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Ahbstract

Given a polyhedral terrain with n vertices, the shortest monotone descent path problem deals with finding the shortest path
between a pair of points, called source () and destination (1 ) such that the path is constrained to lie on the swface of the terrain, and
for every pair of points p = (x{ph viph z(p) and g = (xig). vig ). 2ig)) on the path, if distis, p) < distis, g) then z{p) = zig).
where dist(s, p) denotes the distance of p from s along the aforesaid path. This is posed as an open problem by Berg and Kreveld
[M. de Berg, M. van Kreveld, Trekking in the Alps without freezing or getting tired, Algorithmica 18 (1997} 306-323]. We show
that for some restricted classes of polvhedral terrain, the optimal path can be identified in polynomial time.
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1. Introduction

The shortest path problem between two points s and ¢ on the surface of an unweighted polyhedron is studied
extensively in the literature. Sharir and Schorr [19] presented an O{n logn) time algorithm for finding the geodesic
shortest path between two points on the surface of a convex polyhedron with n vertices. Mitchell et al. [13] studied
the generalized version of this problem where the restriction of convexity is removed. The time complexities of the
proposed algorithms is ({n” logn). After a long time Chen and Han [6] improved the time complexity to {n”).
Finally, the best known algorithm for producing the optimal solution was proposed by Kapoor [8]; the running time
of this algorithm is Oin Ingln}. Two approximation algorithms for this problem were proposed by Varadarajan and
Agarwal [20]; it can produce paths of length 7(1 + ¢} = opr and 15(1 + ¢} = opt respectively; opr is the length of
the optimal path between s and ¢, and e is an wser specified degree of precession. The munning times are respectively
}n"* log(5n/3)) and O(n® " log(8n/5)). For convex polyhedron, an approximation algorithm was proposed by
Agarwal ¢t al. [1], which produoces (1 + €)= opt solution, and runs in (){nfﬂ}l tme. A simple hinear time 2-
approximation algorithm for this problem is proposed by Hershberger and Suri [9].
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The first work on approximating the minimum cost path of the weighted polyhedral surface appeared in g seminal
paper by Mitchell and Papadimitrou [14]. It presents an {1 + ¢ )-approximation algorithm, that runs in @ {n®*logn)
time. An implementable method for solving the minimum cost path problem was given by Mata and Mitchell [12],
which formulates the problem as a graph search problem and assures a solution of length (1 +¢) = opr. The mnning
tme of the algonthm 1s (}{"‘i‘:jw b where Woand w are respectively the maximum and minimum weights among
all the faces of the polyhedron. Efficient approximation algorithms are also available in [2.3,11,16,17]. The latest
result on this problem appeared in the work of Aleksandrov et al. [4]. 1t proposes an (1 + ¢ )-approximation algorithm
that runs in (}{C{P}% Iu,&_e:—r log :l]' time, where n and ¢ are as defined earlier, and C(P) captures the geometric

parameters and the weight of the faces of the polyhedron P.

Several variations of the path finding problems in polyhedral terrain are studied by Berg and Kreveld [5]. Given a
polyhedral terrain T with n vertices, the proposed algorithm constructs a linear size data structure in Oinlogn) time
and can efficiently answer the following queries:

Given a pair of points 5 and ¢ on the suface of T, and an alitude (height) £, does there exist a path between s
and ¢ such that for each point g on the path z{p) < £7

Given a pair of points 5 and ¢ on T, determine the minimum total ascent/descent among the pathi(s) between s
and t, where the rotal ascent of 2 non-monotone path is defined in [5].

Recently an interesting variation of the shortest path problem in the context of a terrain is proposed by Mitchell and
Sharir [15], where the objective is to compute the Ly-shortest path between a pair of given points, such that the path
is restricted to lie on or above a given polyhedral terrain with n faces. The proposed algorithm runs in O(n”logn)
time. The same paper also studies another vanation of the shortest path problem on a termin like structure, where a set
of n vertical walls parallel to the r-axis are given. Each wall is positioned on the x y-plane. The ith wall, is positioned
al v =a;, and its wop boundary {denoted by e;) is a line of the form z = bix + ¢;, where a;, by and ¢; are given
constants, gy < az < --- < d,. The objective is 1o report the Lo-shortest path between a given pair of query points s
and r, where 5 = @) and ¢ = a,. The problem i1s referred 1o as the La-shortest path over walls. Note that the shortest
path 1s always monotone with respect o the y-axis, and it bends on the edges ;.0 = 1, 2, 000w Lis also proved that
the shortest path from 5 ot is the concatenation of two sub-paths, one of them is monotone ascending and the second
one is monotone descending with respect to z-coordinate. The standard method of solving this problem involves a
preprocessing phase which splits each edge e into segments, and then defines the shortest path map [ 18], such that
the optimal La-path from s to ¢ can be obtained by following an appropriate path in the map. In [15], it is proved that
the size of the shortest path map is ©2(n?) in the worst case, but finding a polynomial time algorithm for constructing
the map is left as an open problem.

We address the problem of computing the shortest among all possible monotone descending paths (if at least one
such path exists) between a pair of points on the surface of a polyhedral terrain. This is a long-standing open problem
in the sense that no bound on the combinatonal or Euchidean length of the shortest monotone descent path between
a pair of points on the surface of a polyhedral terrain is available in the literature [5]. Some interesting observations
of the problem lead us to design efficient polynomial time algorthm for solving this problem in the following two
special cases, where

l. oursearch domain 1s among all possible monotone descent paths from s to ¢ which are constramed to pass through
a sequence of faces such that each pairof consecutive faces are in convex position, and the objective is to identify
the shortest among such paths (see Section 4), and

2. given a sequence of pairwise adjacent faces having their boundares parallel 1o each other (but the faces are not
all necessarily in convex (respectively concave) position); the objective is 1o find the shortest monotone descent
path from & to ¢ through that sequence of faces (see Section 5).

In Case 1, if the temain contains n triangulated faces, the preprocessing of those faces need ({n’logn) time
and ({n”) space, and the shortest monotone descent path query through a sequence of convex faces can be answered
in Mk + logn) time (provided such a path exists), where k is the number of faces through which the optimum path
passes. In Case 2, if o sequence of n faces with their boundaries in parallel position is given, the shortest monotone
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descent path from s o ¢ through that face sequence can be computed in 1n logn) time. The solution technigue for
this case indicates the hardness of handling the general terrin.

The problem is motivated from the agrcultural applications where the objective is o lay a canal of minimuom length
from the source of water at the top of the mountain to the ground for irrigation purpose. Another application of Case 2
can be observed in the design of fluid circulation systems in automobiles or refrigerator/air-condition machines.

2. Preliminaries

A terrain T is a polyhedral surface in B with a special property: the vertical ling at any point on the xy-plane
intersects the surface of T at most once. Thus, the projections of all the faces of a terrain on the vy-plane are mutually
non-intersecting at their interior. Each vertex p of the emrain is specified by a wiple (x{ p), v{p), z(p)). Without loss
of generality, we assume that all the faces of the terrain are triangles, and the source point s is a vertex of the terrain.

Deefinition 1. [13] Let f and f' be a pair of faces of 7 sharing an edge . The planar unfolding of face f' onto face
f 15 the image of the points of f* when rotated about the line ¢ onto the plane of § such that the points in f and the
points in f* lie in two different sides of the edge ¢ respectively (ie., the faces f' and f become coplanar and they do
not overlap after unfolding).

Let { fo. fis---s fin b a sequence of adjacent faces. The edge common to f;_; and f; is ¢;. We define the planar
unfolding with respect to the edge sequence £ = {ey,e2, ..., et as follows: obtain the planar unfolding of face fy,
onto face fi,— 1, then get the planar unfolding of the resulting plane onw 2. and so on; finally, get the planar
unfolding of the entire resulting plane onto fiy. From now onwards, this event will be referred to as U(£).

A path i, 1) from a poinl 5 o a point ¢ on the sudface of the terrain is said 0 be a geodesic path if it entirely
lies on the surface of the terrain, it s not self-intersecting, and in each face its intersection with the path (s, 1) is a
straight line segment. The geodesic distance dist{ p, ) between a pair of points p and g on 7(s, 1) is the length of the
path from p to g along mwis, 1). The path meea (s, 1) is said o be the geodesic shortest path if the distance between s
and t along meeqls, 1) is minimum among all possible geodesic paths from s 1o 1

Lemma L. [13] For a pair of points o and i, if Tyeoloe, ) passes through an edge sequence £ of a polvhedron, then
in the planar unfolding U(E), the path Tgenloe, A) is a straight line segment.

Deefinition 2. A path 7(s, 1) (z(s) = zi{1)) on the suface of a terrain is a monotone descent path if for every pair of
points p g €wis, 1), distis, p) < dist{s, g) implies z{ p) = z(g).

We will use myg p.g) and d(p,g) 1o denote the shorest monotone descent path from p 1o g and its length,
respectively. If p# and g+ are the image of p and g respectively in the unfolded plane along an edge sequence
traversed by path mgen(p. g, the path 7 g0 p.g) comesponds 1o the line segment [ p*, g% ] in that unfolded plane, and
it satisfies monotone descent propery, then g is said w be straight line wachable from p in the unfolded plane. In
such a case, Tpg(p. §) = Tgealp. g).

Remark 1. A monotone descent path between a pair of points & and ¢ may not exist (Fig. 1{a)). Again, if monotone
descent path from 5 1o ¢ exists, then (s, ) may not coincide with Tgeals. 1) (Fig. 1ib)).

iidag,

wiia0G;

Fig. 1. Justification of Remark 1.
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Fig. 2. Pmof af Lemma 3.

Lemma 2. If the shortest monotone decent path wyg(s. 1) passes through a face [, then the intersection of mypai(s. 1)
with the face [ is line segment.

Proof. [By contradiction] Let the portion of mygis, 1), which lies in face f, is not a single line segment. Lel us
consider g pair of points py, pa(e f) on the path mggis, t) (with dist(s, p1) = dist{s, pa)) such that their joining
ling segment does not coincide with an edge of myg(s, ). Note that the line segment [ py, p2] satisfies the monotone
descent property, and its length is less than the length of the path from pp w0 pp along mggis, t). Hence we have a
contradiction. [

Lemma 3. Given a vertex s and a pair of points o and § on the terrain T, mg(s, o) and myg(s, 8) cannot intersect
except at some vertex of T, Moreover, if they intersect at a vertex v then the length of the subpath fiom s o v on both
Tmdls. o) and mpals, f) are same.

Proof. Let mpg(s, o) and mpgis, ) intersect at a point p, which is equidistant from s along both the paths myhais, o)
and mygis, A), otherwise one of these two paths cannot be optimum. Thus, the second part of the lemma follows. We
prove the first part by contradiction. We need to consider two cases: (1) y is inside a face (say ), and (i) y lies on an
edge ¢ which is adjacent to a pair of faces f and f°.

In case (1) consider a very small circle centered at p which completely lies inside the face f. The path mpg(s, o)
mtersects the cirele at two points & and &, and the path mgais, f) intersects the cirele at @ and ¢ (see Fig. 2). From
the second part of the lemma, the length of the paths s ~b— y - d ~o and s ~a — y — d ~ o are same, and
both are optimum paths (by the statement of the lemma). Now, consider the path s ~a — o ~ o 1is length is less
than both the paths mentoned above (by wiangle inequality). Again, z{a) = z(y) = z{d) due to the fact that both
Tmdls. o) and myals, #) are monotone descent. So, the path 5 ~a — d ~ o 158 monotone descent also. Thos, we have
a contradiction.

The case (i) can be similarly handles by unfolding § onto f° and drawing the circle around y in the unfolded
plane. 0O

Definition 3. Given an arbitrary point p on the sudface of the werrain T, the descent flow region of p (called DFR(p))
is the region on the surface of 7 such that each point g € DFR{p) is reachable from p through a monotone descent
path.

Given a polyhedral terrain 7 and a given point 5 € T, we study the following problems:

Pl: Construct DFR{s).
F2: Fora given query point t € DFR{x) reporl myais, 1), and its length.

Problem P2 seems 1o be difficult in general. We identified the following two special cases where it can be solved in
polynomial tme.
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F2.1: Fora given source point s, we can construct a data structure such that given any query point ¢ € DFR{5 ), we can
identify the shortest monotone descent path from s to ¢ provided DFR{x) is convex (1o be defined in Section 4).

P22: Given a sequence of faces {fy, fi. ..., fin ) of a polyhedmal termain (not necessarily convexfconcave), if ¢ de-
notes the edge separating fi_ and fi, and the projections of the edges ¢, e, .., ey on the XY-plane are
parallel, then we can identify the monotone descent shortest path between g pair of points 5 € fiy and r € f,
through that sequence of faces.

3. Computation of DFR(x)

Given the source point 5, if it lies on an edge ¢ of a tnangulated face, we add 5 with the vertex opposite o ¢ in both
the faces adjacent w e. If 5 lies inside a triangulated face then we add s to all the three vertices of that face. Thus s
may always be considered as a vertex of the rangulated termm.

Observation 1. If r is reachable from s using monotone descent path, then DFR{r) C DFR{s).
Observation 2. Let Aspg be a tnangular face adjacent to the source s with z{p) < zig). Now,

(1) if z{s) = zi{g) then Aspg CDFR(s),
(i) if z{s) = z{p) then Aspg NOFR(s) =¢ (emply region), and
(1) if z{p) = z{s) = z{g) then there exists a point r on the edge (p,g) (with z{r) = z{s ) such that Aspr C DFR(x),
and Asrg @ DFR(s). In this case, if z{p) = zir), then Aspr degenerates o the line segment [5, p| (or equiva-
lently [s.r]).

In Fig. 3, faces B and F satsfy Cases (i) and (i1) of Observation 2 respectively; all other faces satisfy Case (iii) of
Observation 2,

We consider all the faces adjacent to s, and compute the initial descent flow region inside those faces. The union of
these regions 15 denoted as IDFR(x). The projection of IDFR(s) on the X ¥-plane 15 a connected region, which may
be (i) a simple polygon with s inside its kemel, or (i) a collection of convex polygons each having 5 as a vertex. The
vertices of IDFR(s) (excluding s itsell) are said to be the descent flow neighbors of &, and are denoted as DFN{(s) (see
Fig. 3).

Lemma 4. DFR(s) = (|J, . prw s, DFR(r)) U IDFR(s).

Proof. From Observations 1 and 2, (|_J,.ppyi, DFR(r)) U IDFR(5)) € DFR(s). We now prove that DFR(s) C
(U, e pvis) DFR(r)) U IDFR(s).

Fig. 3. Hlustration of 4FN5).
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Fig. 4. & of 0 point & on an edge (2, &) where (a) zic) = z(@) and (h) 2] < z(a@).
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Fig. 5. Order of processing of the fFNs"

Let g be a pomt in DFR{x) bul not in {Ur:-fJF.-m] DFR(r)) UIDFR(s). Consider a monotone descent path from s
to g. By Observation 2, it intersects a boundary edge [a, 6] of IDFR{s) al a point c. Assume that z{a) = z(b). The
path from the point a to the point ¢ along the boundary [a, £] 15 2 monotone descent path. Thus, g £ DFR{a). which
leads to the contradiction. [0

We compute IDFR(s) by considering the faces adjacent 1o 5. The processing of the triangular faces which are not
adjacent with the source 5 15 discussed below.

Observation 3. If more than one point on the boundary of a face Aabe are reachable from s, then for each pair of
such points e and A, z{ee ) = z(F) implies DEFR{o ) N Aabe € DFR(F) N Aabe, and vice versa.

Observation 4. The intersection of a face of T with DFR{s) may be a vertex of that face, an edge of that face which
15 parallel to XY -plane, or a polygonal region.

During the execution of the algorithm, we maintain a priority queue @ which is initialized with DFN (), and
process these elements in an ordered manner (as discussed below). Durng the processing of a member o £ @, the set
of points DFN{w) are also inserted in Q. The algorithm continues until all the members in @ are processed.

While processing an element o £ @, if it is a vertex of a tnangular face Aabe, then it is processed as in Lemma 4.
If it appears in the middle of an edge (a, b) (assuming z{a) > z(H)) then two siluations may arise.

o Il zic) = z{o) then there exists a point @ on the edge (5, o) with z{(f) = z{e). Here, the tniangular region Abaf
15 included in DFR(s) (see Fig. 40a)).

o If z(c) = z{o) then there exists a point 8 on the edge (a, ¢) with z(§) = z (). Here the quadrilateral Cbafic is
included in DFR(s) (see Fig. 4(h)).

In order to explain the order of processing of the elements in Q, ket us consider a terrain in Fig. 3, the z-coordinates
of all the vernces are given in square bracket, and the DEN(s)s are marked with dark cireles. Now, consider the
following situations:
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¢ is processed prior to b: Here, after processing of ¢, the region Achk is included in DFR(s), and generates the
point k as a new DFN. After processing &, Okbef is included in DFRix). Next, when b is processed, Abga is
mncluded in DFR{x ) (see Fig. S(a)).

b is processed prior to c: Here, after processing of b, Aabg, and Abgh (C Abgi) are included in DFR(s). Now,
if we process the point ¢ then, as mentioned above, the Oebg s included in DFRix) (see Fig. 5(b)).

In the latter situation, Abgh will be included twice in DFR{x). This silwaton can be avowded by (1) processing the
DFNs in decreasing order of their z-coordinates using a priority queune, and (i) maintaining a flag with each face
which will be set 1o the value “17 if it 15 considered during the processing of a DFN. Observation 3 along with the
above discussion lead to the following algorithm which identfies DFR(s) for a given source vertex s, and stores il in
the form of a doubly connected edge list. We also maintain a data structure PSLG for planar point location query [10]
using the projections of the faces in DFR{s) on the X ¥ -plane.

Algorithm.
Input: A tiangulated polyhedral terrain, and the source s.
Output: DFR(s) in the form of doubly connected edge list DCEL, and a planar point location data structure PSLG.
Data structure: A prority queue Q to store the unprocessed DFNS in decreasing order of their z-coordinates.
begin
puts in Q%
while Q is not empty do
p=Q(l);
for each face f attached 1o p do
if flag of face f is notequal to 1 then
compute DFN{(p) in face f and insert them in O
set flag of face f o 1;
endil
endfor
compute the faces in DFR{ p) attached with point p;
insert each of the faces in the data structure DCEL
endwhile
Use DCEL 1o construct the PSLG data structure [ 10]
end.

Lemma 5. The proposed algorithm processes each face at most once, and outputs DFR(s ) correctly.

Proof. The first part of the kemma follows from the use of flag bit during the processing.

For the second part, consider a portion of a face § in the descent flow region of 5 but is not included in DFR(5) by
our algorithm. Let p be a point in this region having maximum z-coordinate. Surely, p is on an edge of f, and p is
not processed as a DFN from Q. Note that the flow can reach from s w p through a face f* (which is adjacent 1o §),
which is also not included in DFR(x). We can apply the same argument repeatedly o prove that s is not inserted in Q.
Thus, we have acontradiction. [0

Theorem 1. The proposed algovithm for computing DFR(s) needs O{nlogn) time and (n) space, and given an
arbitrary point t, it searches in the DFR(s) data structure in O(logn) time to report whether a monotone descent
path exists from s tot along the surface of T.

Proof. Each face is processed at most once for inclusion in DFR(s) (by Lemma 3), and while processing each (-
angulated) face at most three DFNS are generated (see Fig. 5). Thus, wotal number of DFNS inserted in @ is On)
in the worst case. Inserting a part of a face in DCEL requires (1) time. Since a single operation in a priority queue
needs O{logn) tme, DCEL can be constructed in Gnlogn) time. The same argument leads to the fact that DCEL
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needs On) space. Given the DCEL, the PSLG data structure can also be constructed in Q(nlogn) tme vsing ({n)
space [ 10]. The query time complexity in PSLG is Ologn) [10]. O

4. Shortest monoione descent path in convex DF R
We now study a restricted version of the descent flow problem where DFR(s ) is convex.

Definition 4. Let f and f° be two adjacent faces of the terrain 7 sharing an edge e. Let p and g be two points on faces
fand f° respectively (none of p and g is on e). Now, if the line segment [p, g] is not visible (respectively visible)
from the outside of the terrain then f and f* are said o be in convex (respectively concave) position.

Definition 5. Given a terrain T and a source point 5, DFR(5) is said to be convex if every two adjacent faces in DFR(s)
is in convex position. Similarly, DFR(s) is said 1o be concave if its every pair of adjacent faces is in concave position.

We now study the properties of shortest monotone descent path in a convex DFR(x). The convexity of DFR(s) can
be tested very easily by observing the neighbors of its each face. From now onwards, we assume that the DFR(s) on
which we are working, is convex.

Observation 5. If p;. p2 are two points on a face of T, and p1 is another point on the line segment [ py, pz]. then
z(p1) = z(p3) implies z(p2) < z(p3).

Lemmab. Let | and ' be two adjacent faces of a polvhedral terrain which are in convex position. The edge ¢ ={a . b)
separates [ and f'. Consider a pair of points p and g on faces | and [° respectively, and a point ¢ on ¢ with
z(p) =z(c).

(1) Now the edge e can be partiioned into two parts [a, c| and (c, b] such that the descent flow from p o the face |
ix possible through the portion [a,c| € e but not possible through the portion (o, B].

ib) Let g* denote the image of the point g in the planar unfolding of ' onto f. Now, (1) if the line segment | p, g*|
intersects the line segment [a, ] (€ €) in the wnfolded plane, then g € DFR{p) and the geodesic shortest path
from p o g through the edge e is the shortest monotone decent path from p to g, and (1) if [ p, g% | intersects the
line segment (¢, b] but g € DFR{ p), then [p. c] + [c, gl forms the shortest monotone descent path from p to g
through the edge e.

Proof. Pan (a) of the lemma is trivial. We now prove part (b) of the lemma.

Let moealp. g:e) denote the geodesic shortest path from p to g passing through the edge e If the line segment
[ 7.g*] (in the unfolded plane) intersects e (ata point, say i) inits interior, then by Lemma 1, the image of meeo(p. g €)
in the unfolded plane coincides with the line segment [ p, g*|. Now, two cases need 1o be considered: (1) z(n) < z( p)
and (2 z{m = z{p).

Case 1. Here, by Observation 5, zig*) = z(n). As the two faces f and f' are in convex position, z{g) < z{g*).
Thus both the line segments [p, 5] and [, g ] are monotone descent (see Fig. 6ia)), and part (i) of the lemma follows.

Case 2. Here the line segment [p, ] s not monotone descent in the plane f. Consider any monotong descent path
from p to g which intersects the line segment [a, o] (4l & point, say 5"). Note that the length of such a path remains
same as that of its image in the unfolded plane, and it attains minimum when 5" = ¢ as illustrated in Fig. 6ib). This
proves part (ii) of the lemma. 0O

Let v be a vertex of T and p be a point in DFR{v) which is reachable from v through a sequence of edges
E=le,ea,..., ey} of DFR{v); the faces fi_y and f;, attached to edge ¢, are in convex position; v € fo, pE fia.
Now, ket £* denote the region obtained by the planar unfolding U £), which is a polygonal region in the unfolded
plane. Now we have the following result:

Lemma 7. If p* denotes the image of the point p in B*, and the line segment [v, p*| completely lies inside R*, then
the path wiv, p) on T, whose image in R is the line segment [v, p*|, is the shortest monotone descent path from v

tar p through the faces | fo. fi. . ..., Sk
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Fig. 6. Pmof of Lemma 6.

Proof. From Lemma 1, the path w{v, p) is a shortest geodesic path through { fo, fi. f2.. .., S b Next, we show that
v, p) s a monotone descent path.

Let ¢ be the point of intersection of (v, p) with the edge ¢;. Since 7w{v, p) passes through DER{v), z{c;) = z(v)
foralli=1,..., m. Rename v = o and p = ¢y 21 - Now, by repeated application of the proof technigue of Lemma 6,
it can be shown that z{cp) = zie1) = zlc2) = - - - = zlow) = zlowsr). O

Remark 2. If the shortest monotone descent path from a vertex v 1o a point p is obtained as in Lemma 7, then the
point p is straight-line reachable from the vertex v.

Remark 3. Let ¢ be an edge of T separating the faces f and 7. A point p on ¢ may be straight line reachable from
a verex v through different edge sequences. Thus, p may be stright line reachable from v through both § and 7.

Definition 6. A point o on a line segment [a, b] (portion of an edge) is said o be the frontier point with respect 1o a
vertex v if o is straight line reachable from v through an edge sequence £ and it is the closest point 1o v on the line
segment [a, #].

It is easy Lo see that o can be either @ or b or the perpendicular projection of v on the line segment [a, | in the
planar unfolding R*.

The above discussions kead o a preprocessing step of DFR(s) similar 1o [13]. It splits each face § of DFR(x)
e homogeneous partitions such that for every point p in a partiion the shortest monotone descent path from s
reaches p through the same edge sequence. Note that each of these patitions must be maximal in the sense that it
is not properly contained in some other homogeneows parrition of f. We will refer the data structure storing this
homogeneous partitions of DFR(s) by HDFR.

Definition 7. A segment § = [a,b] on an edge ¢ € DFR(5) is said o be 8 homogencous segment (or h-segment in
short) if forevery point e £ [, the shortest monotone descent path from s 1o o passes through the same edge sequence.

4.1, Preprocessing

Our algorithm for finding shortest monotone descent path on convex DFR(s) creates a data structure HDFR in two
phases. In Phase 1, each edge ¢ = (a, b) of DFR(5) is splitinto h-segments {1; = [a;, ajo ], i =0, ., k—1},ap=a.
ap = b, Uf;:]l I; = e. The pomls ap,ay, a2, .. ., ay. are referred o as break-points. In Phase 2, the interior of each face
of DFR{x) is split into homogeneous paritions (similar to Voronoi partition). Below, we describe Phase 1 and Phase 2
in detail. The HDFR data structure is similar 1o the data structure for storing DFRix) as defined in Section 3; but its
each edge e in the DCEL data structure is attached with an associated structure AVL{e) which is defined in Phase 1,
and its each face f = Aabe in the DCEL data structure is attached with the homogeneous partition VOR( f) inside
Aabe, which is basically the Voronoi diagram of a set of weighted points, and is explained in Phase 2.

Phase 1. Let p be a point on the surface of T which is straight-line reachable from a vertex r € DFRix ). The shoriest
monotone descent path from s to p passing through the vertex r, denoted by . ( p), is the concatenation of myg(s, 1)
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Fig. 7. Processing a point @ which is not a ventex of DFR(5).

and the line segment [r, p|. Lis length is 8,(p) = (s, r) +dist(r, p). Here dist{r, p) is equal to the length of the siraight
ling segment [r, p*] in the unfolded plane.

Definition 8. Let [ = [a_b] be an hi-segment on an edge e such that myaiy, o) = 7,.(a) for every point o £ 1, then the
verlex r is said Lo be the fink-vertex for the fi-segment 1.

The end points of the h-segments are referred 1o as break-points. I v is the fink-vertex of a h-segment I, and £ =
{era ezt ey } be the edge sequence which are intersected by the line segment [r, o | for every point e £ 1, then the
last edge e, in £ is called the predecessor of T in the HDFR data structure. If [r, o] does not intersect any edge, then
the predecessor of 1 is v itself. Then we have the following remarks.

If @y 15 & break-point on an edge e, and 15 shared by two fi-segments [a;-y,a; | and [a;, q; 4] with link vertices r
and i mespectively, then 8, (a; ) = 48, (q;).

If [} =[ay,b]|and I; =[az, bs] are two h-segments on an edge e (adjacent to faces fand f') with {ink-vertex r
and rz respectively, and both 1) and 17 are reachable from v and ro respectively through the same face f, then 1)
and Iz have mutually disjoint interiors.

Thus, the f-segments generated on an edge e are non-overlapping, and can be ordedy maintamed inoan AVE-tree,
named as AVL{e). We also need o compute the frontier-point on cach h-segment [a, £] with respect W ils link-vertex.
Each fi-segment 15 attached with 11s (i) predecessor, () fink-vertex, and (i) three pomters, namely pro, ptrs and pri,
which will point to three elements of MIN-HEAP data structure comresponding 1o the two break-points and the frontier
point of that fi-segment. A vertex of DFR(s) in the HDFR data structure is also attached with its predecessor and fink-
vertex, which can be defined in a manner similar 1o the h-segments.

During the execution of the HDFR creation algorthm, we use o MIN_HEAP containing all the vertices, break-
points and fiontier-points explored so far. Each element o in the MIN_HEAP is attached with &(s, «) (explored so
far), and a pointer field, called self ptr. The self_ptr points o the h-segments in the HDFR, that has introduced the
point e in the MIN_HEAF. Execution starts by putting 5 in MIN_HEAP with &(x, 5) = (), and proceeds m o manner
similar 1o Dijkstra’s shortest path algorthm. But, unlike Dijksira’s algorithm, here the event-points are generated
during the execution and are inserted in the MIN_HEAF. For each element in the MIN_HEAFP, the monotone descent
path from s exists, but there is a possibility of obtaining an altemate path of smaller length. The exception holds for
the root node (say v) of the MIN_HEAP, whose attached §-value cannot be reduced further by choosing an alternate
monotone descent path.

Each time, we choose the member v in the MIN_HEAP having minimum §-value. Al the end of this subsection,
we will prove that the §-value attached 1o v is indeed 8ix, v) (length of the shortest monotone descent path 7 (s, v)).
We permanently mark v, and process its adjacent face(s) to include some more region in DFR(s). Let the link-vertex
attached o v be w, and the h-segment attached o v be [o, ], where [o, #] 15 on an edge ep = (a, £). We process the
face | = Aabe which is adjacent to ey, and is in the other side of the vertex w. Let us name the other two edges of
face [ as e = (a, ), e2 = (b, o) respectively. We need to consider two distinet cases: (i) v is not a vertex of DFR(x),
isee Fig 7) and (i) v is a vertex of DFR{x) (see Fig. 9).
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Fig. 8. Overlaps of { with other h-segments.

Case (i): v is not a vertex of DFR(s)

Let R be the planar unfolding of all the faces intersected by the path min, v). We unfold face f onto R, join (u, o)
and (i, f) and extend these lines inside face f. These lines hit the boundary of f at g and @ respectively. Let I be
the portion of the boundary of § from g to @, which is straight-line reachable from w in the planar unfolding R
I contributes one or two fi-segments in the HDFR depending on whether it s a single interval (on either ) or £3)
or contains the vertex o (see Figs. 7(a) and 7(b) espectively ). We compute 8, (p) and &,(w) and search the iterval
[ e, o] in the AVEL{e) attached to the edge ¢ in the HDFR data structure.

If I does not overlap with the existing fi-vegments then we (1) insert the f-segment [, o] in AVE(e), (1) msen o
and e in the MIN_HEAP with respect to 8, ) and &, () respectively, (i) insert the frontier-point ¢ € [, @] (with
respect o &, (¢h)) if it does not coincide with any of pand @, and (iv) set the seff_prr of g, wand ¢ o point J = [, @]
in the HDFR data structure.

If I overlaps with the h-segments {J; = [y, 0], i=1,..., kl.kz1lonanedgee, ped and w € J; (Se2
Fig. 8(a)), and the link-vertex attached o J; 15 ry, then we consider each imterval J;, i = 1.2, ...k mmorder. For each
Jioowe compute d,, (g ). 8y (b, 8,0 ) and &, (1f; ). Depending on the relationship among these four quantities, we
may have o replace J; m AVE{e) by some newly generted f-segments as described below. The same technigque wias
followed in [13]. If J; = [dy, ;] needs o be replaced then we split it two or three pieces depending on the following
siluations:

Case L. p € [¢y, vr;| but @ & [¢y, f;]: Here J; splits into two pieces, namely Jy; = [éy, o] and Jay = [p, ]
(see Fig. B(b)).

Case 2. . w e[y, 1f;]: Here J; splits into three pieces, namely Jy; = [y, gl Jo = [, @] and Sy = [, ]
(see Fig B(ch.

Case 3. p & [¢h, 0] bul e € [y, ]: Here J; splits into two pieces, namely Jy = [¢y, @] and Sy = [, ]
(sec Fig. B(d)).

In either of these situations, we identify the tie-point T € Jy; (see p. 658 of [ 13]), where by (T) = du(7) Of it exasis).
If the tie-point (T)1s found, then it splits 3 into two intervals. Finally, we delete J; and insent all the newly generated



126 5 Roy er el / Computational Geometry 37 (2007 115-132

Fig. 9. Pmocessing a vertex.

fi-segmenty (with their comesponding predecessors and hink-vertees) in the HDFR data structure, where

deletion of a hi-segment from an edge ¢ implies its removal from AVL{¢), and deletion of its two break-points and
one frontier-point (if it exists) from MIN-HEAP. These three elements in the MIN-HEAP are accessed using prr,
prrs and prry attached to that fi-segment, and

insertion of & h-segment on an edge ¢ implies is insertion in AVL{e), setting the fink-vertex, predecessor, and
self_ptr of its two break-points and the frontier-point (if it is different from one of its break-points), and finally
inserting these two/three elements in the MIN-HEAP. Finally, the ptr), ptra and ptry of the fi-segment are sel o
pomt these three elements i the MIN-HEAF.

After processing all the ;8" fori=1.2,.. ., k.owe replace all the fr-segments in AVL(e) having the same hink-vertex
uw by asingle fi-segmernt which 1s obtained by merging them.

If the above steps are executed for at least one J;, then we insert g {or the corresponding tie-point) and w (or the
corresponding tie-point ) as break-points in the MIN_HEAP along with their respective d-values and self”_per. Foreach
newly inserted h-segment the corresponding frontier-point is also 1o be inserted in MIN_HEAP.

Case (Ii): v isa vertex of DFR{x)

Let the h-vegment attached w v be [v, o] We unfold the face f onwo R, and extend the straight lines L) = iu, v)
and Lz = (u,a) beyond v and o respectively. If both L) and Lo go outside f then both the edges ¢ and &7 of f
are straight line reachable from w, and they will be considered as fi-segments (see Fig. 9(a)). If one or both of L,
and L7 hits) the boundary of f, then one or two fi-segments will be generated (see Figs. 9(b), (c)). For each of them,
fink-vertex 15 1 and predecessor s (v, e |

In addition, we need o consider each edge ¢ in IDFR(v) (defined in Section 3) which are not adjacent to v. If ¢ (or
a portion of ¢) lies 1o the other side of o with respect 1o the line L, then it is considered as h-segment with fink-vertex
and predecessor both equal o v. Note that similar technigue was adopted in [13], but the monotone descent property
from v was not required there.

Each of these newly generated h-segments may overlap on some existing fi-segments, and these are tackled using
the same technique as mentioned in Case (i). Finally, all the newly generated fi-segment are inserted in respective
AVL-trees of the HDFR data structure, and all the break-points and a fiontier-point are inserted in MIN_HEAP. If v
is observed to be a break-point of a f-vegment, then it is also to be inserted in MIN_HEAP for processing the other
faces incident to v,

Role of the frontier-points

Consider the planar unfolding along an edge sequence of the werrain 7. The break-points a, b, ¢ and d are stored
in the MIN_HEAP and their distances are shown inside square brackets in Fig, 100 IF we do not consider the fiontier
point then after processing o from MIN_HEAFP, the point g will be pushed to MIN_HEAP, with d{s, g) = 8,.(g) = 39
(say). As S5, g) = min(d(s,a), 8(s, b)), after processing ¢ from MIN_HEAP, g will be chosen for [:nu:us;ing. This
implies, the distance of g will not be reduced further by Lemma 8. But Fig. 10 shows that g is also siraight-line reach-
able from ry and &, (g) = 38, Note that if we consider frontier-points yy and y2, then 8., (g) = min{d(s, 1), d(s. 3100
Thus, either 3 or 2 will be chosen prior 1o the processing of g, and 8(s, g ) will be set correctly prior o its processing
as described in the proof of following kemma.
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Lemma 8. Every time the path-length attached to the top-most element of the MIN_HEAP is optimum.

Proof. [By contradiction] Let the distance attached 1o g in the MIN_HEAP represents the length of the path ) from s
to g through the fink-vertex r, and through the edge sequence £ (see Fig. 11). Suppose 7| is not optimum; there exists
another path w2 from s to g through the link-vertex 2 and passing through the edge sequence £, such that 8, (g) =
dp, (g ). Let eg £ &2, and is closest o g. Since dpy(ra) < (g ) = 4y, {g), and g 15 currently being processed. Moreover,
since o passes through eg, there exists a frontier point, say o, on e; with respect o v, and by o) < 8y (g) = &y (g).
While processing o, we will discover g, and compute d,; (g ). Thuos, the hypothesis that distance attached o g = 4., (g)
15 not correcl. [0

Lemma 9. In Phase 1, the h-segments on all the edges of T are computed correctly.

Proof. A h-segment I, generated in Phase 1, is determined by its two break-points which are permanently marked.
By Lemma 8, for each of these break-points v, §(s, v) is correctly computed. The lemma holds for each interior point
of I, because of the fact that h-segments are non-overdapping and for each point @ € 1, (s, o) passes through the
fink-vertex attached o I, which 1s also permanently marked. 0O

Phase 2. In this phase, we compule the homogeneous partition inside each face separately as was done in [13]. Let
us consider the fi-segments on all the edges of a face f = Aabe, and their comresponding fink-vertices. Each link-
vertex v is attached with an additive weight 8{s, v). We unfold the faces of the werain such that the link-vertices of
all the fi-segments belong o the same plane containing f. Next, we compute the Voronoi diagram of these (additive)
weighted points [7]. The portion of this diagram inside the face Aabe is the homogeneous patition VOR( ) of
face j. The computation of homogeneous partitions inside a face needs (K log K) time, where K 15 the number of
h-segments on the boundary of Aabe. Each such padition points to its corresponding f-segment in the HDFR data
structure.
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4.2 Query answering

For & given query point ¢, we first locate the face f' = Aabe of DFR{s) containing ¢. Next, we need 1o search in
the data structure VOR( £) 1o decide the appropnate cell inside f in which the query point lies. This actually gives
the h-segment I through which the shortest path from s 1o ¢ has entered that face, and the kength of the coresponding

path (see Theorem 3). We use predecessor links to obtain the edge sequence £ = (e, e3, ..., e b o reach the fink-
vertex r (a verlex of DFR{x)) attached to [. Thus, the shortest monotone descent path ir, 1) passes through faces
fav Ttk v fm=f.whererisavertexof f7, andt € f, and the edge 7 is shared by f* | and f*. Finally, we

obtain the entire path (s, 1) using the following steps.

o Compute wir, t) through the edge sequence £* as mentioned above.

e From r, reach its link-vertex r) through an edge sequence obtained using predecessor pointers. Compute the
planar unfolding of the faces, adjacent 1o that edge sequence. The inverse image of the line segment [r, r] in the
unfolded plane is the shortest descent flow path from ry tor.

e Treal rpoas r, and repeat step (1) until the vertex 5 18 reached.

4.3, Complexity analvsis

The total number of vertices and edges in DFR(s) are both (r). Let us consider the hi-segments on an edge ¢
coming through one of is adjacent faces. Each such h-segment is designated by two lines originating from its link
verlex and is supported by some other vertex of T, Note thal one verlex cannol support more than one such lines.
Thus, the number of hi-segments on an edge of T is O{n) in the worst case. The final set of h-segments on an edge
is obtained by merging the two sets of fi-segments coming through its two adjacent faces, which is also O{n). Each
h-segment is attached with a frontier-point. Thus, the wotal number of event-points pushed in the MIN_HEAP may
b (}{n:}l in the worst case. Processing of all these event-points needs (){:11 logn ) time. Finally, in Phase 2, the tme
complexity of computing the homogeneous partitioning of all the faces is @(n” logn) in total, and it produces 2 (n”)
homogeneous partitions. The worst case size of the HDFR is O{n”).

The query time needs Oilogn + &), where O(logn) time is required for the point location queries with the query
point ¢ as mentioned in Subsection 4.2, and & is the number of line segments on the shortest path from 5 o 1. Thus we
have the following theorem:

Theorem 2. (iven a convex DFR(s) of a polvhedral terrain T with n vertices, and a source point 5, our algorithm
(1) creates the HDFR data structure in (}{nllug n time and G‘{J‘!I}I space. (1) For a given guery point t € DFR(5),
it outputs a monetone descent path from s to t in 0k 4+ logn) time, where & is the number of line segments on the
aptimal path.

d.4. A simple variation: the distance guery

A simpler version of the above problem is the distance guery, where the objective is 1o compute the length of the
monotone descent path from & o a given query point . We show that a minor tailoring of the HDFR data stucture
helps us w report the length in Q{logn) tme.

Recall the Phase 2 of the preprocessing. Here, we have assumed that the length of the shonest path of each link-
vertex is already known. Al each face, we have considered the link-vertices attached 1o the fi-segments on its boundary
as weighted points, where the weight attached o a link vertex is the length of the shortest monotone descent path
from s to that point. Next, we computed the Voronoi diagram of those weighted points inside that face. Al each
partiion, we attach two scalar information: (i) the coordinate of the image of its corresponding [ink-vertex in the
unfolded plane, and (i) the distance of that link-vertex from 5.

During the distance query for a query point ¢, we identify the partition in which it belongs by point location. Let
r be the fmk-verter attached to that parition. The length of the shortest monotone path from s to ¢ is obtained by
S5, 1)+ distir, 1), where dist{r, t) is basically the Euclidean distance of this point from the image of the link-vertex r
in the unfolded plane. Thus, we have the following result:
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Theorem 3. Given a polvhedral tervain T with n vertices, and a source point s, the revised HDFR data structie can
be created in O(n* logn) time and O(n”) space, such that given any arbitrary query point t, the distance query can
be answered in Q(logn) time.

5. Shortest monotone descent path through parallel edge sequence

In this section, we shall consider a slightly different problem on a general termin where each pair of adjacent faces
are nol restricted to only in convex position. Here, along with the source (v ) and destination (1) points, a sequence of
faces F={jfo. fi..--. fwl 5 € fo.t € fi, is given. The objective is 1o find the shorest descent flow path through F.
This problem in its general form seems difficult. But we are proposing an efficient solution in a restricted setup. Let
E={er,e2, ..., e | be the sequence of edges separating the consecutive faces in F. We assume that the members in
the edge sequence £ are parallel to each other. Note that here we are deviating from the assumption that the faces in
the temain are rangular.

The problem is very much similar to the La-shortest path problem over walls, defined in [15]. Here a set of n
vertical walls parallel wo the x-axis are given. Each wall 15 positioned on the x y-plane. The ith wall, 15 positioned at
v =g, and its op boundary, denoted by e, is a line of the form z = b;x +¢;, where a;, By and ¢; are given constants,
a| < ay = - = gy The objective is 1o report the Euclidean shortest path between a given pair of query points s and r,
where yis) =a and v(t) = a,. They proved that the shortest path s always monotone with respect o the y-axis, and
it bends on the edges e 1L is also proved that the shortest path from 5 1o ¢ is the concatenation of two sub-paths, one
of them is monotone ascending and the second one is monotone descending with respect to z-coordinate. Our case is
a simpler version, where the plane between two consecutive edges is known, and we are specifically searching for a
monotone descent path which s constraimned o lie on the plane.

5.1, Properties of parvallel edge sequence

Lemma WL Let p and g be two points on two consecutive members e and ejo of £ which bounds a face f,
and z(p) = zig). Now, if a line £ on face [ intersects both e; and e, and is paralfel to the line segment [p, g, then
(1) the length of the portion of £ ving in face [ is equal to the length of the line segment [p, g, and (1) all the points
on £ have the same z-coordinate.

Proof. Pan (i) of the lemma follows from the fact that as e; and ;. are parallel, the portion of £ in face f and the
ling segment [ p, g | appear as two parallel edges of a parallelogram on face f.

Part (ii) of the lemma wivially follows if the face f is horizontal So, we prove it for the case where f is not
horteontal.

Consider a horizontal plane fi at altitude z{p). The intersection of the face f and the plane £ is the line segment
[ p.g] (by part (i) of this kemma). Consider another horizontal plane /' through a point r on line £. The intersection
of fand & must be parallel o [p, g], and hence it coincides with the line £ Thus, all the points on the line £ have the
same z-coordinate. [

Lemma 11. Let &5 and e;+1 be wo edges in £ bounding a face . For a pair of pointy p, p° € ¢; and a pair of points
g.g' €ejx, if zip) = zip") and z(g) = z{g"), then the line segments [p, g and [p', q"| does not intersect in face |,
but the line segments [ p.g'| and [ p*, g | must intersect in face f.

Proof. Without loss of generality, assume that z{p) > z{g). Draw two horizontal planes fip and b2 through p and g
respectively which intersect face f along the lines £ and £2 respectively. Note that £ is above £2 with respect to
their z-coordinates. Here any one of the three cases may arise: (1) both p’ and g are above h5, (i) both p’ and g° are
below ha, (i) p' and g appear in different sides of iz, Case (1) is impossible since z{g) = z{g"). In Case (ii), the line
segment [p, g and [ p’, ¢'] appear in different sides of the plane fi2, and hence they cannot intersect (see Fig. 120a)).
In Case (iii), z(p") = zi{g) and z{g") = zig). Here, if [ p, g] and [ p', g'] intersects, then e; and ;1) camnol be parallel
isee Fig. 12(b)). The reason is that, as ¢; and e are parallel and z(p) = z(p") = z{g) & zl(g) = zi(g"), then [ p.g]
and [p', g'| are the sides (not the diagonals) of the rapezoid Cpp'g'g (see Fig. 12(c)). 0O
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Fig. 13, Proof of Theorem 4.

Theorem 4. Let i be a non-horizontal face bounded by two parallel edges ey = [ay, b | and e2 = |az, o] (z{a;) =
z(bi), i = 1.2); the point s appears in its adjacent face fiy such thar fiy and f| arve separated by the edge e). If there
exist a pair of points p € ¢) and g € ez with z(p) = z{g) < z(s), and the points 5, p, g* (g* is the image of the point
g in the planar unfolding U{e)) are collinear, then

(1) for any point @ in the interval g, a2 the shortest monotone descent path along e is the inverse-image of the
straight line segment (5, 0¥ | in the unfolded plane provided |5, o | intersects the edge e in its interior;

(11) for any peint o in the interval (b2, g, the shortest monotone descent path along e is not an inverse-image of
the straight line segment |5, o¥| in unfolded plane Here myg(s, ) will pass through a point § € [by, p| with
z(f) = zl{a) in the original terrain.

Proof. The line segment [p, g| partitions the face f into two parts, and the points b and b2 belong to the same side
of [ p,g] (by Lemma 11). Consider a point ¢ € [g,az2] on the edge e (see Fig. 130a)). In the planar unfolding L7 (e} ),
the straight line segment [s, o®|] intersects ¢ al a point, say #. By Lemma 11, the line segment [o, 8] is below the
ling segment [ p, g|. Thus, ift 8 is in the interor of the edge ¢) then 8 € [p, ap]. Let us consider a line segment [#, y|
on face f; which is parallel to [p,g]. and y is on the edge 2. Now consider the triangle Asvg*a™® in the unfolded
plane, where the point § lies on [v, o® | As the line segment [8, p*] is parallel wo [s, g*], ¥ lies on [g*, ¢ ] So,
zloe) = z{p) = z{g). By Lemma 10, z{y) = z{f). Hence part (i) of the lemma follows.

The proof of part (i) follows from the following argument. Consider a point o € [g, b2] (see Fig. 13(b)); the line
segment [, o] intersects the edge ) at p in the unfolded plane U{e)). Draw a line segment [o, A] on face f; which
15 parallel o [ p,gl. As z{8) = z{ee) (by Lemma 107, we have z(y) < z{z). Thus, the shortest monotone descent path
from s 1o« cannot be the geodesic shortest path between them. As z(8) = z(w) = zix), the shortest monotone descent
path from s to o will be the concatenation of line segments [, 8] and [f, ¢]. O

In order to describe our algorithm, let us introduce the following terminology.
We obtain the planar unfolding of the faces F = {f, f>...., fin} onto face fiy, and vse a two-dimensional coordi-
nate system for the entire unfolded plane such that the members in the edge sequence £ = {ey, e2,. .., | are ordered
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from lefl to right, and each of them is parallel o the v-axis. The z-coordinate of a point in the unfolded plane indicates
the z-coordinate of that point in the onginal termin. In this planar unfolding, if an edge ¢; of the termin is represented
as [a;, by, with via;) = vib;) then zia; ) = z(b;) (see Lemma 100 The source s is in fj;, then flow passes through
the edge sequence £ to reach a point r € fi,. I a path wix, #) enters into a face f; along a line &, then the angle of
incidence of wis, 1) in face fi (with edge e;) is denoted by &;, and henceforth will be referred o as slope of £;.

Let £ and e3 be two parallel boundaries of a face f. The transfation event for face f, denoted by T( f) is a linear
translation of ez on ) such that the entire face [ is merged to the line £ as follows:

The points in the unfolded plane lying on the same side of & with respect o ¢) remain unchanged.
Each point p lying in the proper interior of the face f is mapped 1o a point g £ e such that z{p) =zig).

Each point p = (x{p), vip)) on the edge e2 15 mapped o a point g = (x{g), vig)) on the edge e such that
z{p) = zig). Under this transformation xig) = x{p) + a, vig) = v(p) + A, where the tple (o, §) are constant,
and they depend on the slope and width of the face f.

Each point (x, v) in the unfolded plane Iying on the other side of 5 with respect 1o ez is moved to the point
(x4+o, v+ 4).

The slope of the line containing [ p, g is referred o as merging divectionof face ), and is denoted as ¢ f). Theorem 4
indicates the following result.

Corollary 4.1. If the slope 8 of a line segment ¥ in foce [ is swch that (1) 8 < ¢ ( f) then £ is strictly monotone descent,
(1) & = @ ( f) then all the points in £ have same z-coovdinate, and () @ = ¢ f) then £ s strictly monotone ascent.

Let mpgls, 1) be the shortest monotone descent path from s € fiy to ¢ € f, passing through a sequence of parallel
edges {e,e2, ..., em—1}. Along this path there exists aset of faces { f, 7 = 1.2, ..., k} such that all the points of the
path mmals, 1) in face fj; have same z-coordinate £;,; the portions of the path in all other faces are strictly monotone
descent. Now, we have the following theorem.

Theorem 5. If the translations T{ ;). T {fi). ... T f,) are applied (in any order) on the unfolded plane of faces
VA P Jw then the shovtest monotone descent path wyals, 1) will become a straight line segment from s to tin
the transformed plane.

Proof. Let us first assume that k = 1, ie., mygls, 1) passes through a face f with all points having the same z-
coordinate. Let f; and fi be its preceding and succeeding faces with separating edges ¢, and e respectively. We
also assume that myggis, t) consists of three consecutive line segments [s, al, [a, b], b, f] lying in f,, f and fj
respectively. Note that all the points on [a, b] have same z-coordinate. If we apply T(f). the points & and ¢ will be
mapped o a and ¢, Now, in the transformed plane, the shortest path from s to ¢° is the straight line segment [s, 1]
We argue that [s,1'] will pass through a. On the contrary, assume that [s, ¢'] intersect e, at @', and a” is the image
of b € ey under T(f), b £ b Thus, dis,a’) 4+ dia’ 1) = dis, a) + dia,t’). Now, applying reverse transformation,
diz,a’ )+ d(b, 1) =dx, a)+d(b, t). From Lemma 10, dis.a”)+d{a" . b))+ i, 1) = d(s, a) + dla, B+ dib, ).
This leads 1o a contradiction.

Let there exist several faces on the path mggis, 1) such that all the points of mgg(s, r) in that face have same z-
coordinate. If we apply the transformation T on one face at a time, the above result holds. The order of choosing the
face for applying the transformation T is not important due o the following argument: (i) a point p on the unfolded
plane will be affected due to same set of transformation irrespective of in which order they are applied, and (i) the
effects of all the tansformations affecting on & point are additive. [

Lemma 12. If the shortest monotone descent path Tygals, 1) iv passing through a sequence of parallel edges, then all
the line segments of mypals, t), which are strictly monotone descent, are parallel on the unfolded plane of all faces.
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Theorem 6. If the line segments of shortest monotone descent path mypg(s, 1) in faces fio, fas, oo, [fir arve stricily
monatone then their slopes arve equal. The slope of the portions of mpal s, 1) inall other faces arve equal to the merging
angle of the corresponding faces.

The above discussions lead to the following algorithm for computing the shoriest monotone descent path between
a pair of points s (source) and ¢ (destination) through a sequence of faces separated by mutually parallel edges.

5.2 Algovithm

Step 1. We compute the planar unfolding where the faces fi, fa, ..., [ are unfolded onto face fi containing 5. We
assume that the entire terrain is in first quadrant, and all the edges of T are parallel to the y-axis.

Step 2. We compute the merging angle for all the faces f;.i = 1.2, ..., m, and store them in an array @ in ascending
order. Each element contains its face-id.

Step 3. (*Merging phase®) Let 8 be the slope of the line joining s and ¢ in the unfolded plane. We sequentially inspect
the elements of the array @ from its first element onwards until an element @[k] = & is obtained. For each element
@ [i], i = k, the translation event takes place, and we do the following:

Let @[i] correspond to a face f. We tansform the entire terrain by merging the two boundades of face f, ie.,

compute the destination point ¢ under the translation. The face f s marked. We update 8 by joining 5 with the new
position of .

Compute the optimum path in transformed plane by the ling joining s and r.

Step 4. After the execution of Step 3, the value of & indicates the slope of the path segments which are strctly
monotone descent along (s, ). We compute mpais, 1) as follows:

Start from the point 5 at face fj, and consider each face f;,i= 1,2, ..., m in order. If face f; is not marked,
T s, 1) moves in that face along a line segment of slope #; otherwise, myg(s, 1) moves along a line segment of
slope @[i].

Step 5. Finally, report the optimum path mypgis, 1).

3.3, Correcmess and complexity analvsis of the algorithm

Theorem 7. Cur algorithm correctly computes the shortest monotone descent path between two guery points 5 and t
through a sequence of faces of a polvhedral terrain bounded by parvallel edges in Q{m logm) time.

Proof. We prove the correctness of the algorithm by contradiction. The path obtained by our algorithm is 7(s, 1).

It passes through the faces at equal altitude for which the merging angles are {@[1], ..., @ k]t (< @), and follows
sirictly monotone descent (with angle =) in the faces having merging angles (@ [k + 1], @[k+2], ..., Plm]}, where
Pli]l<8fri=1,..., k.oand @i =& fori =k+1,..., .

Let the optimum path m'(s, 1) passes through the faces at equal altitude for which the merging angles are
{[1],..., @[k} (S &), and follows sirictly monotone descent (with angle = 8%) in the faces having merging angles
[k + 1], @K +2], ..., Plm]}, where @[] <8 fori=1,..., E.and @i]=&lori=k"+1,..., .

If k=4&", thend = 48" (by Theorems 5 and 6), and the path obtained by our algorithm is optimum.

Let us assume that & <= &', or in other words, 8 = 8" (since & is created in ascending order of merging angles).
Thus, our algorithm chooses few more faces than the optimum solution where the path goes through the same height.
Mow, the three cases stated below are exhaustive.

As B = 8, 7', 1) will diverge upwards from (s, 1) in all the faces where both the paths follow strictly monotone
descent property.
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In some faces 7'(s, 1) goes through equal height but s, 1) follows monotone descent property. There also (s, 1)
will diverge upwards from mis, 1).

In those faces where 7'(s, 1) and (s, 1) goes through equal height, they remain parallel.

Since wix, 1) has reached ¢, (5, 1) will reach somewhere above ¢ in face f,. The similar argument proves that & # &'

Given a sequence of m faces of a polyhedral terrain bounded by parallel lines, and two query points s and ¢, Steps 1
and 2 of the algorithm computes the merging angles and sorts them in O{m log m) time. Step 3 needs (1) time. Each
iteration of Step 4 needs 1) time, and we may need € {n) such iterations for reporting the shorest monotone descent
path from s and ¢. Thus the time complexity result follows. [0

6. Conclusion

We have proposed polynomial time algorithms for finding the shortest monotone descent path from a point 5 1o a
point ¢ in a polyhedral emrains in two special cases where (1) 1 15 a point in convex DFR(x), and (i1) the path from 5 1o
t passes through a set of faces bounded by parallel edges. The same problem for the general terrain is still unsolved.
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