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Ahstract

An interval digraph is the intersection digraph of a family of ordered pairs of intervals on the real line; the family is an interval
representation of the digraph. 1t is well known that an interval digraph has many representations that differ in the order of the
endpoints of the intervals on the line. This paper generalizes the corresponding results on interval graphs by Skrien | Chronological
orderings of interval graphs, Discrete Appl. Math. 8{ 1984} 69-83] and describes how, given aninterval digraph, the order of intervals
of one representation ditfers from another.

Keywords : Interval digraph/bigraph: Femrers digraph/higmph: Ferrers dimension: Chronological ordering: Partitionable zero matrix

1. Introduction

An undirected graph G(V, E) is an interval graph if every vertex v € V is assigned an interval [, on the real ling
suchthatwv € Eiff [, N1, 5 ¢b A directed graph D(V, E) is an interval digraph if there is a family # ={(5,, T,) :
v e V}of ordered pairs of intervals on the real line such that wy € E i §, N 7T, £ ¢b. The family # is an interval
wepresentation of D, 5, and T, are the source interval and the sink (terminal) interval, respectively comresponding Lo the
verlex v.

Aninterval representation of an interval graph is not unigque. An interval graph may have many interval representations
depending on lengths of the intervals and on the relative positions of the intervals. To study the possible relative positions
of the intervals in an interval representation of an interval graph is the problem of chronological ordering of an interval
graph.

An interval bigraph is a bigraph (U7, V; E) (with bipartition I7 and V) for which there are two families {5, |x € [T}
and {T|y € V} of intervals such that x and y are adjacent whenever 5, N Ty # ¢ A digraph D is an interval digraph
iff the corresponding bipartite graph B{D) is an interval bigraph [4]. In the present paper, we will use both the terms
interval digraph and interval bigraph interchangeably 1o suit our perspective and convenience.

The problem of chronological orderings of an interval graph arise naturally in archaeological seration problems
[2.4] where the archacologists wish to determine the interval of time in which the varous styles of artifacts obtained
in different places were in use. Assuming each style was in use in only one interval of tme, the archaeologists could
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determine which intervals of use overlapped. But in attempting 1o construct an interval graph for the anifacts, the data
suggesting the inclusion (or omission) of certain edge might be insufficiently compelling. (A similar problem was
encountered by the geneticist Benzer [ 1] in testing intersections of regions of chromosome.) Problem of chronological
orderings is an attempt o construct the possible interval graphs that agree with the practical information. It is known
that an interval digraph is a generalization of an interval graph [7]. Motivated by the sudy of this problem on interval
graphs, we stody in this paper the comesponding problems on interval digraphs.

Here, we will study the problem of chronological orderings from two view points. We describe and formulate them
below.

2. Preliminaries

Let B(LT, V' E)bean mterval bigraph (|U|=[V]|=n)and let {5, |x € Uland {T, |y £ V| beanmmterval representation
of the bigraph 8. Let K denote the reference set of 4n end points of the intervals 5. = lay. by] and Ty=ley. dy . Without
loss of generality, we will suppose throughout the paper that all the 4n end points are all distinet. It is clear that the
given interval representation of B induces a linear order on K.

Now consider K as a set of 4n vertices and a complete oriented graph DK, T) on the set K, where an edge pg
ip.,g & K) has an orientation from p o g if p <g. Since real numbers are transitive, every interval representation
of B induces a transitive tournament on K. Again a transitive tournament on K determines a linear ordering on K
unquely; so our problem 1s: Given an interval bigraph B, w0 study those tansitive tournaments on the vertex sel &
whose linear orderings will describe the interval bigraph B. These linear orderings will be called the chronological
orderings of B.

MNote that the representation of an interval bigraph is independent of the relation between two source intervals or
between two sink intervals. So in our problem we draw our attention to the complete oriented bigraph (we will call
bitournament) whose partite sets are A U B and C U D, where A and B denote the left and the right ends of the source
intervals, respectively, and C and D are those of the sink intervals, respectively. We now pose the problem as follows:
Given an interval bigraph B and a subgraph § of the complete oriented bigraph on the point setis A U B and C U D, can
the partial information provided by Sbe extended to a transitive orentation of the complete graphon K=AUBUCUD
which is a chronological ordering of the bigraph B?

We next look at the problem of chronological orderings from another perspective. For an interval bigraph (U, V; E)
with an interval representation by the family {85, |u € U} and {T,|v € V|, itcan be seenthat a pair of intervals (5, T,)
is related in one of the following ways:

. &, properly contains Ty or &, 15 contained propedy in T,,.
. &, overlaps T, on the left or overlaps T, on the right.
. 8§, follows T, or T, follows §,.

Lad Pk =

Let §; =ay, b, | and T, = [c,, o, ]. We use the following notations to classify these relations:

(la) v e Cyf T, < &5, thatws, i a, <=, =dy<bh,.
(1b) wv e Caal §, C T, thatis, if ¢, <@, <b,<d,.
(2a) nve fa, =c,=<by, <d,.
(Z2b) vv e ifey =a, <d, < by,
(3a) nv e Fiifa, =by, =cp =dy.
(3b) vv e Baifey =dy, <a, =< by

It is clear that in the bigraph B(U, V E),uv e Eifffuv e Cior O (i =1, 2) and v £ Eiff uv e Fi(i=1,2).

Let now T(L, V: A) denote a bitournament with partite sets U5 and V, the onentation being as follows: (ijuy € A
ure UL F () e € Al pr € Cz U Q20U F. Clearly an interval representation of a bigraph B(L', V'; E)
determines a bitoumament T on the partite sets U and V completely depending upon the relative positions of the end
points of the intervals.

If || =|V|=n and if K denotes the reference set of all 4n distinet end points then a linear order of K which
induces the bitournament T(L7, V; A) and the imerval bigraph B(LU, V' E) s called a chronological ordering of B.
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B, R's ;
: Cs

F, E,

Fig. 1. Ferrers digraph decompasition of 1,

With these notations we pose the following: Given an interval bigraph B and a complete bitoumament T{L/, V; A)
with its classification of edges, is there any interval representation of B which has a chronological order comesponding
o I

In this paper, we will deal with the second problem in Theorem 2 while the earlier problem will be considered in
Theorem 3.

The results obtained in this paper relies on the interval digraph characterzation in erms of Ferrers digraph decom-
posibon [5]. We recall the theorem below.

Theorem 1 (Sen et al. [3]). The following conditions are eguivalent:

(A) Dis an interval digraph.

(B) The rows and cofumns of A(D) can be (independently) permuted so that each O can be replaced by one af {R, C}
in such a way that every R has only R's o ity right and every C has only Cs below it

(C) Dis the intersection of two Ferrers digraphs whose union is complete.

Let Fy and F7 be the Ferrers digraphs whose edges are R's and C's respectively in the complement of D and let their
adjacency matrices be so arranged that B's are clustered in the upper right and C's in the lower left asin Fig. 1 below.

Let Ag, A, ..., A p_y bethe source partitionsand Dy, D2, ..., Dy, the terminal partitions for Fr;also By, B2, ..., B,
and Cy, Cy, ..., Cy—1 for Fi. With these partitions the interval representation is constructed by assigning integer num-
bers a;, by, ;. di W the classes A, By, C;, Dy, respectively. Then the required intervals are §, = [a,, by |, T =[cw, dy]
where (ay, by, oo, do) = (a;, by, op, dr) if v belongs to A;, Bj. Cp, Dy subject to the following requirements:

(i) aisb; fA;NB; # dandey <drif Cp N Dy # ¢
() a, b, c,dare sinctly increasing sequences.
(i) aj=d; +landeci=b + 1 fori =1,

Tothis end, an auxiliary directed graph M s constructed on the vertices A;, B, Cyp and Dy, Begin with directed paths
Ag, Ay, ooy Ap_1: 8,82, ..., By, Co, Cyyenny Cy—y and Dy, D2, .., Dy Add edges A; B when A; N B # ¢,
CeDywhen Cp M Dy & ¢, BiCifor 1<i< g — 1and Dy A;for 1§ < p— 1.1n [5] it was proved that M is acyelic and
as such determines a linear ordering on its vertices. An integer numbering on the vertices according to the linear order
produces the required interval representation.

MNote that in the auxiliary digraph M there are no edges comecting A;'s with C;'s and 8;"s with D;’s. This 1s so,
because in an interval digraph D{V, E), uv € E iff a, =d, and ¢, < b, and wv € E iff either b, < c, ord, < a,.

Observe that for an interval representation of an interval digraph, the orders between b, and ¢, and those between
a, and &, are fixed and we do not have any choice in these respects. But for the same, we are at liberty when we are
o choose those between gy, and ¢, and between by, and d, . In our first problem we are initially given a subdigraph §
which may contain edges connecting these vertices. So the question here reduces o finding if there is a chronological
ordering of D which agrees with these partial information, hitherto not taken care of.

Forthe second problem we start with a bitournament T{L7, V', A), classify the edgesinto six classes C;, O, Fi(i=1, 2)
and the question is to find out if this complete set of information actually agrees with an interval representation of the
interval bigraph 8.
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3. Chronological orderings

We still need another charactenzation of an interval digraph which involves the concept of generalized linear one's
property [6]. A (0, 1) matrix A has the generalized linear one s property (glop) if it has a stair partition (L I7) such that
1’5 in IF are consecutive and appear left most in each row and 1's in each column in L are consecutive and appear top
most ineach column. It is proved in [6] that a digraph is an interval digraph iff its adjacency matrix has an independent
row and column permutations such that the resulting matrix has the generalized linear one’s property.

A close serutiny into the theorem will reveal that the rows and columns of the rearranged matnx that exhibit a glop
are ordered in increasing order of the left ends of the source intervals {a;} and of the sink intervals {c; ], respectively.
Assuming that all the end points of the intervals are distinet, a position wv in the matrix belongs to the upper sector I
or the lower sector L according as ay, < oy OF 0y < @y, respectivily.

If we rearrange the rows and columns of the matrix in the increasing order of the right ends {#} and {d;} of the
intervals instead of the left ends, then the resulting matrix will again have a stair partition (L I7), but this time 1'sin U7
are consecutive in each column appearing down most, while 1%s in L are consecutive in each row appearing rightmost
A stair partition with the above arrangement of 17s and ('s can be seen again to characterize an interval digraph and will
also be referred 1o as a generalized linear one’s property; Lo distinguish between them, we will refer w the former as
Sirst glo propenty (glop Dy while the later the second glo property (glop 1. Note that these two properties are equivalent
as one can be oblained from the other by reversing the orders of rows and columns (Fig. 2).

Since a; = o means wv belongs to Cy, O, or F) and ¢ < a; means wv belongs o Ca. Oz, or F3, 1018 clear that in
the matrix exhibiting glop Lif P and P are the Ferrers digraph corresponding to the top rght and botwom left corner of
the manx then P= [ U UC and P = F2 U UCa.

Similady, if @ and @ are the Ferrers digraph comresponding to the top dght and bottom left corner of the matrix
exhibiting glop Ll then @ = F U UC:, P =FR U0 UC).

Next consider the product relations QF-__TI P oand("™ 'E P I can be shown that QFZ_I P F and
Y O S o %)

We now sum up the above properties below. Let B(D=(L7, V; E)ybeaninterval bigraphand let T=(L, V; CUQUF)
be the comresponding bitoumament, where its edge set is classified into six subsets Cy, O and F; (i = 1, 2); then

(1) CUO=Eand F=E,

(2) & rearranged matrix of B{D) has a glop | with the sectors 7 and L consisting exclusively of members of P
=R UG UC and P' = F U Oy U Cy, respectively,

(3) arcaranged matdx of B( D) has a glop 11 with the sectors U and L consisting exclusively of members of 0 = F) U
hUCrand ¢ = B U 02 UC), respectively,

@) QF;'Pc RRand Q'R P! C Fa.

We say in such acase that the bitoumament T satisfies a natural chronological ordering of B.

We note that there 18 an overlapping area between condition (4) and earhier condition (2) and (3); for example, the
fact that F s a Ferrers digraph is a consequence of F F-,_I Fy < Fy.which follows from (4). Also note that the symbaol
R and C of Theorem 1 have been replaced here by F|_ and F> mespectively for our convenience. Now we have the
following theorem.

Theorem 2. Let BiD) =(U, V; E) be a bigraph and let T = (U, V; C U O U F) be a bitounmament, while the edge
set of Tis classified into three sets C, Q and F. Let further C =C )\ U G, O =0 U O, F=FRU B, CNC=d,

N N

+
] 0
¥ = (]

glop 1 glop 11

Fig. 2. Genenlized linear one’s properties [and 1L
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H, H,

Fig. 3. Matrices f; and Hs.

N Or=¢, Fy N Fa=d. Then B is an interval bigraph iff the bitowmament T describes a natwral chronological
avdering of B.

Prool. Necessary. This part has been discussed earlier.

Sufficient. Let Hy and My be the reamanged adjacency matrices of the bigraph B(D) exhibiting glop | and glop 11,
respectively (Fig. 3).

LetAj, A5, ..., A} bethe sourceand Cy. O, ..., ', _, be the terminal partitions for the matrix My, where Cj andfor
A} may be empty. Let again B, B, ..., By and Dy, Dy, ..., D, denote the source and the terminal partitions for
the matrix H>, where D} and/or B, may be empty.

Next let H| and H; denote the adjacency matrices of the Ferrers digraphs Fy and F2. Their rows and columns are so
arranged that the 1°s in H| are all placed in upper right corner and those in H; are all placed in lower left corner in the
shape of the Ferrers diagrams as in Fig. 4.

The matrces H) and H> exhibiting glop Land glop 11 induce two interval representations of the bigraph B{ D). Also
the matrices H| and H; wgether determine still another representation of B( D). Note that the diagrams in Figs. 1 and
4 are same excepl for notations only. Our purpose bere is to show that under the additional condition (4), there is an
mierval representation agreeing with all the three representations which has the chronological ordering comesponding
w T

Let us have a close look at the matrices My and H;. In both the matrices F2's are such that any position below an F>
is an F7. 1t follows that the rows within the same pu._r[ilinn of the two matrices can be suitably rearranged so that they
will have the same order without any loss of their intrinsic charctenistics. By similar logic the columns of Hy and H|
are of the same order and so are the rows of H; and H| and columns of H, and H,.

Let the source and the terminal partitions of H| be B” By, ..., B and L” ..... €. respectively, where Cy
and / or By may be empty. Also let Ay, A}, ..., Ap_pand DY Dy D;_f be the source and the sink paritions
respectively of H;. (These are the same partitions as in Theorem 1 with change in notations only.)

Now define additional partitions 4 = {Ag, Ay, ..., Ay b which is the least common refinement (Le.r) of the partitions
{A;} and {A;}, that 15, each A; 15 the inlesection of some Ai and some ,-’1;', indexing being carnied out by the shared
order of the row. Similady for the other refinements 8 ={8;}, C={C;} and D={D;} Wecall =AU BUCUD nodes
and construct an auxiliary digraph Z on the nodes of ©2. Asin [5], we will suitably assign integer values f -2 — 170
the nodes, a;. b, cp, di o A;, B, C;. Dy, respectively. By assigning values a{u) =a;, blu) = bj, clv) = cp, div) =y,
wherew € A; N By andv € Cp N Dy, we will see that the intervals §, = [a(u), blu)] and T, = [ci{v), (v} ] actually
represents the bigraph B(0) and also conforms o the chronological ordering of the given bipartite toumament B, We
will construct the auxiliary digraph Z in such a way that we will put an edge X — ¥ in Z where we want the value
of f{X) w be less than f(¥).

Our construction of the digraph Z relies heavily on the acyclic digraph M constructed in [5] to obtain an in-
terval representation of a digraph D under the conditions that D = F| U Fa, F) and F2 being two disjoint Fer-
rers digraphs. We therefore focus our attention below on the construction of the acyelic digraph M (as in
Theorem 1),

Begin with directed paths Ag, A], ..., A7 By, By, ..., B L v G DY sy Dy Addedges A7 BY
when A7 N E" = ¢, CD 1.=.th G0 D" =, B'Cforl <i=g—1and Df’r’i" for | =i< p — 1. Based on thlh
digraph M 1.=.L now construct an df-‘.uﬂ_mu:ﬂ digraph Nun the node set 2 from LhL dlgruph M in the following manner:
the nodes of € are all subsets of the sets of vertices coresponding to the nodes of M. Now begin with the directed
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EREY v
B,
i Fy's
H,
Fig. 4. Mutrices 4| and Hj.
paths Ay, 42, ..., Ap: By, Ba, ..., By C,Ca, ..., Crand Dy, Dn, ..., D Then join two nodes in 2 by an edge in

Niff the corresponding sets to which they belong have an edge in M.

Next we add to N two other directed graphs Ny and N7 on the node sets A U C and B U D constructed as follows
from the matrices M) and Ha, respectively.

For the digraph Ny we put the edges A;C; if the comesponding position in Hy belongs to the Ferrers digraph
P=F UOUC thatis, if A; x C; C P and otherwise (that is if A; x C; C P') then put the edges C; A; in Ny

Lastly for the digraph on the node set B U D, put the edges B, D; or D;B; in N2 according as B; = D; C
Q=FUUCo 8 xD;C ' = F2 U (0 U Cy, respectively.

We have now the desired auxiliary digraph 2= N U Ny U N2 Note that the initial digraph M has no edges between
A; and C; and between By and Dj. All the digraphs N, Ny and Nz are mutually disjoint. Our aim is now 1o prove that
the digraph Z = & U N} U Nz is acyclic.

Once we can prove it, our problem is solved; because the acyclic digraph Z has been so constructed that it contains
all the edges of the bitoumament T, also the digraph Z agrees with all the three modes of representation of the interval
bigraph B{D) described a little earlier; so a linear order on the vertices of Z (obtained from the acyclicity of Z) can
be suitably and consistently extended to determine an interval representation of Bi D)), the chronological ordering of
which cormesponds 1o the bitournament T

We will first prove that each of the digraphs N, Ny, N7 are separately acyclic. We observed in Theorem 1 that M is
acyclic and since the digraph & is obtained by replacing the edges of M by transitive ournament, N must be acyclic.
Let if possible, the digraph Ny has a cycle of the form A; C ;A Cr.

From the construction of Ny, it follows that 4; x C; € P, Ay x Cj € P, Ay x C; € P and since Pis a Ferrers
digraph, it follows that A; » C; must belong w P. Hence CpA; cannot be an edge in Ny, Using the same argument that
P is a Ferrers digraph, it can be shown that N} cannot have any cycle of any form. Similady we can show that N is
also acyehc.

In our next step, we show that N U Ny and N U N2 are acyclic. Let if possible, {A;, B, Citbeacyclein NUN,.
Then A; — B means that there1s a vertex w € A; N B and B; — Cp means that there s a vertex v such thatuv € F).
But again Cp — A; implies that wy € P' = F3 U (J2 U Ca, which is not possible since Fi N B =d. So N UN| is
acyclic. Similady & U N> is acyclic.

Lastly we show that Z = N U N U Nz is acycelic. The possible cyele in Z which contains edges from Ny to No are
18; DyA;Cy} and {D;E_,-CRA,-}. For acycle {A;Cy B Dy} in Z, there must be verticesu € By, ve Dy, we A, x e Cy
such that wv € @, wv € Fr, wx € P which imply vx € F| which is not possible because by condition (4) we have
ux e /. O

In interpreting Theorem 2 for an interval graph, we first observe that here the source intervals and sink intervals
coincide so that a; = ¢ and by = 4. The bitoumament B(L, V: C, @, F) of Theorem 2 becomes a toumament
D{Vv: C, 0, F) foran interval graph where C ={{up. uj):a; =aj<bj< by}, O= {{u,,, i) iap =aj<by <bj}and
F={{up, ;) ia; <bi =a; <bj}.

For a chronological ordering of a bigraph B(D) = (U, V; E) comesponding Lo the bitournament B{l/, V. C, O, F)
the following results are matters of easy observations:

Corollary 1. For (i, j)=(1,2) ori{2, 1)

i) GiC;C CCy,
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(i) 0;0;0; C O; + F,
(iii) (O; + F)(O; + F)(O; + Fi) — 0;0;0; C F.

The generalized one’s properly in & matix corresponds o the quasidiagonal property [3] which is explained as
follows: A symmetric (0, 1) matix has a quasidiagonal property if the rows and the columns of the matrix have a
{simultaneous) permutation such that the one’s in each row appear consecutively rightward starting from the main
diagonal. The corresponding characlerzation of an interval graph is that an undirected graph is an interval graph iff
its adjacency matrix has quasidiagonal property. If we say this property to the first guasidiagonal property, then the
second guasi-diagonal property can be similarly defined (when the one’s in a column appear consecutively upward
starting from the main diagonal ).

Lastly we see that condition (4) of Theorem 2 becomes redundant for an interval graph as it is a follow up of
quasidiagonal property of its adjacency matrix. The result for an interval graph corresponding to the last theorem is the
following.

Corollary 2. Let G{V, E) be an wndirected graph and let D{V; C, O, F) be a towmament. Then G i an interval
graph iff

(1) CUO=E.

(2) the rows and columns of A(G), the adiacency matrix can be (simufltaneomuwsly) rearvanged that it has the first
guasidiagonal propertywith P=C U Q U F in the upper triangle.

(3) the wws and columns of A(G) can be (simultancously) rearranged that it has the second quasidiagonal property
with ) = C~' U @ U F in the upper triangle.

In another version of the chronological ordering of an interval graph, Skren started from the linear orders of the left
end points and right end points of the intervals separately and obtained conditions under which these linear orderings
zive a chronological orderng of G [8]. In terms of quasidiagonal property the following corollary is a consequence of
Corollary 2.

Corollary 3. Let G{V, E) be an undirected simple graph and T, and Ty be two linear onlerings of the two sets
Ap = {ay,az,. .., dayl and Bg = {002, ..., byt Then G ix an interval graph which has a chronological ordering
corresponding to Ty and Ty, if and only if the following conditions hold:

(1) if the vertices of adjacency matrix of G are warranged accovding to the owder T, of Ap. then it exhibits the first
guasidiagonal property.

(2) if the vertices of adjacency matrix of G are warranged accovding to the order Ty of B, then it exhibits the second
guasidiagonal property.

(3) Vs in the upper triangle (lower triangle) in the two guasidiagonal matrices have the same orientation.

Let 8= (U, V; E) be an interval bigraph and let a rearmranged biadjacency matrix exhibited an R, C-partition of ()'s.
ket § be a partial acyclic orientation on the complete bigraph whose partite sets are AU B and C U D Let § have an
exlension 1o a transitive orientation of D = (K, T) which is a chronological ordering of B then following properties
can be easily verified:

v U
1) wujfl ¥ RY =ajep g5, dpbi €5,
:!_,-(1 i
vy Uy
() nif 1 1Y = €8, Bdp g5
uj( i R)

Yz ”j I::pb,- ES = bidp £S5, cqa; £S5,
i1

iii) for the submatrx ;1 R
(i) for the submatrx :!:J( cqaj € S=>ajc, €5, dpb; ¢ 5.
¥l
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o ajcg € 8= oza; 8, hd, €8
¥ o Ay . %9 L i LEd ] fLLY ] wky
(iv) for the submatrix ﬂa( I lj Ibfdﬂ ES=ajc, g5, d b g5,

uf\C 1

These properties will be called natral chronofogical properties of Adj{ B) corresponding to §.

Theorem 3. Let B = (I, V; E) be an interval bigraph and let § be a partial acvelic orientation on the complete
bigraph whose partite sets are AUB and CU D If|U| =|V|=nand K = AU B U C U D is the reference set of
4n vertices, then 8 can be extended to a transitive orientation of D = (K, T) which is a chronological ordering of B if
and onfy if the following condition holds:

(@) ffuv e Eand 5, =la. bl Ty=lc.d|thenbc, dag 5.

(b) There exist wo Ferrers relations R and C such that E= R UC, RN C = ¢ with following prope rties:
(i) Ifuju; € E and one of ajcj, aidj, bjcj, bid; € § thenuwjv; € R,
(u) ffujv; & E and one of cja;, cjb;, dia;, dib; € § thenujv; € C.

ic) Adji B) satisfies natural chronological properties coresponding to 8.

We observe that in the above condittions there 15 a clear duality between the relations R and C (that 15, comesponding
to a property for B there is one for C and vice-versa).

Prool. Necessary. This pan has been discussed eardier.

Sufficient. From condition (b) it follows that 8 is an interval bigraph. To obtain an interval representation of B that
is an extension of 5, we start from the auxiliary digraph M as described in Section 2. Now extend the digraph M to a
digraph M by adding edges 1o M in the following manner:

Add B;Cj fori <= j, C; By for j =i, DyAjfori < jand A;D; for j < i 1f A;B; is an edge of M, then add A; By for
k= j. If CpDyis an edge of M, then add Cp Dy, form = 1.

The digraph M is acyclic because M is so. From M’ generate another digraph Wwhose vertex setis the reference set
K on dn vertices {a; }, {Bs), {oi}, {di | by joining two vertices by an edge if and only if the corresponding sets 1o which
they belong form an edge in M".

For example, if B;C; is an edge of M then the complete bipartite digraph whose partite sets are B; and C; and the
orientations are from a vertex of B; to one of Cj, is a subdigraph of W. Since M’ is acyclic, it is clear that Wis also
acyche.

Observe that among the vertices {A;},{ B}, {Ci ), { Dy} of the graph M all the possible edges are there except the
edges which are of the form A;Cj, C; Ap, BiD; or D B; for which wjv; € E. The present theorem in fact addresses
the question regarding these particular edges. We partition the edges of S into two subset ) and 5., where 52 consists
of those edges of the form ac or ca or bd or db for which w;v; € E and §; is the complement of 5;.

It is clear from the conditions on § given in the theorem that the edges of §) are all members of the edge set of W.
In fact the conditions on 5 are such that if, for instance, x;y; & 5 then ypa is an edge of W

Noww we come Lo the crucial stage where we prove that WU S isacyelic. Onee we can prove il then acyche digraph can
be easily extended (arbitrarly but consistently with the interval representation of the interval bigraph) to a chronological
ordering of B.

Since W is acyclic, any possible cycle in WU § must contain at least one edge of §2 = § — W (that is an edge of the
form ;e or cja; or bd or djb; for which wjv; € E)

The possible cycles im W U § are (1) (ajcpa;), (it} (cpaicg ), (m) (bydpbi), (1v) {:Ipbyd,f}, (v) (ajcpbjddy ), (vi)
{cpapdy bi). It can be seen thal any possible eycle in WU S must be one of the above six forms.

Consider case (1). Let if possible, djcy € 5. cplj € F and aja; € W. 5o that there s a cyele {ﬂ‘-('pﬂj}l in WU S Now
cptij E 5§ = ujup € Eoruju, € C (by condition b(i1)) and aicp € 8§ = ujv, € Eorujvy € K S0 the submatnx

i (”_.ﬂ) has one of the forms ({I..), (ﬁ), (f) or (t)

i
A
For the first two altematives, itisclearfrom &, C partition of the adjacency matrix and the corresponding construction
of its interval representation in [6] that (the row w; is above the row i in the matrix and accordingly) a;a; € Woand
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i)
soaja; £ W. We consider the possibility when we have w; [ B and aja; € W Since aja; € W, we must have a
j ( 1 )
Vg
submatnix of the form u; RN .
i ( I )
Up iy
Then we have the submatrix w; (R C) By condition c(ui), cpa; & §. S0 this 15 not possible.
M 1 1

Up Uy
Lastly we consider the fourth alternative. Since aja; € W, we have the submatnx w; 1 J O
( 1 |

By condition cliv), aicp € § = cpaj ¢ §. Thus we see that there cannot be any cycle of the form laicpa;)m WUS.
Similardy we can show that there cannot be any cycle of the other five forms in W U 8.

In the following lines, we actually construct the extension of § to a chronological ordering of B by constructing stair
partitions of the adjacency matrix of B which will in fact exhibil the generalized linear one’s property.

For this we start with the matrices having (&£, C) partition. To construct the stair, place an uyv; in the U-sector if
aic; € & and in the L-sector if cja; € § and in conformity with this, draw a stair arbitrarily (For this one may have to
rearrange the vertices belonging 10 a class in a partiion). Since {a;cpa;} do not form a cycle in W U 5, 1Lis clear that
il for a vertex vp both the edges a;cp and cpa; belong o §, then aja; € Woand so the row iy occurs above the row
in the matix and similady if ¢ patj and ajc,; both belong to § then the column vy, occurs W the left of the column Up In
the matnx. Hence the stair s well-constructed.

Similarly start from the rearranged matrix with B;'s and ;s as the row and column in their order and to obtain a
stair partition (L, ') in the matrix, rearrange the vertices in the partiioned classes suitably Lo place ujv; in U when
bid; € §and vy in L whendjly € 5. Now the stair pattition satisfies the conditions (1), (2) and (3) of Theorem 2.
Lastly because of the condition (¢) in the theorem we can verify that QF;'P ¢ Fyand Q' 'F P~ © Fa.

Thus all the conditions of the Theorem 2 are satisfied. An interval representation thus constructed has a chronological
ordering which is an extension of 5. [

oy
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