Mapping Symmetric Functions to Hierarchical Modules
for Path-Delay Fault Testability

Hafizur Rahaman
1T-C
WB University of Technology
Kolkata —700 091, India
rahaman hi@hotmail com

Abstract

A technigue for implementing toially symmetric Boolean
Sfunctions wsing hierarchical modules is presented First, a
simple cellular module is designed for synthesizing unate
svmmetric functions. The structure is universal, admits a
recursive design, and uses only 2-inpui AND-OR gates.
Greneral symmetric functions are then realized following a
unaie decomposition method. The synthesis procedure
guarantees complete and vobust path-delay fault testability
in the circuit. Experimental results on several symmetric
Sfunctions reveal that the hardware cost of the proposed
design i fow, and the number of paths in the circuit is
reduced significantly compared to those in earlier designs.
Results on circuit area and delay for a few benchmark
examples are also repovited.

1. Introduction

Synthesis and testing of symmetric Boolean functons
received lot of interest in the past [1 - 4, 7, 9]. They have
also applications to reliable data encryption and Internet
security [5]. This paper presents a new approach to
synthesizing totally symmetre functions using hierarchical
modules. We first redesign a well-known cellular module
known as digital summation threshold logic (DSTL) army
[6]. Such an armay can be used directly for synthesizing
unate symmetric functions. Non-unate symmetric functions
can then be synthesized by the method proposed m [3]. In
the proposed work, we change the internal structure of the
module such that it can be used to synthesize any general
symmetric function with 100% robust path-delay fault
testability. The cost of the circuit is similar 1o that of an
earlier design [9]. However, the number of paths in the
circuit reduces drastically compared o those in [2, 3, 8, 9].

2. Preliminaries

Let fixy, x5 ..., x,) denote a switching function of n Boolean
variables. A verfex (minterny) 1s a product of variables in
which every variable appears once. The weight w of a
vertex v 15 the number of uncomplemented variables that
appear in v. A Boolean function is called wnate, 1 cach
variable appears either in complemented or
uncomplemented form (but not both) in 1ts minimum sum-
of-products (s-0-p) expression.

Debesh K. Das
Dept. Computer Sci. & Eng.
Jadavpur University
Kolkata —700 032, India
deheshd@hotmail .com

Bhargah B. Bhattacharva
ACM Unit
Indian Statistical Institute
Kolkata-700 108, India
bhhargab@isical ac.in

A switching funeton fix, x. ... x,) 15 called wotally
symmefric with respect to the variables (v, x5 ., x,), i i
is invariant under any permutation of the variables [4].
Total symmetry can be specified by a set of integers
{called a-numbers) 4 = fa; ., a;,..., ap), where 4 < {0, 1,
2..... n}; all the vertices with weight w e 4 will appear as
true mintenms in the function. Henceforth, by a symmetric
funcuon, we would mean a function with total symmetry.
An p-variable symmetric function is denoted as 8"fa,.
a .., ap). A symmetric Tunction is called consecutive, 1l
the set 4 consists of only consecutive inlegers (a; dp, ...,
ay. Such a consecutive symmetric function 15 expressed
by &'fa; — a) where | < . For n variables, we can
construct 2”2 different symmetric functions (excluding
constant functions 0 and 1). A towlly symmetric funcuon
84} can be expressed unigquely as a union of maximal
consecutive symmetric functons, such that 8(4) = 8"(4)
+ 8", .+ 84,), such that mois minimum and Fi,
J. =i j=m A;n A=, whenever i #j.

Example I: The symmetric function §'%(1.2,5,6,7.9,10)
can be expressed as §7(1-2) + §7(5-7) + §%(9-10), where
§5(1-2), §%(5-7) and §"(9-10) are maximal consecutive
symmetric functions.

A function is called wnate symmetric 1110 is both unate and
symmetric. A unate symmetric Tunction 15 always
consecutive and can be expressed as Saea), where
either a; = 0 or a, = n. I 1L 15 positive unate, then it must
be either 8"m) or any of the following (n-1) functions:
8 1-n), S"(2-n), S 3-n)....., S'in-1) - n). We express
S'fr) as wyfn), and 8" faea,) as wdn) for 1 <1 < {n-1).

Theorem [[3]: A consecutive symmetric function 8" ar-
ag, a; # a, { < r, can be expressed as a composition of
two unate and consecutive symmetric functions:

§"(a;-a,) = S'(arn) S'fa..-n).

3. Synthesis of unate symmetric functions

Unate symmetrc functions can be synthesized by a DSTL
array [6]. To achieve path-delay fault testability, the above
design is modified in [8]. A synthesis technique for
implementing symmetric functions was proposed in [9] by
redesigning the DSTL army so as to reduce the hardware
cost and delay. Howewver, the procedure does not

guarantee robust testability of all path-delay faults. All the
design procedures reported earlier [6, 8, 9] use a structure
called Modulefn) that has » mputs lines x;, x2, xs ..., Kia
and m output functions wyfn), wafn), wsfm), ..., w () (Fig. 1),
Each output w;, implements a unate symmetric function as
described below (where ¥ denotes Boolean OR operation):
wfn)=58"1,2 3.....n=2Xx fori=Iton;

uin) =82, 3. 4....n) =% xx;, fori,j=1ton;

us(n) =83, 4,....n) = Y xxm, forij k=11o0n;

uufr) = ') = XXX Xy
Proposed technigque

We first describe a new and simple design of Modulefn)
that has good testability properties.

3.1 Design of Module(n) for n=2*
We first assume n = 2. For k =
in [6], and we redraw it as in Fig. 2. For & = 1,
Module (n) consists of three siages as shown in Fig. 3.

1, the design is same as that
the

First-stage: This consists of two blocks — Block A and
Block B (Fig. 4), each of which is identical to Modulefn/2).
The inputs to the Block A (B) are xy, X2 X3 .., Xuo (X201,
Ku4d Xaidhds seees . xy). The comresponding output functions
are denoted as ay, ax as, ..., agzand by, ba b o B
Clearly, a; = 3xjxz ...x; forjl, j2,j3,.... ji=1tons2

and b= 2xz ..xp forjl,j2, 73, .., ji= m2+1) to n.

Example 2: The first-stage for n= 4 is shown in Fig. 5.
Second stage: This consists of #/2 OR gates and #/2 AND-
OR gate pairs (Fig. 6) with » inputs. The » outputs are
given by ai+by, by, axtbs, aibo, as+hs asbs, o agoot b
) an".‘-_:'hn'_’-_‘: ﬂl.ll--'_‘-'I-e_'rj'.u-"_‘- 1s 2 I'l:".ur'_:' ls ﬂ“_.-_1';'lr'.|‘“_.-_:|, an".‘h.u-i‘- Thﬁ]-m
(n™) output represents u,(n) (resp. u,(n)).

Example 3:Fig. 7a(7h) shows the 2" stage for n=4 (8).

Third stage: The algebraic expressions for output functions

of the 3 stage fizih fizah fiza) .o fizid oo iz, in terms of
the output functions of the second stage are given by:
fiz=a + by
_.ﬁ:_ﬂ = ﬂ']lr'.l‘| + faa + |r'.l‘_1j
_ﬁr o= alhlraﬂ :l,.i' + fa; + h‘_gj
fizyd = abyfas: + by) + ab; + fa,+ by
Sz = afagag by + ashsfaya: + buaa) +
aﬂlr-'bi.lnl + ra.lh":'-'— h.llr_j
ﬁ-—n |J'.-i = ﬂ'||rJ‘| fﬂ,, T El‘”_j ﬂ':lh‘:lllra”1 1 IrJ‘,,.;- Lj'—

. anr-.lbm-.lrﬂu-ql 1 IrJ'.u_‘l I.li
HEuz) = auaabus s+ bya) + apaa by,
_ﬁr—_u I.-.' = iy IrJ'.ur'_:'- 1 rﬂal.f_‘ il bu-?j
fir—.llj = iy oty
More specifically,
_ﬁ = ﬂ:brl"ﬂj r+ B+

a-’: T2 1T 2 fﬂ_.-, + T2

hj 5.-.'
b,

aabafai s + b + ashafa s +

+ bﬂ l]'_r-'_‘l.i i &I’_,;.-:h‘,,g +a;t

ay

where i =n2, and = 0(1)1fi=odd (even),

-'ﬁ:-"' =d4; ”'J'r."‘l-ﬂl'-‘ raur:' + hu-'_‘j Tl .I"r:"J 02 lIrﬂJI.: [F IrJ'a.|.-_:' I.-.' +
------ + ﬂav‘.‘bu.-i‘rﬂj J.I."_:'hj.u-'_"j - ,&Th.g |r'.|‘,'_.3
where i = n/2, and §= 0 1) il { = odd (even).
Xz Xn1 An
l l l l X X3 R
MNetwork of 2-input l l _______ l l
AND-OR cells
I e A First-stage
wifm) wx(n) waa(n) w,nl #* ——————— **
Second-st
Fig. 1: Module(n) 8 e -
" 3™ stage
Xo =

_ﬁr—_al I.-.' _.ﬁ—_uj

- vy

! fzu i fz2)

Fig. 2: Module(2) Fig. 3: The Structure of Modide(n)

X1 Az K21 Xn2 Xpgal Xggez Ayl Xp

k. r r k r k J L ¥

Block-A: Modulefn/2) Block-B: Modhilefn2)

b? bf * v

‘Li ii

a i faog Oyn Bany B
Fig. 4: 1" stage of Modulein)
X X2 X3 Xy
| Moduer) | | Module2) |
a a» by By
Fig 5: 17 stage of Module (4)
by a, by tyay Buos Quog Bupy by

2 J—| dyoth "JJ.I-'_:'—|

dy ol dyia By diyiafys

Fig. 6: 2™ stage of Module(n)
Example 4: The 3™ stage for n = 4 (8) is shown in Fig. 8a
(8b).

Example 5: Module(d) [Moduled8)] 1s shown in Fig. 9a
[9b].

ay fy ar M

(a)

ayt by by axths aahs

ay by s b a3 b & by

>

at by ahy axthy aabs aztbhy asby aythy auhy
by
Fig. 7: 2™ stage of Modulefn) for (a)n =4 (b)n= 8§

Lemma I: arap=apif k=j

Proof: The function a; = w;(n/2) = ¥ xiy x;2... x5 for iy, ix, is

_di=1to n/2. Similarly, a; = un2) =X x5 xi2.... xg Tor iy,

f2 d5 e e =1 to /2. The minimum s-o-p expressions for a

and a; are unique and consist of [ﬂ-’E] and [ﬂ -’2] product
b k

terms respectively. As k= j, for every product term Py in ag,

there exists a product term Pz in g; such that Py < Po. Thus,

a, C a. Hence, a; a; = ay.

Lemma 2: by b= b il k=

Proof: Similar to Lemma 1.

Lemma 3: a; b (ay+ By =a; by +aphy if k= §

Proof: Follows from Lemmas 1 and 2.

Lemma 4: The minimum s-o-p expression for {a; by} has

nl 2w 2 seoduet terms each with (j + k) variables.

i k

Proof: Clear.

Lemma 50 Let iy, fi, &, ., be any four vadables such that 1

i i j=n2and i + =i+ j> Let Prand P; be two

product terms i the s-o-p expressions of aihy; and aoh;;

respectively. Then Py @ Prand Po @ Py

Theorem 2: The proposed design realizes Modilefn).

Proof: From Lemma 3, the function fiz) at the output of the

3™ stage is given by:

fiz) = L aby+a;+ b Wik suchthatj + k=1and i < n2
=Y aby for Vj, k,suchthatj + k=iand i>n/2.

Using Lemmas 4 and 5, it is easy to show that fiz;) 1s the s-

o-p of [n ' 2] product terms each having 7 variables. Thus,

i
fled=Expxz .x; for 1< ja Jn=n=uin). Hence
the proof.

ayfy dae

(a) ?

) TR

ayly asths ashs a;th; azh; aythy
y
-q
T T B T T R T (8
(b)

Fig. 8: Third stage of Modwlefn) for (a)n=4 (b) n=18

Xy X

o 1 I

Mo e

T w4l tafd) ng4)
Fig. 9a: Complete Module(4)

Xy X» Xy X3 Xz X5 X7 Xg
| | | | | | | |
Y ¥ ¥ ¥ Yy ¥ v ¥

Block-A (Modulef4)) Block-B Module(4))

ay s la; ﬁrﬁnk_/-/’b, f)_:)f}_; by

apthy| a | axths| ashs | o +hy by | athy | adhy

3" stage of Module(8)

Yooy v v vy

Iy 5] Iz Iy Iz By Iz By

Fig. 9b: Moduief8)

3.2 Designing Module(n) for 2" <p < 2*

For 2"' < n < 2% where k is an integer, Module(n) will have
three stages, similar to the case when n = 2% Let us assume
that p +m = n, where p = 2%,

First stage: This consists of two pans: Modulefp) and
Modulefm) (Fig. 10). The outputs of first stage feed the
second stage.

Xy X2 Xpy Xy Xpsl Xps2 Ko X

Block-A (Modhlepl) Block-B (Moduulefm))

g dy fy

Fig. 10: 1* stage of Module(n) for 2" <n < 2% with
p=2andp+m=n

Second-stage: The 2™ stage of Modulefn) (Fig. 11)
includes m OR-AND pair gates arranged in a block. The
outputs of the 2™ stage realizing (2m) functions are given
by ai+ by, aiby, as+ by, azbs, gt By Gpaba, det by,
ayh,, the 1si output ja; + by being equal to wyfn). The lines
corresponding o functions dy ooy f ba b by
just pass through the 2™ stage and appear as outputs.

ay by a: b oy bo ey @pez ay by by By

Fig. 11: 2™ stage of Module(n) for 2" < n<2*, with
p=2andp+m=n
Third stage: This 5 obtained by removing some gates and
lines from the third stage for Module(2"), and changing a
few gate inputs. The third stage for Moduler2') has input
lines realizing ay+by, aby, axtbs axbs o aythy,
Aol @it Fhuir, Gl o, @b, @b, ath,
ayh, To obtain the design for n < 2‘;‘ we replace the mputs

i -._hml 1 Dy 1-._Irjl.'.u b2 sa e deay ﬂ_r.l 1 bf} 12 ﬂf.l_b,'.l b}' i1
yizoeeeeen Gy, d, tespectively. The lines realizing
ot 1P i1 @i 2Pz @by, aphy and the gates fed by

them are removed from the design. Further, the nput a; b
that is ANDed with a;+hfor 1 €ismandm <j=p, is
replaced by by

Example 6: The complete module for n = 6 is shown in
Fig. 12, where the third stage is shown as a block.

Example 7: The 3™ stage of Module(6) (Fig. 13) is obtained
by removing some gates and lines from the 3™ stage of
Module8) (Fig. 8b). The dotted lnes, which are present in
Modhde), are removed in Modulefs). The bold lines
Modvles) show the changes in input connections.

X2 X3 X4 Xi Xy
| | |] | |
¥ L S, S J ¥ ¥
Block-A {Module(4)) Hlmk B (Maodule(2)) |

o Jole Ta 29 4

-,

ayt iyl ey by ast bl asba | oap |ag| My fra
3™ stape(6)
M Y Y v v ¥
t it ™ M, oy
Fig. 12: Module (6)
ayfy arths mf): fy by ay
taffi) a; fﬁ,] tigf I'iJ HE I’I'U t 5)

Fig. 13: Third stage of Modulefs)

4. Circuit cost, delay, and testability

The new design of Moduwlefn) reduces the cost of
synthesizing a unate symmetric function drastcally. The
delay as well as cost s smaller than those of the classical
DSTL army [6]. The input to output path length (delay)
can be made equal for each path, if needed, by providing
some buffers on the signal paths, without increasing the
maximum delay. Such a design can be pipelined for fast
evaluation of inputs.

Hardware cost

Let Cfm) denote the number of 2-input gates i Modle(n).
For n =2, Cin) = 2CWm/2) + n + n(n-2)4 = n'2 +
ni2flog n-1} = n2{n +k-1}. For n 22 C(n) < [n/2] {n+
[log n]}. The results for 2 < n <16 is shown in Table 2.
Circuit delay

We assume unit gate delay through a 2-mput gate. For n=
2%, the minimum delay through the circuit is &, and the
maximum delay D,,.(n) s [{5+ k}/2]. Dealy values for
2= n =16 are shown in Table 2.

Effects on testability

The modules based on DSTL array [6] or its modification
[9] are not fully path-delay testable. The proposed design
circumvents this problem.

Thearem 3: Each path in Module (n) 1s robustly delay
testable.

Proof: We will prove the claim recursively. For simplicity,
we assume that # = 2°, &k = 1. Modulefn) is a unate circuit
{1e., no ling exists that reconverges with unequal inversion
parities). It can be shown that Modulefn) s irredundant
under all muliple stuck-at faults. Let us assume that
Module(n/2) 1s Tully path-delay testable. In other words, a
path from any input to any output of the first stage is
robustly testable. In the second stage, the first level
comprises AND or OR gates, mputs to each of which are
independent (arriving from two different blocks A and B
with no common nput). Thus, every path can be sensitized
up to the output of the second stage. In the third stage, the
first level consists of AND gates, the outputs of which are
OR-ed in the form of a tree. No two product temms
generated at this stage are mutually disjoint. Further, for
any particular output, no product term s covered by the
any other product termm appearing in the Boolean expression
of the corresponding function. Thus, for any path starting
from a line in the third stage to any output, non-controlling
logic values can be set o all the side inputs of the AND/OR
zates along the path. Therefore, Modulein) 15 fully mwbust
testable for all path-delay faulis. Similarly, Module(n/2)
will be mwbustly delay testable, if Modulein/d) 1s robustly
testable. We can proceed recursively in this fashion 1o end
up at Module(2) that consists of simply an OR and an AND
gate, paths in which are obviously robust testable. Thus,
all paths in Modulein) are robustly delay testable.

5. Synthesis of general symmetric functions

5.1 Consecutive symmetric functions
To synthesize a consecutive symmetric function that is not
unate, we use the result stated in Theorem 1 [3] that 5"fa;-
a) = Sfara) = §'(a;-n) Sa.-n)= win). ufn. The
unate functions wyn) and w.fn) are produced by
Modulen). The complete circuit 18 shown in Fig. 14a.
Example 8: $%(3, 4) is realized as 83, 4) = §°(3-6). S7(5-6)
= wusf3). us(5). The circuit is shown in Fig. 14b.
x - Xn-l Xa
L4 L]
{a) Mol fefin)

Iy My np A58 Ty | Hn
S71-12))
() $2(3-12) L e
I X3 X3 Xy X5 Xg :
*YYY v+¥ ¥ 8§55-12)
(b) | Mochile(6) §78-12)
YYYy v

4042
S H-12)

IR TP [

S20-1a)

893, 4
Fig. 14: Realization of
() 8'far- a) (b) 573, 4)

Fig. 15: Testable circuit
realizing 5%11,2,5.6.7.0.10)

Theorem 4: The above implementation of any consecutive
symmetric function 8'a; - a.), (a; # a), 15 wobusty path-
delay testable.

Proof: Follows from Theorem 3 and the results in [3].

5.2 Nonconsecutive symmetric functions

To synthesize a nonconsecutive symmetric function {or
100% robust path-delay testability, 1t 15 first expressed as
a union of several maximal conseculive symmelric
functions, and then each of the constituent consecutive
symmetric functions 15 realized by combining the
appropriate outputs of Modulefn), via unate
decomposition. Finally, they are OR-ed together. It 1s
shown in [3] that the overall circuit based on such
decomposition is bustly path-delay fault tesmble.
Implementation of a nonconsecutive symmetric function
(Example 1: §(1,2,5,6,7.9,10)) is shown in Fig. 15.

6. Experimental results

We compare the hardware cost and delay of Modwle(n)
with earlier designs reported in [6, 8] in Table 1 and Table
2. Both the pammeters are favorably reduced in the new
design. For general consecutive symmetde Tunctions, we
compare the hardware cost and the number of paths with
those in [2, 3, 9] (Table 4). The results show a significant
reduction in circuil cost compared to those in [2, 3] While
the earlier methods use a fived number of logic levels, for
instance, at most 4 [2], or at most 5 [3], the proposed
method reduces the logic significantly at the cost of
increasing the number of levels. However, the number of
paths, and in turn, testing tme in the proposed design
reduces drastically compared to that m [2, 3, 9]. Table 3
depicts resulis on some benchmark circuits realizing
symmetric functions. These circuits are not path-delay
testable. Moreover, except 9svm no other circuit has two-
level delay testable realization. The proposed
implementation technique using hierarchical modules
ensures path-delay fault testability for all these circuits
and yields lesser area and (max) delay compared to those
of the original implementations. We have used the SIS
tool [10] and mencgenlib library to estimate area for
COMpanson.

7. Conclusion

The proposed procedure for implementing symmetric
Boolean functions using hierarchical modules 1s simple,
and guarantees robust testability of 1000 path-delay
faults. Multiple symmetric functions of n variables can be
implemented by using only one block of Module(n) and
some additional logic. The number of paths in the circuit
is reduced significantly compared 1o eardier designs, and
hence ume needed for delay test generation and test
application is likely 1o reduce proportionately.
Determination of an optimum test sequence for path-delay
faults in the circuit so designed is an open problem.

References

D. L. Dietmever, “Generating minimal covers of symmetric
finction,” JEEE TCAD, vol. 12, no. 3, pp. 7T10-T13, May
1993,

W. Ke and P. R. Menon, “Delay-testable implementations of
symmetric functions,” [EEE TCAD, vol. 14, pp. 772-775,
1995,

5. Chakraborty, S. Das, D. K. Das, and B. B. Bhattacharya,
“Synthesis of symmetric functions for path-delay fault
testability,” JEEE TCAD, vol. 19, pp. 1076- 1081, September
2000.

£ Kohavi, Switching and Finite Awtomata Theory. New York:
MeGraw-Hill, 1977,

Y. X. Yang and B. Guo, “Further enumerating Boolean
finctions of cryptographic significance,” J. Cryprology, vol.
B, no. 3, pp. 115122, 1995,

5. L. Hurst, “Digital summation threshold logic gates: a new
circuit element,” JEE Prec.. vol. 120, no. 11, pp. 1301-1307,
1973,

L 1l and 5. M. Wu, “A new approach to realize partially
symmetric functions,” Tech. Rep. SRC TR 86-54, Dept. EE,
University of Maryland, 1986.

H. Rahaman, D. K. Das, and B. B. Bhattacharya, “A simple
delay-testable design of digital summation threshold logic
(DSTL) array”™, Proc. of the Sth International Workshop on
Boolean Problems, September 2002, Freiberg, Germany.

H. Rahaman, D. K. Das, and B. B. Blattacharya, * A new
synthesis of symmetric functions,” Proc. of the Int. Confl
ASP-DACHVLS Design, pp. 160-163, January 2002,

E. M. Sentovich, et al., *SIS: a sequential system for
sequential circuit synthesis,” Technical Report

UCHR/ERL m92/41. Electronic Research Laboratory,

University of California, Berkeley, May 1992,

Tahle 1: Comparative features of Modulefn)

Tahle 2: Cost and delay of Module(n)

n | #Z-input gates [helay
a5 Proposed | as in [6] Proposed
in [6] | method | and [§] method
& [8] Min | Max | Min | Max
| 2 2 2 3 Lyt
il s L] 3 5] 2] 3
4| 12 1 4 71 2] 3
51 2 18 k] a9l 3] 6
L] 30 24 L] 11 3] 6
T 42 34 7 13 3] s
B | 56 40 B 5] 3] &
a9l 72 56 9 17 4] 10
10 o) i3] 10 19 4] 10
1|11 78 11 | 4] 10
12 | 132 a0 12 | 4] 10
13 |15 12 13 25 4] 10
14 | 182 124 14 [27| 4] 10
15 1210 144 15 X 4] 10
16 240 152 16 | 4]

Table 3: Comparison of area and delay for benchmark circuits

Circuit | #inputs | #outputs Area [helay
original | proposed | original | proposed
cimuit tech. circuit | tech.

sym# 9 1 202 &4 13 9

symli 10 1 159 " 15 11

rd53 5 3 S0 47 il 7

rd73 7 3 a3 L1 1 #

rd&4 B 4 8 112 15 a

Tahble 4: Cost of general symmetric functions

Asin[6] | Asin [B]| Proposed design
Cost nin-1) nin-1) =2 {n+ k-1,
{ # Z-input forn =2
gates) <02 fn+lognl}
for n =2

Drelay | Min. n n [fogn |

Max.| 2nfn-0) | 2nn-d) |l dog n|*+[lognl 12
Path-delay | Mot Robustly | Robustly testable
testahility [testable | testable

Functions) Number of gate inpuis Number of paths
o) | s as awm | Proposed as as w | Proposed
in[2] |in(3] | infe)| method | in[2] [in[3] | in (9] method

§'s) | 2354 | 1206 | 130 124 200 | 1034 [420 | 320
867 | 4556 | 2433 | 174 158 492 | 1957 [1278] 430
SU3-7y] 2147 nos | 174 158 1815 | 916 | 1066) 294
a4 3137 1675 | 174 158 2805 | 1365 | 266 | 270
S'Ea)| SO82| 2740 | 174 | 158 4620 2220 | 676 | 430
S48 4558 | 2433 | 174 158 4092 | 1957 434 | 358
ST B3R | 4330 | 190 | 182 7524 | 3548 | 1492| 520
S'4-81] 4455 2340 | 190 | 182 3060 | 1960 | 1124 384
SY6,T) | 10420 | 5463 | 100 | 182 9504 | H469 [1308 494
SYsh) | 10430 | S463 | 190 | 182 9504 | Ha9 | 692 | 422
TR | A01as | 02a1]| 218 | 226 18447 | 8451 |2362] 622
S48 | 10584 | 5336 | 218 | 226 9205 | 494 | 1814 500
§%6.7) [22308 | 11s18] 218 | 226 20502 | 9530 [200 s00
§Ysa) | 0165 | 10261 218 | 226 18447 | 8451 | 944 | 550
§'s0) (37030 | 18506] 234 | 250 3408 | 15540 [3560] 526
§4s59)| 20z | ni262] 2| 250 20020 | 9578 | 1468 700
S 56| 37030 | 18596 234 | 250 3403 | 15540 | 894 | 00
SY6,T) | 454760 | 22877 234 | 250 42042 | 19081 | 22200 770
§Y50)| s0052 | 24671| 286 | 200 45045 | 21085 [2550 750
89560 | 65067 | 32312] 286 | 290 60060 | 27354 [1170 750
59780 [6525 | 47950] 286 | 290 0o | 40362 [3180] wss

	mapping symmetric functions-1.jpg
	mapping symmetric functions-2.jpg
	mapping symmetric functions-3.jpg
	mapping symmetric functions-4.jpg
	mapping symmetric functions-5.jpg
	mapping symmetric functions-6.jpg

