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This paper studies the characteristics of brightness temperature (BT) with respect to rain rate over ocean and land and
its subsequent implication on rainfall retrieval utilizing artificial neural network { ANN). The BTs data are obtained from
Tropical Rainfall Measuring Mission { TRMM) Microwave Imager (TMI). Yariations of BT with rain rate are compared for
all the nine channels over ocean and land, and over ocean 10.67 GHz is found to be most sensitive to rain rate. For 37.0
GHz channels, emission effect is not noticed over land, but it is prominent over ocean for lower value of rain rate. Over
land, lower frequency channels (Nos 1-4) are least sensitive to rain rate. From a quantitative comparison of the 85.5 GHz
channels over ocean and land, BT difference of ~10 K is observed. It is also observed that polarization difference between
the BTs for this frequency channel is more over ocean. A difference of ~10 K and ~3 K are noticed over ocean and land, re-
spectively. MNeural networks are trained over ocean and land to give rain rate as output. The nine channel BTs from TMI are
considered as input for training the networks. The collocated near-surface rainfall rate data from TRMM precipitation radar
are considered as target. Correlation values of 0.92 and (.82 are observed for validation set over ocean and land, respec-
tively, with root mean square ervor (rmse ) values of 2.26 mm/h and 3.54 mm/h. It is observed that rain rate retrieval is better
over land after discarding the lower frequency channels. The ANN retrieved rain rate is compared with TMI rain rate and

correlations of 0.71 and 0.57 are observed over ocean and land, respectively.
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1 Introduction

Brightness temperature' (BT) is the intensity of ra-
diation emitted by earth surface and is obtained from
remotely sensed radiometers. It is one of the most im-
portant parameters to study the global precipitation.
The BT data are equally important in retrieving other
important geophysical parameters such as sea surface
temperature (SST), sea surface wind speed (SSW),
water vapour content (WVC), cloud liquid water con-
tent (LWC), etc.

Remote sensing techniques can provide rainfall
measurements, but accuracy i1s less compared to
ground observations from rain gauge, disdrometer and
radar. It has the advantage of providing rain retrieval
over large area and particularly over ocean, which is
not possible with ground-based instruments. Rainfall
can be inferred from the radiation in visual, infrared
and microwave (MW ) regimes. The Tropical Rainfall

Measuring Mission (TRMM) payload has represented
a quantum leap with its five instruments, viz. TRMM
microwave imager (TMI), precipitation radar (PR},
visual and infrared sensor (VIRS), clouds and earth
radiant energy system (CERES) and lightning imag-
ing sensor (LIS) to explore the tropical raintall char-
acteristics. The passive and active sensors, TMI and
PR respectively, provide an excellent opportunity to
study the global precipitation due to their common
swath of observations. The TMI senses the upwelling
radiations at nine channels in five frequencies, ie.
10.67, 19.35, 37.0 and 85.5 GHz with both horizontal
and vertical polarization and 21.3 GHz with only ver-
tical polarization. The PR, on the other hand, works at
13.8 GHz with dual frequency agility. The details of
their scanning geometry can be found elswhere’. The
VIRS gives rainfall characteristics through the cloud
top information, as clouds are opaque at this fre-
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quency range. The TMI, on the other hand, sensing
BTs at MW frequencies are physically more directly
related to rainfall due to its penetration through cloud.

Variations of BTs with surface rainfall at different
frequencies are somewhat different over ocean and
land due to their different emissivities (~0.4 and ~0.8
respectively). Sea surface has less emissivity, while
raindrops are much more etfective emitter and thus
provides a good contrast against the sea surface as
compared to land. Emission of radiations from atmos-
pheric particles results in an increase of the signal
received by the satellite sensor, while at the same
time, the scattering due to hydrometeors reduces the
radiation stream. At the lower part of rainfall rate,
BTs increase due to the effect of absorption/emission.
As rain rate increases, a saturation regime is reached
where scattering balances emission, and at vet high
rain rate, BTs decrease due to the weak scattering by
the liqud h}'dmmetecrﬁﬂ_ But, for 10.67 GHz chan-
nels, saturation regime is not reached’ thus showing
strong linearity with BTs as compared to the other
lower frequency channels. On the other hand, over
land due to its high emissivity (~0.8), the lower fre-
quency channels are less sensitive to the raindrops.
But the higher frequency channels, sensing BTs due
to scattering, are more useful for rainfall retrieval over
land. This shows that, for rainfall retrieval, different
models have to be considered over ocean and land.
Petty’ discussed the status of satellite based rainfall
estimation over land.

The simplest microwave methods for rainfall re-
trieval are based on statistical regression using some
of the BTs at different frequencies or the combination
of them to derive arain index, which is then related to
rain rate. One example of such rain index is scattering
index” (SI). There is another index known as normal-
ized polarization difference’ (NPD)), which is based on
theoretical considerations. In general, algorithms are
differentiated according to their use over ocean and
land. A combination of visible (VIS) and infrared (IR)
data along with MW is useful for rainfall retrieval
both over land and ocean®'", An artificial neural net-
work (ANN) technique also provides an efficient way
tor rain retrieval with MW as well as by combining
IR and MW data™".

The main objective of this paper is to study the
characteristics of BTs as obtained from TMI with re-
spect to rain rate both over ocean and land and its
subsequent implications in rain rate retrieval utilizing
ANN technique. Further, the retrieval accuracy is

compared over ocean and land with the help of stan-
dard 2A12 rain rate. The nine channel BTs from TMI,
ranging from 10.67 GHz to 85.5 GHz, are the input
teatures. The collocated PR rainfall rate is considered
as the desired or target values.

2 Data description and preparation

The data products utilized in this study are 2A25
(PR rain rate/PR-corrected reflectivity), 1B11 (TMI
brightness temperature) and 2A12 (TMI surface rain
rate). For PR data, the near-surface rainfall rate,
which is defined as the rainfall rate at the lowest
height free from ground clutter has been considered.
Data set is prepared from the collocated measure-
ments of the two sensors TMI and PR. In order to find
the collocated pixels, latitude and longitude difference
of £0.04° between PR and all the nine channels of
TMI have been chosen. As the effective field of view”
(EFOV) along cross track (CT) is 9.1 km for the
lower trequency channels, two PR pixels are averaged
over that distance. Again for the 85.5 GHz channel
EFOV CT is 4.6 km. Therefore, two consecutive pix-
els of TMI (85.5 GHz) and PR are averaged. For the
down track direction, four PR pixels are averaged for
the lower frequency channels. Data sets over ocean
are considered for Pacific (21 Mar. 2000, Orbit No.
13322), Atlantic (20 July 2000, Orbit No. 15234) and
Indian Ocean (28 May 2000, Orbit No. 14385) and
over land, data sets for India (21 June 2000, Orbit No.
14775; 12 June 2000, Orbit No. 14632) and Eastern
China (14 July, 2000 Orbit No. 15126; 17 May 2000,
Orbit No. 14219) are considered.

3 Characteristics of brightness temperature (BT)
over ocean and land

Characteristics of BT with respect to PR near-
surface rainfall rate both over ocean and land are stud-
ied in this paper. Figure 1[{a)-(1)] shows the variation
of BT with respect to PR near-surface rain rate over
ocean. It can be noticed that, for the lower frequency
channel [10.67 GHz (V and H)], BT is linearly in-
creasing with rain rate showing the emission charac-
teristic at this frequency. But for higher frequency
channels {1935 GHz), BT tends to saturate beyond
rain rate of about 7 mm/h. For 21 GHz channel, which
is responsible for water vapour, BT has less variation
with rain rate. For 37.0 GHz channel, emission as
well as scattering effect can be noticed. For lower rain
rate, emission effect is responsible for increase in BT
values, but as rain rate increases scat-
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Fig. I—Variations of BTs of nine channels with PR near-swrface rain rate over ocean

tering effects dominate and it tends to reduce with
rain rate. In between emission and scattering, there is
a region called saturation regime where emission bal-
ances scattering”. On the other hand, for the 85.5 GHz
channels, BT values are reduced where scattering et-
fect dominates the radiation stream. At this frequency
cloud is opaque, so the maximum scattering etfect
occurs due to ice scattering. Figure 2 [(a)-(1)] shows
that, for lower frequency channels (10.67 GHz, 19.67
(GHz both vertical and horizontal and 21.3 GHz), BTs
have very less variation with rain rate. Only 37.0) and
855 GHz channels respond to rain rate. One point to
be noted here is that, over land the emission effect for
the 37.00 GHz channel 1s not noticed, whereas over
ocean it is prominent for low rain rates. Though the
use of lower frequency channels is limited for rainfall
retrieval over land, the ice scattering signature from
#5.5 GHz channel can be used as precipitation infor-
mation though it is not direct {as 85.5 GHz channels
mainly responds to ice present aloft). Figure 3 shows
the pixel-wise spatial variations of BTs for all the fre-
quencies with PR rain rate over land. It can clearly be
noticed that lower frequency channels are not affected
by rain, whereas BTs for 85.5 GHz horizontal channel

(BTyssy) responded quite nicely to surface rain rate.
The BTyssy depression is clearly noticed for the high
rain rate (for corresponding PR pixels 26-33) and for
low rain BTgs sy has high value. Another important
observation can be made from Fig. 3 is that, for 37.0
GHz channel, BT responds mainly to strong surface
rain rate and is less sensitive towards the lower rain
rate. That means, over land, only the scattering effect
dominates for this frequency. Over land, the use of
lower trequency channels are obscured due to the
high emissivity of the surface. As land surface has
very high emissivity ( ~(0.8), it does not give good con-
trast to the rain above the surface as compared to that
over ocean where sea surface is cool with less emis-
sivity { ~0.4). But for higher frequency channels (37.0
and 85.5 GHz) that are affected due to scattering
mechanism can be used as rainfall estimator. Kidd™
has also pointed out that whilst scattering can occur at
37.0 GHz, it has been diftficult to extract low rainfall
rates from data at this frequency, whereas 85.5 GHz is
more sensitive to the scattering from smaller particles.

A guantitative comparison between BTs over ocean
and land is also presented here. For that a linear fitting
is performed onthe BT data for 10.67 and 85.5 GHz
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channels over ocean [Fig. 4 {{a)—(d)}] and over land
|[Fig. 4{(e)-ih)} ], respectively. Polarization difference
of vertical and horizontal channels can also be noticed
clearly. Figure 4 [(a) and (b)] shows polarization dif-
terence of ~70 K between the two 10.67 GHz chan-
nels over ocean. Over land, the nearly zero slope is
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observed for the 10.67 GHz channels [Fig. 4 (e) and
4 (). For 85.5 GHz channels, polarization difference
15 high over ocean compared to that over land. Linear
fitting of BT at this frequency shows a polarization
difference of ~10 K and ~3 K over ocean and land,
respectively {Fig. 4 [(c), id) and (g}, (h)]}. But the BT
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gradient 1s approximately the same over ocean and
land. It can also be seen that for 855 GHz channels
BT value is less over ocean than over land by about
10) K. One point to be noted here 1s that, over ocean,
the 10.67 GHz horizontal channel has the maximum
BT gradient showing maximum dependency of this
channel with rain rate [Fig. 4 (b}]. Polarization ditter-
ence at a given temperature is largely a function of the
visibility of polarized emission of ocean surface
through and between rain clouds. Among other things,
polarization information may be used to eliminate the
ambiguity associated with cold BT, which may be due
to either polarized emission from unobscured ocean
surface or to nearly unpolarized scattering from tro-
Zen precipitation aloft’’. The above-mentioned linear
fitting shows the ditferences of BT values and the
corresponding changes with respect to polarization
over ocean and land.

4 Retrieval of rainfall rate

Retrieval of rainfall rate is affected by the spatial
and temporal variations of BT values. As for example,
the spatial variation is very high with resolution of
about 60 km for the 10.67 GHz channel. Therefore, it
15 necessary to include the spatial and temporal varia-
tions of BT in the retrieval methodology. These varia-
tions of BT are incorporated in the training dataset.
The BT value is measured as effective field of view
(EFOV) as defined in Kummerow et al.* which has a
cross-track resolution of ~ 4.6 km for the 85.5 GHz
channels and 9.1 km for the other channels. Thus, PR
rain rate is averaged both in cross-track and down-
track directions so as to represent the appropriate
value for the corresponding BT values. To incorporate
the spatial and temporal variations of BT, collocated
BT and PR pixels over their common swath of obser-
vations dataset are prepared from a large area of about
10000 = 10000 km™ with different orbit numbers and
during different time periods. Here in this study, an
attempt has been made to incorporate BT values for
different situations, namely convective and stratiform.
Thus, the training dataset comprises all kinds of rain
rate from low ((0.1 mm/h) to high value (45 mm/h). As
BT values tend to saturate for very high rain rate, we
opted for 45mm/h as the upper limit. In the dataset,
number of moderate rain rate is dominated with ~77
% data from low and moderate rain (1-15 mm/h) and
~15% data from high rain (>15 mm/h) and the re-
maining data are from non-raining pixels. One reason
for this is that only the collocated pixels of TMI and

PR have been considered and also PR pixels are aver-
aged to match the TMI pixels.

For the present study, ANN technique is applied to
retrieve instantaneous rainfall rate from TMI BT data
over ocean and land. The BT data are considered as
input and the collocated near-surface rain rates from
PR are considered as target. The ANN has the advan-
tage that it does not require prior knowledge of the
phenomenon under study, and they almost always
converge to an optimal solution. During training
phase, they are capable of recognizing all the neces-
sary relationship controlling the process and can han-
dle massive amounts of data. For the rain rate re-
trieval, the multilayer perceptron (MLP) architecture
15 utilized. A simple MLP neural network architecture
is shown in Fig. 5. It consists of one input layer, two
hidden layers and one output layer. Different MLPs
are trained for BTs input data over ocean as well as
over land separately. Performances of the networks
are validated with BT data that are not the part of the
training dataset.

4.1 Artificial neural network (ANN)

The ANN is the highly interconnected, interactive
data processing unit. Nodes of each layer are con-
nected by weights, which change with the output error
according to the gradient descent rule. Each of the
input is multiplied by an imitialized weight matrix,
which gives responses at each of the hidden nodes.
These responses are then multiplied by a transfer
tunction. Transfer function utilized in the present ar-
chitecture is a sigmoid function of the form:

F(s) =1/ [14exp (-5)] s (1)

In the present case, inputs as well as the output are
positive. Therefore, data are normalized so as to have
values between () and 1. For an input variable p with
maximum Py, and minimum p., the normalized
value p, is calculated as

M= ':ﬁ—ﬁurdu }-'f[ﬂmaa_ﬁmmj R (2:]

The main objective for normalizing the input and
output data is to ensure that the network has similar
sensitivity to changes In various inputs and corre-
sponding output of different ranges of values.

4.2 Training of the networks
For training purpose, Levenberg-Marquardt algo-
rithm is used in this study. The main advantage of
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using this algorithm is that it converges quickly as
compared to most of the other training algorithms™. It
can train any network as long as its weilght, net input
and transfer functions have derivative functions.

There are many variations of backpropagation al-
gorithms. The simplest implementation of backpropa-
gation is the learning and updates of the network
welghts and biases in the direction in which the per-
formance function decreases more rapidly (the nega-
tive gradient). Weight 1s updated as

i JE,
wh =wi - —&

. (3)

awy

where wy' is the new uedated weight at ™ iteration,
w,"' the weight at (-—1)" iteration, E, is the error at
the output node (&) and 1 is the learning rate.

For Levenberg - Marquardt (LM) algorithm, the
performance index to be optimized is defined as

II’

Fiwy= ¥ f (d,, — 0, e (4)
kp ke
k=1

=1

where w=[ w; w2 ... wN]T is the weight vector con-
sists of all weights of the network, oy, and o, are the
desired and output values of £ output and p" feature,
N is the number of the weights, p the number of fea-
tures and & the number of the neural network output.

The LM is designed to approach the second order
training speed without computing the Hessian matrix.
The LM algorithm uses the approximation to the Hes-
sian matrix in the following Newton-like update,
where the weight and biases vector X is updated as

X =X, [J' T+ pl] ' JE, o 1)

where J is the Jacobian matrix that contains first de-
rivatives of the network error with respect to weight
and biases, 1 the identity unit matrix, E the error at the
output and p the learning parameter. When p = 0, 1t
becomes the Gauss-Newton method. For very large
value of g, LM algorithm becomes the steepest gradi-
ent with a small step size. The LM algorithm requires
computation of Jacobian J matrix at each iteration
step and the inversion of J square matrix, the di-
mension of which is NxN, where N is the number of
the weights. Bias vector is a set of values added to the
activation of a neuron and its dimension is same as
the number of input. Backpropagation is used to cal-
culate the Jacobian JX of performance with respect to
the weight and bias variables X. Each variable is ad-
Justed according to Levenberg-Marquardt,

JI=JX=x]JX e (6)
Je=JXxE e (T
dX=-(JJ+puD/Je wis: )



266

5 Rain rate retrieval results

5.1 MLP neural networks over ocean and land

MNeural networks over ocean and land are trained
using the nine channel BTs from TMI as input and the
collocated PR near-surface rain rate as target value.
Total number of data points considered over ocean
and land are 4500 and 6600, respectively. Whole data
set is divided into two parts and %" is considered for
validation. Various networks are trained with different
hidden nodes and hidden layers. Over ocean, ANN
architecture 9-20-9-1 is found to be good enough to
trace the non-linearity between BT and rain. Over
land, the most suitable architecture is found out to be
9-25-10-1. The ANNs over ocean and land are named
as ANN-Ocean and ANN-Land, respectively.

Table I—Error statistics for training and validation set for
neural networks over ocean and land (with all channels and
with discarding lower frequency channels)

Over ocean, with the aforementioned nine input
dataset, network 1s trained and then validated with the
validation set. Correlations of (0.91 and (0.92 are ob-
served for the training and validation set, respectively.
Detailed error statistics are given in Table 1. Figure 6
[fa)-(d)] shows the scatter and pixel-wise rain rate
plot for both the training and validation sets. From
Fig. 6 [(c) and (d)] it can be noticed that the ANN
derived rain rate is following the PR near-surface rain
rate.

Over land also the ANN i1s trained well, but per-
formance is less than that over ocean. This is ex-
pected. because over land the variation of BTs with
rain rate is less due to high emissivity of land as dis-
cussed in Sec.2. With ANN, viz. ANN-Land correla-
tions of (.89 and (.80 are found for both training and
validation set. Table 1 shows the ditferent errors in
terms of correlation coetficient, root mean square er-
ror (rmse) and bias values. It can be seen that, for

Learning Meural MNet- Correlation  Rmse Bias ANN-Land, both rmse and bias values are more as
wurk coefhoient.  ‘mmpy; -mmfy compared to ANN-Ocean. Figure 7[(a) and (b)] shows
ANN-Ocean 0.91 1.53 0.14 the scatter plots between the ANN-Land retrieved rain

Training ANN-Land 0.89 212 039 rate and the desired rain rate from PR for training and
ALNLan-) 0.1 208 030 validation, respectively. For both the training and
ANN-Ocean 0.92 396 096 valn:lal:!-::n ‘m‘atﬁ pixel-wise variations of rain rate in

Validation ~ ANN-Land 0.80 35 LD case of ANN and PR are shown in Fig. 7[(c) and (d}].
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trequency channels over land are practically not very
important. It can also be noticed from Fig. 2 that the
slope of the first four frequency channels over land
approaches zero {Fig. 4[(e) and (f)]} as compared to
other frequency channels. This shows that these lower
frequency channels are nearly independent of the sur-
face rain rate. Thus, to see the implications of the be-
haviour of these frequency channels over land, an-
other MLP is trained discarding the lower frequency
channels {channel Nos 1-4). It is interesting to note
that this MLP performs better than the MLP with all
the channels in terms of correlation coefficient and
rmse. We named this MLP as ANN-Land-5. Error
statistics for this MLP is given in Table 1. Scatter
plots of the training and validation sets are shown in
Fig. 8 [(a) and (b}]. For further testing of the devel-
oped algorithm, a comparison 1s made with standard
2A12 TRMM data product. Figure 9[{a) and (b)]
shows the scatter plots of ANN derived rain rate and
2A12 surface rain rate over ocean and land with cor-
relation of (.71 and (.57, respectively. From Fig. 9 it
can be inferred that performance of ANN retrieved
rainfall intensity is better over ocean than over land.

6 Summary
In this study characteristics of BTs with respect to
rain rate and its implication on rainfall retrieval over

ocean and land are studied. It 1s observed that, over
ocean, the 10.67 GHz channel has the maximum de-
pendency on surface rain rate, but over land it is least
sensitive to rain rate. Over land, 855 GHz channel
has the dependency on rain rate due to the scattering
effect. Thus, these frequency channels are usetul for
rain retrieval over land. For 370 GHz channel, it is
observed that over land this channel is sensitive to
strong rain rate only. For low rain rate it is nearly in-
dependent. The emission effect for 37.0 GHz channel
is prominent for low rain rate region over ocean, but
over land it is not noticed. To see the implications of
the behaviour of these channels, ANN is trained over
land, discarding the channels from 1 to 4. It is ob-
served that over land ANN performs better with five
input channels as compared to the network with all
the channels, in terms of both correlation coefficient
and rmse. Overall, the accuracy of rain rate retrieval is
more over ocean as compared to that over land. This
may be due to the fact that over land, the lower tre-
quency channels have less sensitivity towards rain
rate, as land has high emissivity value.
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