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Abstract

This paper describes a technique for clustering homogeneously distributed data ina
peer-to-peer environment like sensor networks. The proposed technigue is based on the
principles of the K-Means algorithm. It works in a localized asynchronous manner by
communicating with the neighboring nodes. The paper offers extensive theoretical
analysis of the algorithm that bounds the error in the distributed clustering process
compared to the centralized approach that requires downloading all the observed data
to a single site. Experimental results show that, in contrast to the case when all the data
is transmitted to a central location for application of the conventional clustering
algorithm, the communication cost (an important consideration in sensor networks
which are typically equipped with limited battery power) of the proposed approach is
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significantly smaller. At the same time, the accuracy of the obtained centroids is high
and the number of samples which are incorrectly labeled is also small.

Kevwords: Data mining: Data streams; Cluster analysis; Peer-lo-peer

1. Introduction

Clustering [1] is a well-known and widely used exploratory data analysis
technique. Most of the clustering algorithms that are available in the literature
deal with data available at a single location. However, there exists many appli-
cations where data sources are distributed over a network and collecting the
data at a central location before clustering is not a viable option. Sensor
networks connected over wireless networks offer one such environment where
centralized data clustering is difficult and often not scalable because of various
reasons such as imited communication bandwidith and limited battery power
supply for running the sensor nodes. Sensor networks communicate in a
peer-to-peer (P2P) fashion which allows only local communication among
the neighboring sensor nodes. This requires that the data analysis algorithms
also communicate in a P2P mode and work in an asynchronous way [2.3].
Mo such clustering algorithm has so far been reported in the literature.

This paper offers a P2F clustering algorithm that is designed for environ-
ments like sensor networks monitoring continuous data streams at various
nodes. The clustering technique, referred to as the P2P K-Means clustering,
is based on the principles of the K-Means algorithm, and utilizes certain statis-
tical bounds for estimating the error in computing the centroids of the clusters
in a distributed manner vis-a-vis the centralized approach. The algorithm deals
with the general scenario where each node contains a subset of the overall data
to be clustered and the nodes observe the same set of atiributes. Although most
sensor network applications deal with continuous data streams, the paper does
not directly address that. The P2P K- Meany algorithm can be easily extended
following the work by [4] in order to handle siream data. The objective of the
current work is to develop a P2F version of the K-Means algorithms so that it
can be used by the stream version of the K-Means algorithm [4] for clustering
stream data in a sensor network.

Section 2 describes some of the clustering applications for sensor networks
that motivated this research. Section 3 provides some background discussion
on clustering, research issues in sensor networks, and related work in the
domain of distributed clustering. The proposed clustering technique is
described in Section 4. A detailed theoretical analysis of the proposed algo-
rithm is carried out in Section 5. Section 6 provides the experimental results.
Finally, Section 7 concludes the article.
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2. Motivation

Consider a scene segmentation and monitoring application using sensor
networks where the sensor nodes are equipped with audio, vibration, temper-
ature and reflectance probes. The sensors are monitoring a given geographical
region. The sensors are battery powered. Therefore, in the normal mode they
are designed not to be very active. However, as soon as a node detects a pos-
sible change in the scenario, sensors must wake up, observe, reason and collab-
orate with each other in order to track and identify the object of interest in the
scene. The observations are usually time-series data sampled at a device specific
rate. The objective here is for the active nodes to collaborate with each other in
order to segment the scene, identify the object of interest (e.g., a vehicle), and
thereafter to classify it (e.g., pick-up truck). One of the popular approaches of
segmentation is clustering. In this scenario, the requirement would be to cluster
the data stream collected by the active sensors. Note that the data collected at
the different sensors could be distributed either homogeneously (i.e., each node
observes a subset of the data points) or heterogeneously (i.e., each node
observes a subset of the attributes/features). Collaboration within the active
sensors usually requires sending a window of observations from one node (o
another node and performing the clustering. The traditional framework of cen-
tralized clustering algorithms does not really scale very well in such distributed
applications. For example, the centralized approach will be to send the data
vectors (o the base station (usually connected through a wireless network)
and then performing the clustering there. This does not scale up in large sensor
networks since data transmission consumes a lot of battery power and heavy
data transmission over limited bandwidth channel may produce poor response
time.

Outlier detection is another typical data mining task with application
in monitoring chemical spillage and intrusion detection, among others, using
mote-based sensor networks. Cluster analysis is one of the common
approaches for outlier detection. Again, the traditional centralized clustering
approaches are not likely to scale well in such scenario. Therefore, develop-
ment of efficient distributed clustering algorithms that require only limited
communication, while being designed for the peer-to-peer type of environment
of the sensor networks, is of crucial importance. Such an attempt is reported in
the present article.

3. Background

As already mentioned, distributed clustering of data streams in an energy
efficient manner is an emerging research problem with significant applications
in sensor networks, This section briefly reviews some of the existing clustering
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techniques, with particular emphasis on data stream clustering, distributed
clustering, and information processing in sensor networks. Issues in sensor net-
works, which make the problem unique, are also discussed.

3. Clustering

In clustering, a set of patterns, usually vectors in a multi-dimensional space,
are organized into coherent and contrasted groups, such that patterns in the
same group are similar in some sense and patterns in different groups are dis-
similar in the same sense. The aim of any clustering technique is to evolve a
proper partitioning of the dataset X (consisting of, say, n patterns, X =
B v, F © BY) into a number, say K, of clusters (€}, Ca...., Cy) with
cluster centers V= oy, ve,. .., vy} such that some measure of goodness of the
clusters is maximized. In general, there are three fundamental issues that must
be addressed while clustering: whether there is any clustering tendency in the
data or not; if yes, then what is a good method to find the clusters; and in what
way can one validate the obtained partitions.

Traditionally, clustering algorithms have been classified into two categories:
hierarchical and partitional [1,5] Commonly used algorithms in the hierarchi-
cal category are the single linkage and complete linkage algorithms. K-Means is
a widely used algorithm in the partitional class. More recent attempts in clus-
tering large datasets in the context of data mining are BIRCH, CURE,
DBSCAN, etc. [6]

As already mentioned, clustering streaming data in peer-to-peer environ-
ments of sensor networks offers new challenges o data mining researchers.
Such an attempt is made in this article, where the well-known K-Means algo-
rithm is utilized for this purpose. Analysis of the proposed algorithm uses stan-
dard statistical techniques to estimate the confidence that a locally computed
centroid is within a certain distance of the correct centroid at each iteration
of the algorithm.” The nodes are assumed to be synchronized partially, in that
each node waits for a certain time interval, ¢, before proceeding with its
computation.

3.2 Clustering data streams

A siudy on clustering under the data stream model of computation is under-
taken in [4]. Given a sequence of points, the objective in [4] is to maintain a con-
sistently good clustering of the sequences observed so far, using a small amount
of memory and time. Only a summary of the past data is stored, leaving enough

* Similar technigues were used earlier in developing centralized clustering algorithms that require
only a small number of samples o be seen while stll guaranteeing that the model produced does
not differ significantly from the one that would be obtaimed with infinite data [7].
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memory for the processing of future data. The K-Median algorithm is used as
the underlying clustering methodology. The authors provide constant factor
approximation algorithms for the K-Median problem, which make a single pass
over the data and use small space. Some other work in the data stream scenario
may be found in [8-11].

In [12], a technique for iterative incremental clustering of time series data is
described. The algorithm utilizes the multi-resolution property of wavelets and
proceeds with multiple levels of approximation for clustering the real-life time
series dataset with cardinalities ranging from 1000 to 8000, and lengths (or, the
dimensionality of the data) ranging from 512 to 1024, The cluster centers at
each level are initialized using those returned at the coarser level of representa-
tion. Wawvelets are used for their ability to find a representation at a lower
dimensionality that preserves the original information and describes the origi-
nal shape of the time-series data as closely as possible. The K-Means and
Expectation Maximization algorithms are used as the basis of clustering.
Keogh et al. [13] make an interesting claim about clustering subsequence time
series (STS) (produced using sliding windows over a single time series). STS is
different from the problem of clustering time series [12], where the former refers
to subsequences within the same time series, while the latter refers to a set of
time series data. Keogh et al. [13] claim that in STS clustering the output is
independent of the input. In particular, clusters extracted from these time series
are forced to obey certain constraints that are pathologically unlikely to be sat-
isfied by any dataset, and therefore the clusters are essentially random [13].
They provide a number of references (Ref. [13, p. 116]) of 5TS clustering.

3.3 Distributed clustering algorithms

In this section, we present an overview of various distributed clustering solu-
tions proposed to date. We classify distributed clustering algorithms into two
categories. The first group consists of methods requiring muliple rounds of
message passing. These methods require a significant amount synchronization.
The second group consisis of methods that build local clustering models and
transmit them to a central site (asynchronously). The central site forms a com-
bined global model. These methods require only a single round of message
passing, hence, modest synchronization requirements.

330 Muliiple communication round algorithms

Dhillon and Modha [14] develop a parallel implementation of the K-Means
clustering algorithm on distributed memory multi-processors (homogeneously
distributed data). The algorithm makes use of the inherent data parallelism in
the K-Means algorithm. Given a dataset of size n, they divide it into P blocks
{each of size roughly n/P). During each iteration of K-Means, each site com-
putes an update of the current K centroids based on its own data. The sites
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broadcast their centroids. Once a site has received all the centroids from other
sites it can form the global centroids by averaging.

Forman and Zhang [15] take an approach similar to the one presented in
[14] but extend it to K-harmonic means. Note that the methods of [14,15] both
start by partitioning then distributing a centralized dataset over many sites.
This is different than the setting we consider: the data is never centralized—it
is inherently distributed.

Kargupta et al. [16] develop a collective principal components analysis
(PCA)-based clustering technique for heterogeneously disiributed data. Each
local site performs PCA, projects the local data along the principal compo-
nents, and applies a known clustering algorithm. Having obtained these local
clusters, each site sends a small set of representative data points to a central
site. This site carries out PCA on this collected data (computes global principal
components). The global principal components are sent back to the local sites.
Each site projects its data along the global principal components and applies its
clustering algorithm. A description of locally constructed clusters is sent to the
central site which combines the cluster descriptions using different techniques
including but not limited to nearest neighbor methods.

Klusch et al. [17] consider kernel density based clustering over homoge-
neously distributed data. They adopt the definition of a density based cluster
from [18] Data points which can be connected by an uphill path to a local
maxima, with respect to the kernel density function over the whole dataset,
are deemed to be in the same cluster. Their algorithm does not find a clustering
of the entire dataset. Instead each local site finds a clustering of its lbcal data
based on the kernel density function computed over aff the data. An approxi-
mation to the global kernel density function is computed at each site using
sampling theory from signal processing. The sites must first agree upon a cube
and a grid {of the cube). Each corner point can be thought of as a sample from
the space (not the dataset). Then each site computes the value of its local den-
sity function at each corner of the grid and transmits the corner points along
with their local density values to a central site. The central site compuies the
sum of all samples at each grid point and transmits the combined sample grid
back to each site. The local sites can now independently estimate the global
density function over aff points in the cube (not just the corner points) using
techniques from sampling theory in signal processing. The local sites indepen-
dently apply a gradient-ascent based density clustering algorithm to arrive at a
clustering of their local data. In principle, the approach in [17] could be
extended to produce a glohal clustering by transmitting the local clusterings
to a central site and then combining them. However, carrying out this exten-
sion in a communication efficient manner is non-trivial task and is not dis-
cussed by Klusch et al.

Eisenhardt et al. [19] develop a distributed method for document clustering
{hence operates on homogencously distributed data). They extend K-Means
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with a “probe and echo” mechanism for ., _.ug duster centroids. Each syn-
chronization round corresponds to a K-Means iteration. Each site carries out
the following algorithm at each iteration. One site initiates the process by
marking iself as engaged and sending a probe message to all its neighbors.
The message also contains the cluster centroids currently maintained at the ini-
tiator site. The first time a node receives a probe (from a neighbor site p with
centroids Cp), it marks itself as engaged. sends a probe message (along with C,)
toall its neighbors (except the origin of the probe), and updates the centroids in
C,, using its local data as well as computing a weight for each centroid based on
the number of data points associated with each cluster. If a site receives an echo
from a neighbor p (with centroids C, and weights W), it merges €, and W,
with its current centroids and weights. Once a site has received either a probe
or echo from all neighbors, it sends an echo along with its local centroids and
weights to the neighbor from which it received its first probe. When the initi-
ator has received echos from all its neighbors, it has the centroids and weights
which take into account all datasets at all sites. The iteration terminates.

While all algorithms in this section require muliiple rounds of message pass-
ing, [16,17] require only two rounds. The others require as many rounds as the
algorithm tterates (potentially many more than two).

3.3.2. Centralized ensemble-based methods

Many of the distributed clustering algorithms work in an asynchronous
manner by first generating the local clusters and then combining those at the
central site. These approaches potentially offer two nice properties in addition
to lower synchronization requirements. If the local models are much smaller
than the local data, their transmission will result is excellent message complex-
ity. Moreover, sharing only the local models may be a reasonable solution to
privacy constraints in some situations; indeed, a trade-off between privacy
and communication cost is discussed in [20].

We present the literature in chronological order. Some of the methods were
not explicitly developed for distributed clustering, rather for combining cluster-
ings in a centralized setting to produce a better overall clustering. In these cases
we discuss how well they seem to be adaptable to a distributed setting.

Johnson and Kargupta [21] develop a distributed hierarchical clustering
algorithm on heterogeneously distributed data. It first generates local cluster
models and then combines these into a global model. At each local site, the
chosen hierarchical clustering algorithm is applied to generate local dendo-
erams which are then transmitted to a central site. Using statistical bounds,
a global dendogram is generated.

Lazarevic et al. [22] consider the problem of combining spatial clusterings to
produce a global regression-based classifier. They assume homogeneously dis-
tributed data and that the clustering produced at each site has the same number
of clusters. Each local site computes the convex hull of each cluster and transmits
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the hulls to a central site along with regression model for each cluster. The central
site averages the regression models in overlapping regions of the hulls.

Samatova et al. [23] develop a method for merging hierarchical clusterings
from homogeneously distributed, real-valued data. Each site produces a dend-
ogram based on local data, then transmits it to a central site. To reduce com-
munication costs, they do not send a complete description of each cluster in a
dendogram. Instead an approximation of each cluster is sent consisting of var-
ious descriptive statistics e.g., number of points in the cluster, average square
Euclidean distance from each point in the cluster to the centroid. The central
site combines the dendogram descriptions into a global dendogram description.

Strehl and Ghosh [24] develop methods for combining cluster ensembles ina
centralized setting. They argue that the best overall clustering maximizes the
average normalized mutual information over all clusters in the ensemble. How-
ever, they report that finding a good approximation directly is very time-con-
suming. Insiead they develop three more efficient algorithms (dealing with
similarity based clustering and hyper-graph based techniques) which are not
theoretically shown to maximize mutual information, but are empirically
shown to do a decent job.

Fred and Jain [25] report a method for combining clusierings in a central-
ized setting. Given N clusterings of n data points, their method first constructs
an n ¥ n co-associatfon mairiv. Next a merge algorithm is applied to the matrix
using a single link, threshold-based hierarchical clustering technique. For each
pair {i,/) whose co-association entry is greater than a predefined threshold,
merge the clusters containing these points.

Jouve and Nicoloyannis [26] also develop a technique for combining cluster-
ings. They use a related but different approach than those described earlier.
They reduce the problem of combining clusterings to that of clustering a cen-
tralized categorical data matrix built from the clusterings and apply a categor-
ical clustering algorithm (KEROUAC) of their own. The categorical data
matrix has dimensions nx N and is defined as follows. Assume clustering i,
1 < i< N, has clusters labeled 1,2,.... %, The(/.{) entry is the label of the clus-
ter (in the ith clustering) containing data point j. The KEROUAC algorithm
does not require the user to specify the number of clusters desired in the final
clustering. Hence, Jouve and Nicoloyannis® method does not require the
desired number of clusters in the combined clustering to be specified.

In principle, the ideas in [24-26] can be adapted to heterogeneously distrib-
uted data (they did not address the issue), though the problem of building an
accurate centralized representation in a message efficient manner must be
addressed.

Merugu and Ghosh [20] develop a method for combining generative models
produced from homogeneously disiributed data (a generative model is a
weighted sum of muli-dimensional probability density functions ie., compo-
nents). Each site produces a generative model from its own local data. Their
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eoal is for a central site to find a global model from a predefined family (e.g.,
multi-variate, 10 component Gaussian mixtures) which minimizes the average
Kullback—Leibler distance over all local models. They prove this to be equiv-
alent to finding a model from the family which minimizes the KL distance from
the mean model over all local models (point-wise average of all local models).
They assume that this mean model is computed at some central site. Finally the
central site computes an approximation to the optimal model using an EM-
style algorithm along with Markov-chain Monte-Carlo sampling. They did
not discuss how the centralized mean model was computed. But, since the local
models are likely to be considerably smaller than the actual data, transmitting
the models to a central site seems to be a reasonable approach.

Januzaj et al. [27] extend a density-based centralized clustering algorithm,
DBSCAN, by one of the authors to a homogeneously distributed setting. Each
site carries out the DBSCAN algorithm, a compact representation of each local
clustering is transmitted to a central site, a global clustering representation is
produced from local representations, and finally this global representation is
sent back to each site. A clustering is represented by first choosing a sample
of data points from each cluster. The points are chosen such that: (i) each point
hasenough neighbors in its neighborhood (determined by fixed thresholds) and
(i) no two points lie in the same neighborhood. Then K-Means clustering is
applied to all points in the cluster, using each of the sample points as an initial
centroid. The final centroids along with the distance to the furthest point in
their K-Means cluster form the representation (a collection point, radius pairs).
The DBSCAN algorithm is applied at the central site on the union of the local
representative points to form the global clustering. This algorithm requires an e
parameter defining a neighborhood. The authors set this parameter to the max-
imum of all the representation radii.

Methods [27.20,23] are representatives of the centralized ensemble-based
methods. These algorithms focus on transmitting compact representations of
a local clustering to a central site which combines to form a global clustering
representation. The key to this class of methods is in the local model (cluster-
ing) representation. A good one faithfully captures the local clusterings,
requires few messages to transmit, and is easy to combine.

Both the ensemble approach and the multiple communication round-based
clustering algorithms usually work a lot better than their centralized counter-
parts in a distributed environment. This is well documented in the literature.
The following section organizes the distributed clustering algorithms based
on the data distribution {homogeneous vs. heterogeneous) they can handle.

333 Homogeneous vs. heterogencous clustering literature

A common classification of DDM algorithms in the literature is: those
which apply to homogeneously distributed (horzontally partitioned) or heter-
ogeneously distributed (vertically partitioned) data. To help the reader sort out
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Fig. |. Four-way clustering algorithms classification.

the clustering methods we have described, we present the four-way classifica-
tion seen in Fig. 1.

Mone of the techniques discussed in the previous section were developed in an
environment where the network is dynamic and nodes have limited communica-
tion range. In this setiing links may be coming up and down and nodes only
communicate with their immediate neighbors. In order to adapt the above tech-
niques to this type of environment, there could be two approaches. The first one
would be to elect a leader among the nodes, and transmit the locally built mod-
els to the leader. Since communication is of peer-to-peer type, this would
involve multi-hop transmission, and hence a much increased communication
cost. The other approach would be to keep on combining the models incremen-
tally within local neighborhoods, that would ultimately percolate to the entire
network if it is stable for sufficiently long. One of the pitfalls to such incremental
maodel combination would be the accumulation of error over many stages.

Our approach fits into the incremental model combination category. We are
motivated by the low communication cost of the approaches of Dhillon and
Modha [14], Forman and Zhang [15]. Indeed these approaches require nodes
to only communicate centroids and cluster counts at each iteration of K-
Means. However, their approaches require each node to communicate with
all other nodes before proceeding to the next teration. In effect full synchroni-
zation must occur at each iteration. Our method proposed in the present article
represents a first step toward weakening this synchronization requirement {in
addition to further reducing the communication cost).

Other distributed clustering algorithms could be adapted o fit the incremen-
tal model computation category. This represents an interesting, yet untried
area of future work. For example, the method in [20] requires that nodes com-
bine models in a single round of communication. In this respect, extending
their approach offers advantages to our approach of extending K-Means. How-
ever, quantifying analytically the error in our approach seems more feasible.

34 Information processing in sensor networks
Sensor networks are finding increasing number of applications in many

domains, including battle fields, smart buildings, and even the human body.
Most sensor networks consist of a collection of light-weight | possibly mobile)
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sensors connected via wireless links to each other or to a more powerful gate-
way node that is in turn connected with an external network through either
wired or wireless connections. Sensor nodes usually communicate in a peer-
to-peer architecture over an asynchronous network. In many applications, sen-
sors are deploved in hostile and difficult to access locations with constraints on
weight, power supply, and cost. Moreover, sensors must process a continuous
{possibly fast) stream of data.

A sensor network is generally designed to perform some high level informa-
tion processing tasks like environmental monitoring, tracking and classifica-
tion. Monitoring time critical activities like earthquake and chemical spills,
vehicle tracking, habitat monitoring are some of the typical application areas
for sensor networks [28,29). Several attempts have been made in the recent past
to develop efficient hardware devices, networking them and designing routing
protocols in sensor networks [30-33]. A recent survey on key research issues in
sensor networks is available in [34,35]. Some interesting links to publications
on sensor networks may be found in [36,37]

Development of algorithms that take into consideration the characteristics
of sensor networks, viz., energy and computation constraints, network dynam-
ics, and faults, constitute an area of current research. It is well known that
communicating messages over a sensor network consume far more energy than
processing it. For example, for Berkeley motes [38], the ratio of energy con-
sumption for communication and computation is of the range of 1000~
10,000 [39]. It is therefore hypothesized in [29] that given the characteristics
of sensor networks, designing localized collaborative algorithms may offer
the advantages of robusiness and scalability. In this scenario, the nodes inter-
act with others only within a restricted neighborhood, though attempting to
achieve a desired global objective. The authors also propose directed diffusion,
a model for describing localized algorithms [29,40]. Self-organization and
selfconfiguration are beneficial in the sensor network scenario since the envi-
ronment is often dynamic. Some work in developing localized, distributed, self-
configuration mechanisms in sensor networks may be found in [41,42]. In [39],
a collaborative signal and information processing (CSIP) approach is used for
target tracking, which is modeled as a constrained optimization problem. CSIP
is used for carefully selecting the embedded sensor nodes that participate in the
sensor collaboration, balancing the information contribution of each against
its resource consumption or potential utility for other users.

In designing algorithms for sensor networks, it is imperative to keep in mind
that power consumption has to be minimized. Even gathering the distributed
sensor data in a single site could be expensive in terms of battery power
consumed. LEACH, LEACH-C, LEACH-F [31.43], and PEGASIS [44] are
some of the attempis towards making the data collection task energy efficient.
The issue of energy-quality trade-off has been studied in [45] along with a
discussion on energy-quality scalability of three categories of commonly used
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signal processing algorithms viz., filtering, frequency domain transforms and
classification. In [46], Radivojac et al, develop an algorithm for intrusion
detection in a supervised framework, where there are far more negative
instances than positive (intrusions). A neural network based classifier is trained
at the base station using data where the smaller class is over-sampled and the
larger class is under-sampled [47]. An unsupervised approach to the outlier
detection problem in sensor networks is presented in [48], where kernel density
estimators are used to estimate the distribution of the data generated by the
sensors, and then the outliers are detected depending on a distance based cri-
terion. Detecting regions of interesting environmental events (eg., sensing
which regions in the environment have a chemical concentration greater than
a threshold) has been studied in [49] under the assumptions that faults can
occur in the equipments though they would be uncorrelated, while environ-
mental conditions are spatially correlated.

Clustering the nodes of the sensor networks is an imporiant optimization
problem. Nodes that are clustered together can easily communicate with each
other. Ghiasi et al. [50] have studied the theoretical aspects of this problem with
application to energy optimization. They illustrate an optimal algorithm for
clustering the sensor nodes such that each cluster (that is characterized by a
master) 15 balanced and the total distance between the sensor nodes and the
master nodes is minimized. Some other approaches in this regard are available
in [51,52].

Algorithms for clustering the data spread over a sensor network are likely (o
play an imporiant role in many sensor-network-based applications. Segmenta-
tion of data observed by the sensor nodes for situation awareness, detection of
outliers for event detection are only a few examples that may require clustering
algorithms. The distributed and resource-constrained nature of the sensor-net-
works demands a fundamentally distributed algorithmic solution to the cluster-
ing problem. Therefore, distributed clustering algorithms may come handy [53]
when it comes to analyzing sensor network data or data streams.

Clustering in sensor-networks offers many challenges, including,

. limited communication bandwidth,

. constrainis on computing resources,
. limited power supply,

. need for fault-tolerance, and

. asynchronous nature of the network.

L S

Distributed clustering algorithms for such a domain must address these
challenges. Little work has been done in collaborative clustering of the data
streams obtained at the sensor nodes in a distributed, energy-efficient manner.
Clustering algorithms for distributed data and data streams generally involve
a significant amount of communication (and hence are not energy/power
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efficient), and also assume the existence of a central site. Often the algorithms
are fully synchronized (e.g., [19]) and assume a fault-free network. Such
assumptions do not hold in the case of sensor networks. An attempt to bridge
this gap is made in the present article, where a clustering algorithm, P2P K-
Means, is developed that takes the aforementioned issues into consideration
to a large extent.

4. Distributed peer-to-peer K-Means clustering

This section describes the proposed P2FP K- Meagns clustering algorithm in a
peer-to-peer homogeneously distributed setting. Since the P2P K- Means clus-
tering technique utilizes the principles of the conventional K-Means algorithm,
it is described first. Subsequently, the distributed clustering problem is formally
stated, followed by a description of the proposed method. A theoretical anal-
ysis of P2P K- Means is provided in the next section.

d 1. K-Means clustering technigue

A K-partition of X = |x|,xs...,x,] can be conweniently represented
by a Kxn matrix called the partiion matrix U=[ug], i=12,..., K,
k=12, ....n, where uy is either 0 or 1, indicating that the pattern x; does
not belong or belongs respectively to cluster i

K-Means [1,5.54] i1s a widely used technique for crisp partitional clustering.
The minimizing criterion used to characterize good clusters for K-Means par-
titions is defined as

JUL V) Z Z b ) D2 (5,38 ). (1)
i=l k=1
Here U is a partition matrix; V= {o,..., v} represents K cluster centers;
v; € RY; and D,(v, x,) is the distance from x, to the v,

In the K-Means algorithms, the K initial seeds are first chosen randomly to
represent the K centroids. Thereafter, the data points are assigned to the cluster
of the closest centroid. This provides a partition matrix U= [u;] Afier the
assignment phase is over, the centroids are recomputed as follows:

_Z;_ﬂﬂaxlﬁ faii sl (2)

v = 1
L Xtk h

A common strategy for generating the approximate solutions of the minimiza-
tion problem in Eq. (1) is by iteratively performing the reassignment of the
points to the closest centroids, and updating the centroids of the cluster with
the mean of the points assigned to the same cluster.
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4.2, Distributed clustering problem

Let there be p nodes in the system, Ny, Na, ... N, Node N, i=1,2,....p,
has a set of neighbors to which it is directly connected. This set is denoted
by Neigh'”. Let X = ¥V U X® - U X be the full dataset where X' C X,
i=12,....p, denotes the subset of the data at node N, Let X" =
R i x1 be the set of n; points in node i. The aim is to partition each
dataset X7, i=1,2,. .. p, into K clusters that is consistent with the global clus-
tering of X using a clustering algorithm 4. In other words, let XJ,",F=
1,2,....pj=1,2,....K, be the subset of points of X that belongs to cluster
J using algorithm A. Similarly, let X; j=1.2,... K, be the subset of X that
belongs to cluster j after application of 4 centrally. Then we would like the fol-
lowing to deally hold:

Xy 2l JPha ] JEP =30k, (3)

4.3, P2P K-Meany clustering

The proposed algorithm is an adaption of the standard K-Means algorithm.
We assume that each node will spend the same amount of time, ¢, executing
each iteration and that all nodes start the algorithm at the same time. As such,
we are assuming all nodes are executing the same iteration.” Later we discuss
ways of adapting the algorithm to weaken this assumption.

We assume that each node has the same random number generator, thus,
each node generates the same set of K initial centroid seeds, v}, v\, ..., 05,
Thereafter, node N; assigns each point in X" to the nearest centroid. Once
the assignment of data points is complete, the centroids are updated to produce
wj’;, the dimension-wise mean of the points labeled § during iteration k. If the
centroids have changed significantly (based on a user-defined parameter 7),
then a flag Centroids_Changed” is set. N; polls a collection of other nodes
for their centroids (how this collection is determined is discussed later). Some
nodes may not respond because they have terminated. All other nodes will
respond; let Comb'(k) denote the set of nodes that did respond. Each of these
will have sent their centroids, cluster counts, and their Centroids_ Changed flag.
MNode N, then compute the weighted mean of the centroids it receives with its
local centroid to produce its final set of centroids for this iteration. Meanwhile,
N, processes polling requests from other nodes as they arrive. Once ¢ time units
have elapsed N, evaluates the termination condition. If Centroids Changed 1s
not set for &; and also not set for all other polled nodes that responded, N;
terminates.

* The amount of time spent al each iteration is not conceptually important in the algorithm.
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Mode &, must decide at iteration & which other nodes to poll. We examine
two ways o do so: (1) N selects a random sample (without replacement) of all
other nodes, (2) N; selects all of its immediate neighbors in the network
(Neigh'). The first method is more complicated because routing is required.
However, it does not bias the centroids computed by N, and, intuitively speak-
ing, allows N, to develop a global view of the data more quickly. Moreover, itis
easier to analyze the error since statistical bounds based on random sampling
can be applied (discussed later).

Algorithm 4.3.1 P2FP K-Means

Node N
k=0 /* iteration count */
Set Centroids_Changed” to TRUE.
Initialize K centroids, o)}, o}, ., o
/% Same seeds are generated in all tl'uf: p sites #f
Repeat (once ¢ time units have elapsed, the “Until” condition is evaluated)

Perform assignment of the local points to the K centroids,
[y i) [}
140 P g

N SEREEL S
Let 1, indicate the label of the centroid closest to the mth point, x/.

L n},‘f = number of points assigned to centroid f */

. - E1] [} 1) z
Update the centroids producing wi, way, ..., wy, where

w:,'i = "_]-” = .T:].__f' =12 0 K
(3
If (5 Iwi —wiiy|* = 7)., /* centroids changed significantly */
Set (_rmrma’ﬁ Cfumgmm to TRUE.
Else,
Set Centroids_Changed” to FALSE.
Do the following sieps in an interleaved fashion
Poll a collection of nodes for their centroids and cluster counts.
Details are given elsewhere as to which nodes are polled.
Let Comb''(k) denote those that responded (they also sent
their centroids, clusier counts, and Centroids_ Changed flag).
Process polling requests received from other nodes, NV,

Send {(w}i.n%) 1 ji=1,..., K} and Centroids_Changed” to N,,.

; ; i ;
Produce new centroids o)} ,,...,vh, , where
LY E]
) Zl’ﬁl{rm.ﬁ"lkl.l{fl_l _.'Jin_.-Ji' £
Bin = |.J Jor j=1,..., K

Zl":l{'rm-ﬁ "'IJi'.i-J{J].I
Until [Centr ue.r.l’a_C.’::mgml"m is FALSE for all [ € (Comb' (k) U {i})]
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It may be noted that the proposed P2P K-Means is not designed, for the
present, to deal directly with continuous data streams in sensor networks,
though it incorporates the peer-to-peer communication protocol. The objective
of the current work is to develop a P2FP version of the K-Means algorithms so
that it can be easily used by the stream version of the K-Means algorithm [4] for
clustering stream data in a sensor network. The algorithm in [4] works by
maintaining a history of the medians and clustering those. The proposed algo-
rithm may similarly be extended to handle data streams by doing the same at
every node.

4.4 Relaxing synchronization

The assumption that all nodes are simultaneously executing the same itera-
tion can be relaxed at the expense of decreased accuracy. In this subsection we
sketch an adaption of the above algorithm for doing so. However, we leave
careful analysis of this adaption to future work.

The basic idea is that node N, would send its current iteration number, say k,
along with its polling request. A polled node, N, may not necessarily be on the
same iteration. If &V, is on a later iteration, then it responds with its centroids,
cluster counts, and Centroidy Changed flag from iteration & [N, must keep a
complete history). If &, is on an earlier iteration, then it simply waits until it
reaches iteration & before responding. However, to avoid slowing the network
down to the slowest node, N; does not wait for N, to respond beyond a fixed
amount of time (time out). As such, N, will use whatever centroids it receives in
the available time.

5. Analysis of the P2P K-Means algorithm

In this section we provide results which allow a node, at a given iteration, to
compute an upper-bound on the centroid error based on current run-time
information. Such a bound can be thought of as a “gage™ by which the node
can measure the degree to which accuracy has been sacrificed at the expense of
lowered communication cost.

We analyze the variant of our algorithm which uses a random sampling of
nodes to update centroids. Our analysis is an adaption of that provided in [7]
where K-Means clustering was used with a small number of samples in order (o
learn a model that does not differ significantly from the one that would be
obtained with infinite data. Our notation is similar to that of [7] and we repeat
some of their analysis to remain self-contained.

In our analysis, we bound the error between each centroid at each node and
its corresponding centralized centroid. More formally, recall E,‘_:,‘_;,_'_] denotes the
Jjth centroid produced at node N; at the end of iteration k. Let ¢}, denote the
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jth centroid produced at the end of iteration k if all the data were first central-
ized and a standard K-Means algorithm run. We upper-bound the Euclidean
distance between v, and v;, . This is referred to as the jth centroid error
at the end of iteration k. Let fﬂ denote the upper-bound we obtain on this
EITOr.

There are two sources of error that may crop up in the distributed algo-
rithm. One is the error due to taking into account the data local to a node
and all the nodes used to update centroids. This error is referred to as sanmpling
error (to remain consistent with [7]), and bounds can be estimated using stan-
dard statistical techniques. The other source of error s due to the wrong
assignment of data points to the clusters. This type of error is referred to as
H.‘l'.‘l'i;gﬂlilf-t"ﬂf Error.

3.0 Some statistical tools

In bounding the sampling error we will make use of some standard statisti-
cal tools, namely, ratio estimators. For a more detailed exposition see [55,
Chapters 2 and 6] MNote that our notation below differs somewhat from [55].

Consider finite populations {y;,....y,} € Rand {x,,...,x,} € L.y (positive
integers). Let (X, ¥y),..., (X, Y, denote random wvariables representing s
simultaneous samples from both populations without replacement.® Let r
denote the population mean ratio

EID—]-}IJ
D i

and # denote the sample mean ratio

Sl
T

The sample mean ratio is a standard estimator of the population mean ratio. A
confidence interval can be derived based on Var(R), the sampling variance of
R For a large enough sample size, the following approximation s good for
any z > (1

Pri|lr— R| < z+/Var{R)) = conf(z)

where conf] =) represents the probability of a standard normal random variable
being within z of zero. For example, confi2.375) equals 0.99 and confi3.3)
equals 0.999. Moreover, for a large enough sample size the following is a good
approximation of the sampling variance

“ More Formally, let 2. .. .. 2, represent 5 random samples from population [1,....¢] (without
replacement) and (X ¥ denote (x, v, respectively, with £ =2 for | <7< 5,
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Var(R) = (P = ”) (”{1’33 + R*0(X)* — 2Ru(X, rj):

where

# X and ¥ denote E;'i and Zj—'i respectively;
Ll X}: and of fr’}: denote Z—’--ix—’ﬁ and Z—‘—J“I_}]_l respectively;

5—1
t I =-FiX X
e o[ X, V) denotes u

=1

Therefore, we have the following approximation (for any z > ()

Pr (|r— R < _—J (f’;) (ﬂ}’f +_R_E_E‘!i?j —2Ro(X, YI')) = conf(z).

(4)
Some comments are in order. First of all, the “large enough sample™ caveat is
based on the result that as s and » tend to infinity, the approximation (4) be-
comes exact in the limit under mild restrictions regarding the populations.
Quoting [55, p. 153]: “As working rule, the large-sample results may be used
if the sample size exceeds 30 and s also large enough so that the coefficients
of variation of ¥ and ¥ are both less than 109", In our analysis to follow,
we will be using (4) with modest sample sizes. As such, assessing the accuracy
of our probability approximation is not a trivial matter. However, in this pa-
per, we assume the approximations are good and keave the assessment of this
assumption to future work.

Secondly, we have chosen different statistical techniques for our sampling
error bounds than those of [7]1 They used Hoeffding bounds [56] to bound
the sampling error bound probability. Our situation requires modest sample
sizes while theirs need not be modest being that we are sampling nodes in a net-
work rather than data points. Hoeffding bounds are not very good at modest
sample sizes. However, they provide more siraight-forward probability bounds
(they do not carry a “large enough sample™ caveat).

3.2 Bounding the error ai iteration zero

There are no assignment errors during iteration zero, since we assume that
the initial seeds are the same at all the sites and equal to the seeds that would be
chosen in the centralized case. However, the centroid j at node N; produced at

the end of iteration zero, L_:,‘; may not be the same as v},. The reason being that
v} is formed by combining centroids from a sample (without replacement) of

all other nodes, Comb*(0) (if all of the nodes were used and responded, no
error would be produced).
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Assume s, — 1 nodes responded to their polling request, hence, 5, nodes
are used in computing the new centroid i.e., |(Comb" (k) U {i})| = 5. Next
we lower-bound the probability that, for mmﬁ fixed 4,..., tp= '[} ||u — vl
(the standard 2-norm) is not greater than 4/ Z‘; 2. Letting o' iay and vp

denote the dth dimension of L'”

i
( "L'U] W U_,-

and o}, respectively. we have

_ z)=p( =)

2

zmc

d=1

Zrﬁ) (5)

i
= Pr(;\ [|uj‘j,, Uil € r.,,]) (6)
d=1
i :
=1- Pr(v (16— 1] > f,,,]) (7)
=1

i

i
- Zpr(|utu = f,,|)_ (8)

Now our results from Section 5.1 can be applied directly to approximate the
probability that [¢}}, — v | is greater than ¢, Let {n3} and {w ni} for
a=1,..., n demle the x and ¥ populations in Section S 1. respeclwely Simi-

larly, let {n;,} and {w'} i} for [ € (ComB0) U {i}) denote the X and ¥ sam-

ples, rﬁspﬁ:twely Let vjuol Y0, viol X), R apvpaol X, Y), and XJ;_. denote the
respective sample statistics. For some mer-deﬁnﬁd z =, by (4} it follows that

T L ol ¥+ REsatin (X)” —2Rps0tyan(X. )
1l 1l si,l:.p X?JJ

is approximately 1 — confiz).
Letting ¢; equal

Cfp- la] L‘_;Jr.u{rj + R;HIL_,H{X:IE — 2R 40t 40(X, ¥)
A JP X2, '

(8) implies that the sampling error (total error at iteration zero), ||uI — v, is
bounded above by

2 —s U_.-JII{ }":'3 =+ Rzﬂ_uuj u'[ :| - ER_M.U L‘_.«...rxl'iX- r:l
20 - 2 k i cHal
2 J; l( s p )( i )]
9

with probability approximately bounded below by 1 — D{1 — confiz)).
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3.3, Bounding the error at iteration k= ()

Here we must account for both assignment and sampling errors. A point x
at node N;is correctly assigned during iteration & if it were assigned to the same
centroid as it would have been assigned if the centralized algorithm were run.
Formally stated, x is correctly assigned if the following holds:

argmin{".x o) - x} —argmin{|x— v, : 1 Sk < K} (10)

Let ‘“J'm denote the jth centroid at node i produced if no assignment errors
were made during iteration &, by any node. The total error equals

I !’_I.:JJJE'H il <l L_.l-‘;+1 w ﬁ_:«lj':ﬂ I+ ""1 a1 — Vel (11)

The first term is the assignment error and the second the sampling error. Let
S}T be the set of points x at node N; which were incorrectly assigned to cen-
troid f (during iteration k), i.e., points for which the lefi-hand side of Eq.
(1) equals j but the right-hand side does not. Let .S'j‘}' be the set of points
at node N; which were incorrectly assigned to a different centroid than j, ie.,
left-hand side of (10) does not equal j but the right-hand side does. Let n},‘}f'
denote |‘:l”+| and n'” denote 1.5'“’ |. Let w“f' and w“’ denote the dimen-
sion-wise average 06&“” and 5 re@pﬁcuuely

Clearly the iru::arrﬁcl agf-:ngmnenm made by node N; on its own data must be
included in the assignment error. In addition, the incorrect assignments made
by all nodes which contribute their centroids and cluster counts ( Comb''(k))
must be included too. It can be seen that the dith dimension of the assignment

1) 14
error, |[t;; — Tjisa . equals
) 1 ) N+ (v = {f-
|Err_u"um'f't.-:a]-.wlf.u"f E 2 e comi) (“JJJ-"J £ Wiastie TWiaph
Pl i) _ iy {0~
| 2t Combtagi )y e (ComB L)) ( -y +ng

1 [+ 0] {1h— I i
_B_.-JJ.'II(Er”_.'Ju )"‘L}JJ.-H(E;”J. ) (Er 'qu g ) (Er _f.JJ.”_.'J. )
1 [}
ln— |'J|’r +n :'
i+ [+ [ e = [
Er( [”_;J.- (W_.-.JJ.- — Bid i+ 1)] - [”_;J.- (“:I.-.J.J.-_ Uy d ket 1)] )
' (B i+, (-
Er( g~ T J
R0
o ST S SRS R )
it )+ - i
Er(”y. Mmoo thg )
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For any point x in (8}, US| let Ax, ;, denote (x— ¢!, ) ifx €S} and
denote —(x — LJ“HJ ifx € Sl_?'_ From the previous equation it follows that

| i =] |Z|’Zx.=ly;-'l-usdl -ﬂ-’f.u‘ﬂ

Fid it — Vidie =|Z m a4l :|| (12)
|’ _.'Ji' _.lJi'

This equation precisely quantifies the assignment error, but is not applicable
for our purposes because S,}" and 5} cannot be computed from run-time
information. Computing these precisely requires knowledge of the true cen-
troid, v} ;. Next we develop bounds on the above equation involving only avail-
able run-time information. Consider a point x at node N which was incorrectly
assigned to cluster f during iteration k& when it should have been assigned to j'.
Therefore,

I = ol — el < e — o8l + €l

MNote, this is a necessary but not sufficient condition. It may hold when x was
correctly assigned. Let .5”” be the set of points at node N; which satisfy the
above condition: for some i (clearly, 5'”" C.S””] Let 7 —”” denote |5””|
Clearly, nl)" < 7;)".

Snnnlarly consider a point x at node Ny which was incorrectly assigned to
cluster /" when it should have been assigned to /. Therefore,

I = o3l = eff < lx = o5 + €

Let .5”’ be the set of pa_iqts at node N, which satisfy the above condition for
smnej {clearly, §i1” C §\)7).

1) 1) i) i - -
Since m; = n; = 0 and nj " <Ay, then the denominator of (12) is

lower-bounded by
Soi-a)| 1)

!

To upper-bound the numerator, let S;(i) and 5;(i) denote the following
expressions (respectively)

[ (i odi
1= [ Combt i} )
U ErrallE
1= (Comb i}y
Moreover, let PS; (i) denote the set of points x in S; () for which Ax;z i is
non-negative and let NS, ;,(i) denote those for which é._r . 18 negative. Simi-

larly, define Eﬂ,_k{:‘j and }".-.SJ_,,_;.{zj with respect to 5”{:]. The numerator of {12)
can be upper-bounded as follows:
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¥ 3 Al el N0 AEDy (14)
; x5 sty oSl
X Z AX; pn Z JAX g | (15)
xS i) *ENE i)

x{ NG Birs Y |m1“|}_ (16)

XS 410 XENE 4y (i)

Inequality (15) is due to the fact that the absolute value of a sum is upper-
bounded by either the sum of the positive terms or the sum of the absolute va-
lue of the negative terms. Inequality (16) is due to the fact that PS; (i) C
Eﬂ,_k{:‘j and NS, (i) C ,"'.-L‘sju{j Putting together (12), (13), and (16), we
get our desired bound on the dth dimension of the assignment error

Imax {ZJFE. “mﬁ.\fj Kl 1 ZJ\FE. ki) ﬂ'l'xij'-‘rl}

[} -+
|Zr-=|r.umr'u~m;': : "_M::I

We have the following bound on the assignment error:

—
|L.u“+1 _:::'Ji'+]|

(17)

)
" 14y —IJ.I " = max {ZNCE| fkll:lﬂ'x.l'-k‘“" EJFE. d;[a]ﬁlxjj’-ﬂ'l }
(4
Tkl T _.lJi'+'I = Z

d=1 |Z|"=|{'r.lmﬁ "'l..l{a]_l{ i n_!':-'-:ll
(18)
Let UAEJ',‘J‘H] denote the right-hand side of inequality (18).
The sampling error, ||‘“;+] —t7414]l- is bounded by applying a similar argu-

ment as in the iteration zero case. The only difference lies in the fact that the
error approximate probability bound must take into account the error proba-
bilities at all previous iterations. Since node sampling was done independently
at each iteration, we must multiply the error bounds at all iterations. Hence,
the sampling error on centroid j at node N; at the end of iteration k is bounded
above by

SAED Z Pt Dpas( Y1+ By i X' = 2R sty as (X, Y)
.'J.r] Xij.

"J. P

with probability approximately bounded below by [1 — D{1 — confiz))f"".
Therefore, from inequality (11) we have the following upper-bound on the total
centroid error on centroid j at node N; at the end of iteration k
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Table |

Bounding values or different numbers of iterations

k
5 0497
(] .94
. | 09
40 0.81
1] .66
L& 0.44

e = UAE) + SAEY, |
which holds with probability approximately bounded below by [1 — D(l —
conf(z))F .

The value of = is assumed to be defined by the user at the start of iteration
zero. To get an idea as to this approximate bound, consider D = 5 (five dimen-
sional data) and z = 3.3. Tabl 1 shows the values for [ — D(1 — conf(z))*"
as the number of iterations increases.

34 Computing the bownd

Recall that the goal of the analysis is to provide node N; with a “gage™ by
which the centroid error can be assessed. Specifically V; can compute an upper-
bound on the centroid error at the end of iteration k, ¢, which holds with
probability approximately bounded below by [1 — D{1 — confiz))f"". Both
of these quantities can be computed using information local to &;, information
about sampled nodes sent to N, and the previous iteration error upper-bound,
&

' Clearly, node N; can compute all terms in SAE}‘_;H using the centroids and
cluster counts it received from other nodes assuming that the total number
of nodes in the network p is known. If this assumption 18 not made, p can
be replaced with any upper-bound p. The result is an upper bound on
SAEY, | as needed. _

‘or node N; to compute UAE',  some additional information need be

K+l F
exchanged between nodes. First n[":all each node N, must send to N, ﬁjf{' along
with its jth centroid and cluster count. Second of all N; must communicate | for
each dimensian_d‘j its share of ZJ-‘EJ'TS..“U]MJ-‘” and Zﬁ_fﬁl“mﬁxﬂj_ To do so,
N first sends uj‘_;ﬂ to ¥, from which N; can compute its shares and send them
o J"UI]:.

The total amount of additional communication required to compute the
error bound is approximately a factor of two.
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6. Experimental results

We carried out two sets of experiments. First we applied a random sam-
pling-based approach, ie., in each iteration, every node (site) updates its clus-
ter centroids based on the cluster information from randomly selected nodes
over the whole network. Then we experimented with the scenario where ran-
dom sampling is replaced by the deterministic immediate neighbor-based
approach, ie., each node updates its cluster centroids by only considering
the information from its immediate neighbors. The proposed algorithms are
compared against centralized K-Means clustering algorithm in terms of accu-
racy and communication cost. Next, we describe the experimental environ-
ment, dataset used and performance measurement before reporting the
experimental resulis.

We ran our experiments in a simulated environment where the number of
computing nodes varies from 10 to 530. We adopied two kinds of network
topologies. The first one is represented as a totally random graph without dis-
connected components, i.e., each node can find a path to all the other nodes in
the network. The second one is again a random graph, however, we kept the
number of immediate neighbors of each node constant, 5 for example. In each
iteration of the proposed algorithm, each node runs local K-Means on its own
data first. Then, based on the predefined topology, each node updates its clus-
ter centroids by taking into consideration the cluster information from some
other nodes (either randomly selected nodes or immediate neighbors) in the
network. The process starts with the same set of K initial seeds, and it iterates
till the termination condition is met.

We conducted all the experiments with synthetic datasets generated from
multi-variate Gaussian distribution. For the purpose of visualization, we gen-
erated the data with only two attributes. A sketch of the data is shown in
Fig. 2. The same dataset is non-uniformly (uniformly resp.) distributed over
different nodes.

To measure the accuracy of our proposed algorithm, we compare the clusier
membership of each data point from P2 P K- Means with the membership of the
same data point from centralized K-Means. Since both the centralized and the
distributed clustering algorithms start from the same set of initial seeds, a par-
ticular data point is expected to be labeled by the same cluster index in the end.
We report the total number of mislabeled data points as a percentage of the
size of the dataset. Besides, we also report the average Relative Euclidean Dhis-
tance between each centroid found by P2P K- Means and the corresponding
one found by centralized K-Means. This index is computed via

fira® "H’r_:“ - '_V;.'mlrajll

SN A P 100% (f=1,...,K), (19)
p; IwE==



1976

S T T T
ol =
a5l

i
20
18
m
Bl -
ol 4
=Bl 4

1 L L L L .

=15 -1 -5 o 5 10 15 a0

Fig. 2. Multi-variate Gaussian dataset with 37800 data points and six clusters.

where ||| denotes the vector two norm, Hr’j"‘ is the jth centroid in node ¢ found
by P2P K-Means, W™ is the jth centroid found by centralized K-Means,
and p is the total number of nodes in the network. For sake of simplicity, in
the later part of this section, we use ‘Relative Euclidean Distance’ or ‘RED’
to denote this index.

To evaluate the communication complexity, we compare the total number
of messages passing over the P2FP network with the messages required to
transfer all the data points into one single node which holds the biggest
chunk of the data. We view the transmission of a single floating point num-
ber as one message. During each iteration, every node receives K centroids
from each of its partners V; (either randomly selected nodes or immediate
neighbors), together with K cluster counts associated with these centroids.
The total number of messages received by a single node U can thus be com-
puted through Zf_]Z'::J{K w (D + 1) % ShortestPath(U, V), where k is the
number of iterations, N is the number of partners that communicate with
node U, K is the number of clusters, I is the dimensionality of the data
point, and Shortest Pathi U, V) is the length of the shortest path from U to
Fi. We assume the distance between two directly connected nodes is 1. Thus
the communication complexity of P2P K-Means 5 roughly bounded by
O(pkNK(D + 1)FP) where p 18 the total number of nodes in the network, P
is the maximum length of the all the shortest paths from the current node
to its partners.
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6.1 Random sampling-hased approach

6.1 Non=uniformly distributed data

We varied the total number of nodes in the peer-to-peer network from 10 to
50. The same dataset is randomly, non-uniformly distributed over all the
nodes. The topologies of all the systems are always random and there are no
disconnected components. For P2P K-Means, in each iteration, each node U
updates its cluster centroids based on the cluster information from a fixed num-
ber (5 in our experiment) of randomly selected nodes V; in the whole network.
The reason for keeping such fixed number of neighbors is to make the number
of messages exchanged in different-size network comparable. The experiments
were conducted several times, and Table 2 shows the results on average.

The experimental results show that P2P K- Meany clusters most of the data
points as correctly as the centralized K-Means does. The total number of mis-
labeled data points, when expressed as a percentage of the size of the original
dataset, does not exceed 0.2%. The accuracy is roughly constant as the nodes in
the P2 P network changes. Compared with the communication cost required by
centralizing the data into one single node, P2P K-Means only needs a very
small portion of message passing, ie.. from 3.75% to 19.54%. Note that as
the number of nodes in the network increases, more and more nodes join in
the centroids update process, so the total number of messages also grows up,
which verifies the theoretical analysis of the message complexity in the previous
section.

Table 3 gives the average Relative Euclidean Distance (RED) (computed via
Eq. (19)) between each local centroid and the centralized centroid. It can be
seen that most of the REDs are only around 1%, which means the distributed
clusters are very close to the corresponding centralized ones. Note that the
REDs for centroids 3 and 6 are much higher than all the others. This is because
these two clusters have lots of overlapping data points, so it is a little hard (o
separate them. Moreover, non-uniform sampling of the dataset over P2P net-
work resulis in a very skewed distribution of the data in some nodes, which

Table 2
Accuracy and communication cost of 28 K- Means clustering with random sampling of nodes
#Modes
S 45 40 15 0 25 A 15 10
Max #points/node 1523 1 506 1935 233 1957 26BR M35 5266 5625
Hhessapes 14,175 11778 10665 9639 7674 6048 5148 374 M2
Mlessa e rate () 19.54 1623 1487 1359 1071 947 740 575 3175
#Mislabeled points 32 48 X 30 L) 23 9 f i
Error rate (%) 008 0.13 005 008 010 006 002 002 002

The original dataset (37,800 data points) is non-unifermly distributed over differentste P2ZP
netwarks,
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Table 3
Relative Euclidean Distance (REDY) between each local centroid and the centralized centroid with
random sampling of nodes

HModes

50 45 44 35 3 25 X 15 10

RED for centroid | L0 Lo4  ORD ORD 079 045 065 080 037
RED lor centroid 2 086 071 078 080 065 055 053 062 035
RED for centroid 3 140 132 117 129 1.35 17 084 079 056
RED for centroid 4 073 074 072 065 066 065 062 047 032
RED for centroid 5 LIS 117 079 090 081 072 076 066 053
RED for centroid 6 1099 988 771 778 1541 13E1 724 735 1E4

The original dataset (37,800 data points) is non-unifermly distributed over dilferent-sge P2P
networks.

Tahble 4
Accuraey and communication cost of 28 K- Weans clustering with random sampling of nodes
#Hiamples
3 5 7 9 1§ 13 15
Hhlessupes THoR 12960 17820 24282 28152 33552 3R BOB
Message rate () 10.57 17.86 2456 3347 38R0 46.24 5349
#Mislabeled points 15 18 8 i 4 2 2
Error rate (%) 0037 07 00212 00159 00006 00053 00053

The original dataset (37,800 data points) is non-uniformly distributed over 30 nodes. The sample
size varies from 3 Lo 15

hurts the local clustering resulis pretty much. To investigate the performance of
the algorithm with regard to the sample size (the number of randomly selected
partners), we fixed the inital seeds, the number of nodes in the network (30
nodes), as well as the topology, then we changed the number of sample nodes
from 3 to 15 Table 4 reports the resulis. 1t shows that as the number of sam-
ples increases, the communication cost grows up, and the error rate drops
down in the long run, though not strictly due to the randomness.

6.2, Uniformly distribuied data

When data is uniformly distributed over different nodes, each node contains
equal number of data points. The total number of poinis per node thus
decreases as the number of nodes goes up. Since the distribution of data in each
node is almost the same as the distribution of the original dataset, the number
ofiterations required to converge in P2 P K-Means is supposed to be lower than
that of the non-uniformly distributed scenario, which means less messages over
the network; the guality of distributed clusters should also be a little better
than the previous settings. Tables 5 and 6 validate the claims.
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Table 5
Accuracy and communication cost of 22 P K- Means clustering with random sampling of nodes
#Modes
S0 45 40 15 0 25 20 15 1
#Points/node 756 840 945 1080 1260 1512 1890 25X 3780
Hhessapes 12,950 11448 10,260 9000 7524 o480 5148 374 2492
Mlessa e rate () 17.49 1548 13,92 1225 1030 893 717 531 31
#Mislabeled points 3 14 8 12 14 17 4 5
Error rate (%) 01z 008 004 002 003 0 004 001 0.1

The original dataset (37,800 dat points) is uniformly distriboed over different-size F2P networks.

Table 6
Relatve Euclidean Distance between each local centroid and the centralized centroid with random
sampling of nodes

HM oides
Al 45 40 15 n 25 20 15 )]

RED [or centroid | 096 100 075 075 063 060 067 045 03
RED for centroid 2 089  0O8F 065 0 0 043 049 0 036
RED for centroid 3 1L.55 1L} 106 1.2 078 08 114 049 067
RED for centroid 4 074 074 072 035 047 045 038 040 030
RED lor centroid 5 099 089 08 0% 09 04 069 08 0 052
RED for centroid 6 1021 739 706 EI15 721 622 600 3% 375

The original dataset (37,800 dat points) is uniformly distributed over different-size P2P networks.

6.2, Deterministic immediate neighbors-based approach

In this set of experiments, we define the topology of the network in a manner
such that each node contains a fixed number of immediate neighbors (5 in our
experiment ). When updating the cluster centroids, each node only communi-
cates with its immediate neighbors. We again report the experimental resulis
of two kinds of data dispatching strategies: non-uniformly distributed data
and uniformly distributed data.

6.2.1. Non-uniformly distributed data

The same non-uniformly sampled datasets were used as before, and the ini-
tial seed of centroids were the same. Tables 7 and 8 give the results. We
observed that the performance are fairly similar with the results from random
sampling-based approach, ie., low communication cost, and high accuracy.
However, since each node only communicates with its immediate neighbors,
and the length of path is always 1, the communication cost in this setting is less.
On the other hand, random sampling of nodes enables each node in each iter-
ation to communicate with different nodes in the network, thus every node can
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Table 7
Accuracy and communication cost of P2 P K- Means clustering with fixed immediate neighbors
#Modes
A0 45 40 15 30 25 20 15 1
Max #poinis/node 1523 1 506 1935 21% 1957 26BR 3035 5266 SA25
Hhless pes 9RE2  EBI90 7902 6912 5580 S3sd 3600 2700 1ROO
Mlessa e rate () 1362 1L28 1lO1 975 778 764 SI8 415 280
#Mislabeled points 53 15 12 11 25 43 12 L6 17
Error rate (%) 0.14 LR (.08 009 007 012 003 0 005

The original dataset (37800 data peints) is non-uniformly distributed over different-siee P2P
networks.

Table &
Relatve Euclidean Distance between each local centroid and the centralized centroid with fxed

immediate neighbors

HModdes
Al 45 40 15 )] 23 0 15 ]

RED for centroid | L.10 oy 0El 078 080 045 065 081 037
RED lor centroid 2 .86 072 0™ 080 (.65 056 053 062 035
RED for centroid 3 L6l 143 [ |48 1.3 I.28 083 080 0.5
RED lor centroid 4 0.74 el 074 064 0L.67 064 063 048 032
RED lor centroid 5 .14 I.l6 080 090 0.81 072 0% 066 0.53
RED for centroid 6 1234 066 B13 BOR 1566 1597 706 7.29 366

The original dataset (37,800 dat points) is non-unifermly distributed over dilferent-see P2P
netwirrks.

get much more information than what it can get in the deterministic immediate
neighbors-based approach, so the error rate of random sampling-based
approach is a little lower.

6.2.2. Uniformly distributed dara

When the data is uniformly distributed over all the nodes, communicating
with randomly selected nodes or with immediate neighbors does not make
much difference in terms of accuracy. So the performance of the algorithm
in this setting is similar with the performance in random sampling-based
approach on uniformly distributed data. Tables 9 and 10 give the detailed
experimental resulis.

To summarize, P2P K- Means delivers clusters that are very comparable to
the clustering done by centralized K-Means. The average number of mislabeled
data points compared with the centralized approach is really small, ie., less
than 1% in almost all cases, and usually the number of messages exchanged
is less than 20% of the communication necessary to move the data points into
a central node.



1981

Table 9
Accuracy and communication cost of P2 P K- Means clustering with fixed immediate neighbors
#Modes
i 45 40 15 30 25 20 15 1
#Points/node 756 840 945 1080 1260 1512 1890 2530 37RO
Hhless pes Q000 BL00 TH00 6300 5400 4500 3600 2700 1BOO
Mlessa e rate () 1215 1% 977 B58 7.3 a2l 5.1 383 245
#Mislabeled points 13 6 21 13 15 i 1L 1 5
Error rate (%) 0.4 002 006 003 00 002 003 000 0.0l

The original dataset (37,800 dat points) is uniformly distriboed over different-size F2P networks.

Table 10
Relative Euclidean Distance between each local centroid and the centralized centroid

HM odes

50 45 40 15 30 25 20 15 10
RED lor centroid | .96 Log 075 095 06} 060 067 045 03

RED for centroid 2 089  0ORF 065 070 07 043 049 03 036
RED lor centroid 3 L5813} 108 L2 07 087 LIl 049 047
RED for centroid 4 074 074 072 035 048 045 037 040 030
RED for centroid 5 099 089 08 07 090 062 069 0M 052
RED for centroid 6 1016 700 695 El6 750 625 59 3B 373

The original dataset {37,800 data points) is unilformly distributled over different-size P2P networks.

7. Discussion and conclusions

This article describes the P2 P K- Means algorithm for distributed clustering
ofdata streams in a peer-to-peer sensor network environment. Sensor networks
are characterized by low communication and computational capabilities, lim-
ited battery power, asynchronous nature and existence of faults. In the P2P
K-Means algorithm, computation s performed locally, and communication
of the local data models (represented by the corresponding centroids and the
cluster counts) is restricted only within a limited neighborhood. As opposed
to the full synchronization required in certain algorithms (e.g., [19] where the
next iteration of K-Means begins only afier information regarding the global
centroids percolates to all the nodes), synchronization in P2P K- Means is
restricted only within a neighborhood. Moreover, even if some node andfor
link fails, the algorithm can continue, though its performance will degrade
gracefully with an increase in the number of failures. Although the present ver-
sion of the P2P K-Meany 1s not designed to deal directly with continuous data
streams in sensor networks, it can be easily extended to this scenario following
the work in [4].
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Experimental resulis demonstrate the effectiveness of the P2 P K-Meany clus-
tering algorithm for the cases when the full data is uniformly and non-uni-
formly distributed over the nodes. 1t is found that the accuracy of the result,
as compared to the centralized K-Means, is reasonably good even with a rela-
tively small amount of message passing. An extensive theoretical analysis of the
proposed algorithm is provided that gives bounds on the error in computing
the centroids in the distributed clustering process compared to the centralized
approach.

As a scope for future work, the variation of the performance of the algo-
rithm under faulty conditions needs to be studied. The energy-quality trade-
off characteristic of P2P K-Means (or, the relationship between the accuracy
ofthe solution and the amount of communication ) needs to be established both
theoretically as well as experimentally. When communicating with distant
neighbors the shortest path routing protocol is considered for the present, since
choice of a good routing protocol was not the focus of this article. However, in
the future, effect of other, more real-life routing protocols, should be investi-
gated. Finally, the present analysis of the bounds on the error in computing
the centroids at each iteration of the P2 P K-Means vis-a-vis the centralized case
are somewhat conservative. In the future, tighter bounds on this error needs to
be developed. The authors are currently working in this direction.
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