3 33 | 0.703 4 | 0.63 || 3b i3 i3 33 | 0.703 4 | 0.70
3e 8| 19 35 | 0.695 4 | 0.T1 3e 8| 19 35 | 0.695 4 | 0.69
4 5| 19 23 (0798 | 18 | 0.656 || 4 5| 19 %3 |[0.798 | 18 | 0.BO

We have tested for six values of ¥ on each of the benchmarks. One of the
important goals of these experiments is to determine a suitable value of
which can then be used for other floorplans. In Table 11, y is varied from 0 to 1
ininecrements of 0.2; recall that y = 0 corresponds to minimum eut-size without
balance, and y = 1 to balanced bipartition. The values of y lying between 0 and

ACM Tranaactions on Design Autamation of Electronic Systema, Vol. 12, No. 1, Article 7, Publication date: January 2007,



Hierarchical Partitioning of VLSI Floorplans by Staircases . 15

Number-balanced hicrarchy Area-balanced hierarchy
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Fig. 7. Effect of ¥ on minimum and maximum values of cost over all levels of number-bala need
and ama-balanced hierarchies of ma-cuts.

1lead to the mixed optimization problem. For each value of -, the first column
Cut # gives the depth of the hierarchy of the cuts generated. When y = 0,
the cuts generated are highly unbalanced and at each level we have only one
staircase. But for y = 0, each level in the hierarchy except the first has more
than one ms-cuts, for example, level 2 has two mse-cuts 2a and 2b. The next two
columns give the number of blocks and nets being partitioned by the ms-cut
at that node of the hierarchy. Column Bal -ratio gives the number of blocks on
left/right sides of the cut. Column Net cut gives the number of nets crossing the
cut and Column Cost has C, the cost of mixed optimization.

Table ITI is similar to Table II, with the fourth column renamed as Num. ral.
followed by an additional column Area rat., where the balance of areas of the
two partitions generated by each ms-cut is also shown. In both these tables,
the following facts are obzserved quite naturally. With an increase in y, the bal-
ance factor increases, which in turn brings down the number of levels of hier-
archy, whereas the number of nets crossing the cut inereases. For interpreting
the effect of tradeoff control parameter y on the cost of mixed optimization,
we have plotted the minimum and maximum cost over all levels for each of the
benchmarks in Figure 7. No notable difference, as far as the minimum and max-
imum values of cost are concerned, was found between the number-balanced
and area-balanced bipartitions. This signifies that the type of balance does not
have a strong impact on optimization cost C. Further, for p = 0.4, these values
do not vary much. Hence, it may be inferred that employing the heuristic in
that range of  can produce satisfactory results.
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Table IV, Variation of Number of Levels and Maximum Cut-size with p

Bench- Number-Balanced Type Area-Balanced Tyvpe
mark # Max Cut-size CPU Time # Max Cut-size CPU Time
Name ¥ Levels | over all Levels {in sec) Levels | over all Levels (in sec)
apte 0 3 13 0.020 [ 13 0.010
02 4 15 0.030 4 13 0.010
0.4 2 28 0.020 2 28 0.020
0.6 2 28 0.020 2 28 0.020
0.8 2 L) 0.010 2 28 0.010
1 2 28 0.010 2 28 0.010
XErox 0 7 61 0.060 T 61 0.040
02 [ 61 0.060 [ 76 0.020
0.4 2 81 0.050 3 £l 0.020
0.6 2 81 0.030 3 81 0.040
0.8 2 81 0.020 3 81 0.020
1 2 81 0.020 3 81 0.010
hp 0 8 16 0.020 8 16 0.020
02 [ 16 0.010 8 16 0.020
0.4 4 30 0.010 4 23 0.020
0.6 2 a3 0.030 2 a3 0.020
0.8 2 a3 0.010 2 a3 0.030
1 2 33 0.020 2 a3 0.020
amidd 0 25 16 0.080 25 16 0.090
02 18 16 0.180 18 16 0.130
0.4 b 21 0.040 4 ar 0.040
0.6 4 a7 0.040 4 ar 0.060
0.8 4 a7 0.030 4 a7 0.060
1 4 a7 0.050 4 a7 0.050
amid9d 0 43 25 0.440 43 25 0470
02 43 25 0.510 43 24 0.460
0.4 b 173 0.280 b 192 0.150
0.6 4 178 0.170 2 1tk 0.160
0.8 4 178 0.130 b 192 0.160
1 4 178 0.190 b 192 0.160

In Figure 8 we have focused on the first level of the hierarchy of cuts. This is
the most computation-intensive level as well as the most important one as it af-
fects the gquality of the cuts in the subsequent levels also. For both number- and
area-balanced type, we have plotted the balance-ratios (Figures 8(a) and 8(b))
and the cut-sizes { Figures 8(¢) and 8(d)) at the first level for all the benchmarks.
We find that for values of = 0.4 the balance factor becomes satisfactory as well
as stable for both type of experiments. The cut-size, however, increases for the
range ¥ = 0.6. S0 we can conclude that the most effective rangeiz 0.4 = 3 = 0.8,
when the tradeoff between eut-size and balance-ratio is optimal.

Finally, Table IV reports the number of levels versus the control factor . It
also gives the maximum cut-size over all levels for different values of 3 and the
total CPU time taken to generate the hierarchy. The CPU time taken to parti-
tion the benchmarks is very low, as expected, as we have used a maxflow-based
method, which is very fast. In Figure 9, the number of levels and maximum
cut-zize are plotted against . We find that the number of levels falls sharply
{Figures 9(a) and 9(b)) around y = 04 and then maintains the value up to
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¥ = 1. In order to keep the number of levels and, in turn, the CPU time, low,
¥ = 0.4 iz a good engineering choice. Increasing y further to inerease the bal-
ance factor does not help much. In the other two plots (Figures 9(¢) and 9(d)),
the maximum cut-size across all levels is plotted against y and again the best
choice iz p = 0.4.

7. CONCLUSION

This article proposes a methodology for identifying a balanced hierarchy of
monotone staireases with minimal cut-size in a VLSI floorplan. It is shown
that the mixed optimization problem that balances area is NP-hard. A flow-
based balanced bipartitioning method iz designed to generate a hierarchy of
monotone staireases which have as few nets crossing them as possible. Our
experiments on the benchmark floorplans establish that mixed optimization of
balance (number or area) and cut-size can be achieved efficiently. It has been
found that the value of y should preferably be chosen around 04 to obtain
satisfactory outcome on a wide range of test cases. This problem has potential
applications to minimization of global routing congestion, or repeater placement
in the device layer.
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