195

Rough—Fuzzy Collaborative Clustering

Sushmita Mitra, Senior Member, IEEE, Haider Banka, and Witold Pedrycz, Fellow, IEEE

Abstract—In this study, we introduce a novel clustering archi-
tecture, in which several subsets of patterns can be processed
together with an ohjective of finding a commeon structure. The
structure revealed at the global level is determined by exchanging
prototypes of the subsets of data and by moving prototypes of the
corresponding clusters toward each other. Thereby, the required
communication links are established at the level of cluster proto-
types and partition matrices, without hampering the security con-
cerns. A detailed clustering algorithm is developed by integrating
the advantages of both fuzzy sets and rough sets, and a measure
of gquantitative analysis of the experimental results is provided for
synthetic and real-world data.

Index Terms—Cluster validity, collaborative clustering, fuzzy
membership, objective function-based clustering, rough sets.

I. INTRODUCTION

A CLUSTER is a collection of data objects which are simi-
lar 1o one another within the same cluster but dissimilar 1o
the objects in other clusters. The problem is to group N pattems
o o possible clusters with high inraclass simularity and low
interclass similarity by optimizing an objective function. In
objective function-based clustering algorithms, the goal is 1o
find a partition for a given value of ¢, The c-means algorithm
[1] represents each cluster by its center of gravity.
Collaborative clustering deals with revealing a structure that
is common or similar 0 a number of subsets [2]. For example,
let us consider a population of data about client information,
distributed over multiple databases. An intelligent approach to
mine such large volume of information would be to analyze
each individual database of subpopulation locally and subse-
quenty combine (or collaborate on) the mesults at a globally
abstract level This also satisfies certain securily (or privacy)
concerns of clients in not allowing the sharing of individual
data (or samples). In such sitwations, one may proceed by
clustering each subpopulation locally as a module, considering
small random samples, thereby enabling faster convergence
of clustering [3]. Subsequently, there is collaboration between
these modules by intercommunicating the individoal cluster
centroids. These representatives from the other subpopulations
serve o globally influence and refine the clustering result of
each module. Eventally, since the subpopulations are denved
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from the same large population, we converge 1o a stable global
clustering after effective collaboration between the modules.

The use of soft computing in clustering has been reported in
literature [4], [5]. Fuzey sets and rough sets have been incorpo-
rated in the c-means framework 0 develop the fuzzy c-means
(FCM) [6] and rough c-means (RCM) [7] algorthms. While
membership in FCM enables efficient handling of ovedapping
partitions, the rough sets [8] deal with uncertainty, vagueness
and icompleteness in data. Image segmentation has also been
done using rough sets [9].

Rough sets are used to model clusters in terms of upper and
lower approximations, which are weighted by a pair of parame-
ters while computing cluster prototypes. We observe that RCM
assigns objects mnto two distnct regions, vie., lower and upper
approximations, such that objects in lower approximation mndi-
cate definite inclusion in the cluster while those in the upper ap-
proximation comespond o possible inclusion in it Since there
is no concept of membership involved, therefore any measure
of closeness of pattems to the clusters cannot be determined.

Collaborative clusterng was first investigated by Pedrycz [2],
using standard FCM algonthm. This concept can be funther
extended o the rough domain using collaborative rough or
collaborative rongh—fuzey clustering.

In this paper, we present a novel collabombve clustering
through the use of rough-fuzey sets. The use of rough sets help
in automatically controlling the effect of uncerainty among
patterns lying between the upper and lower approximations,
dunng collabomation between the modules. Thereby, pattems
within the lower approximation play a more pivotal role during
clustering. Incorporation of membership, in the RCM frame-
work, is seen to enhance the robustness of clustering as well
as collaboration. The Davies-Bouldin {DB) and Dunn ()
mndexes are extended 1w the rough and rough—luzzy frumework,
and helps determine the optimal number of clusters during col-
laboration. Quantitative evaluation of the level of collaboration
15 developed m terms of membership grades.

The paper 15 organized into six sections. Section 1 provides
the basic descoption of the c-means, FCM and RCM clustering
algonthms. The rough-Tuezy c-means (RFCM) clustering algo-
rithm along with the modified DB and I indexes are designed
i Section 1. Collaboraton in the RCM and RFCM frame-
works are also developed here. The quantitative evaluation
of the collaboration is provided in Section 1V, Expernmental
results are presented in Secuon Voon synthetic and real data.
Finally, Section VI concludes the paper In this study, we vse a
standard notation as follows:

N number of samples;
r number of clusters;
L ith cluster in partition L'
leil cardinality of cluster [



Vi ith prototype;

i fuzzifier;

X fith sample or pattern;

iy distance between x and v;;
T membership of 2 in L';;

BUJ;, BU,

Wy s Wy

lower and upper approximations of L7;
importance or weight of lower and
APPrOXImAatons;

Upper

S within-cluster distance of U;;

d(U5. U] between-cluster separation among [ and U7
DB Davies—Bouldin index;

P total number of modules or partitions.

II. CLUSTERING ALGORITHMS

In this section, we describe the different partitive algorithms
used for clustering, like c-means, fuzzy c-means, and rough
c-means. Our objective 15 W contrast these algorithms while
underdining the commonalities existung between them.

A. o-Means Clustering: Brief Overview

The algorithm proceeds by partitioning N objects into ¢ non-
emply subsets. During each iteration of clustering algorithm,
the centroids or means of the clusters are computed. The main
steps of the c-means algonthm [ 1] are as follows.

1y Assign mmitial means v, (also called centrods).

2) Assign each data object (pattern) % 1o the cluster U for
the closest mean.

3) Compute new mean for each cluster using

- Zx el Xk

v, (1)
where [¢;| is the number of objects in cluster U;.

4) Derate Steps 2) and 3) until criterion function converges,
i.e., there are no more new assignments of objects.

B FCM

This is a fuzzification of the c-means algorithm, proposed
by Beedek [6]. It partitions a set of N patterns {x;.} into
¢ clusters by minimizing the objective functiion J = Z;‘:l
3ol ) ™%k — vi||%, where 1 <m < oo is the fuzzfier,
v; 1s the ith cluster center, gy € [0, 1] is the membership of
the kth pattern o it, and ||.|| is the distance, such that

Ny e
Zﬂ.‘:ll:-“"i":l Xk o]
v = 2yt "X @
Zl’r:ll:-ufﬂ":lm
and
1
Ui = 3 f:ﬂ

Tk
Wi, with n’gg,._= |k — vi|*, subject to 35, wi =1, ¥k,

and () < ZLL wp < N, Wi, The algorithm proceeds as in
o= means, along with the incorporation of membership.
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Livarer and upper approximations of a rough set.
C. RCM

The theory of rough sets [ 8] has recently emerged as another
major mathematical tool for managing uncertainty that arises
from granularity in the domain of discourse—that is, from
the indiscemibility between objects inoa set. The intention 15
o approximate a rough {imprecise) concepl in the domain of
discourse by a pair of exact concepts, called the lower and
upper approximations. These exact concepls are determined
by an indiscernibility relation in the domain, which, in turn,
may be induced by a given set of attributes ascribed 1o the
objects of the domain. The lower approximation is the set of
objects definitely belonging o the vague concept, whereas the
upper approximation is the set of objects possibly belonging
o the same. Fig. 1 provides a schematic diagram of a rough
set X within the upper and lower approximations, consisting of
granules from the rectangular grid.

In the rough c-means algorithm, the concept of c-means
15 extended by viewing cach cluster as an interval or rough
sel [7]. A rough set X is characterized by its lower and upper
approximations BX and BX, respectively, with the following
properties.

1) An object xp can be pat of al most one lower

Approxumation.

2) Ifx & BY of cluster X, then simultaneously x. & BX.

3y IF % 18 not a part of any lower approximation, then it

belongs 0 Lwo Or mome upper approximations.
This
that these charctenistics are not necessanly independent or
complete. However, this restricted enumeration is helpful in

permits overlaps between clusters. It 15 o be noted

understanding the rough set adaptation of RCM algonthm.
Incorporating rough sets imto c-means clustenng requires the
addition of the concept of lower and upper bounds.
Computation of the cluster prototypes is modified in the
rough framework, by incorporating the concepts of upper and
lower approximations. The night-hand side of (1) s split into
Lwo parts. Sice the pattems Iying in the lower approximation
definitely belong to a rough cluster, they are assigned a higher
weight that 1s controlled by parameter g, The patlerns
lying in the vpper approximation are assigned a relatively
lower weight, controlled by parameter w,, during computation.
The centrowd v, of cluster [F; s evaluated as (4), shown at



the bottom of the page, where the parameters 1oy, and Wp
comrespond 1o the relative importance of the lower and upper
approximations, respectively. Here, [BL| indicates the number
of pattermns in the lower approximation of cluster U7, while
|BI7, — BI/,| is the number of patterns in the rough boundary
lying between the two approximations.

RCM is found 1o generate three types of clusters, such as
those having objects:

1} in both the lower and upper approximations;
2) only in lower approximation;
3y only in upper approximation.

Thereby, the three cases of (4) need w be considered while
computing the cluster prototypes. When a cluster contains
objects in both its lower and upper approximations, these
are weighted by 1w, and Wy (such that wy, + wy, = 1)
depending on their importance during clustering. For example,
Wiy 15 high (or low) before (or during) collaboration. When
a cluster contains objects only i is lower or in il upper ap-
proximation, the cluster prototype 15 computed in the classical
manner without scaling down by 1w, or wy,. This prohibits
drifting of prototypes from their desired location. This explains
the formulation of the prototype by RCM in the eqguation.
Note that the computation of the new cluster prototype is
weighted by 1wy, and w,, only when both its approximatons
A NOnemply.

We now explan the condition under which an object may
belong to the lower or upper bound of a cluster. Let x; be an
object at distance d;. from centroid v; of cluster [, The dif-
ference in distance djp — dji, 7 # . can be used to determine
whether x,. should belong o the lower or upper approximatons
of the clusters. The acual algorthm is outlined as follows.

1y Assign initial means v; for the ¢ clusters.
2y Assign each data object (patiem) x o the lower ap-
proximation BU; or upper approximation BU,, BU, of
cluster pairs [ and U by computing the difference
in its distance dip — d;p from the cluster centroid pairs
v and v .
3) Letdp be minimum and dj; be the next to minimom,
Ifd; — d; is less than some threshold,
then x; € BUY; and x € BU, and x; cannot be a
member of any lower approximation [Property 3)],
eke x;. € B, such that distance d;; is minimum
over the e clusters [Property 23].
4) Compute new mean for each cluster U; using (4).
5) Repeat Steps 2)-4) until convergence, i.e., there are no
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The expression in (4) boils down o (1) when the bower
approximation 15 equal o the upper approximation, implying
an empty boundary region. It s observed that the pedormance
of the algorithm is dependent on the choice of 1w, W, and
threshold. We allowed wy,, = 1 — wygw. L5 < wg, < 1, and
) <2 threshold <2 (L5,

It is w0 be noted that the paameter threshold measures the
relative distance of an object x;. from a pair of clusters having
centrowds v and v ;. The larger the value of threshold, the more
likely 15 % 1o lie within the rough boundary (between upper and
lower approximations) of a cluster. This implies that only those
points that definitely belong 1o a cluster (i.e., lie close to the
centrowd) occur within the lower approximation. A small value
of threshold implies that more patterns are allowed o belong 1o
any of the lower approximations.

The parameter 1oy, controls the importance of the objects
lying within the lower approximation of a cluster in determining
its centrond. A lower )., implies a higher w,,,, and hence an
increased importance of patterns located in the rough boundary
of a cluster towards the positioning of its centroid.

An optimal selection of these parameters is an issue of rea-
sonable interest. Typically, experimental mvestigation 15 done
for different combinations. Genetic algorithms (GAs) have
been used for tuning the pammeters threshold and ey, while
minimizing a fitness function based on clustering validity index,
for generating an optimal number of clusters [ 10].

D Clustering Validity Indexes

The clustenng algorithms described in Sections [1-A-C
are partitive, requiring prespecification of the number of clus-
ters. The resulis are dependent on the choice of ¢ There
exist validity indexes w evaluate the goodness of clustering,
corresponding o a given value of ¢ In this paper, we compule
the optimal number of clusters oy in terms of the DB and D
cluster validity indexes [11].

The DB is a function of the ratio of the sum of within-cluster
distance o between-cluster separation. Let {x;, ..., X, |} bea
setof patterns lying in a cluster Uy Then, the average distance
between objects within the cluster U, is expressed as

2 i — %]

lew (lex| — 1)

S(Us) = (5)

where x;, x;» € U, and i # @', The between-cluster separation
is defined as

Z.'._,l ;lx‘ = x.-' ”

more new assignments of objects. d(U, U1) = e | 'f-'ri. (6)
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where x; € U, x; € UG, such that & 5 1. The optimal cluster-
ing, for ¢ = ¢y, minimizes

1 ‘ . S+ 85U
Ll ; 'ﬂl;‘f‘{ a0, 0;) } ()
for 1 < 4, j < . Thereby, the within-cluster distance S5(L7) is
minimized while the between-cluster separation o (U, L)) gets
maximized.

Like DB, the D [11] is designed to identify sets of clusters
that are compact and separated. Here, we maximize

(U, U;)

D = min { min m

k) i

(8)

for 1 <24, j< ¢ The intercluster separation is maximized,
while minimizing intracluster distances. Note that the denomi-
nator of DB is analogous 1o the numerator of D,

L COoLLABORATIVE CLUSTERING

In this section, we introduce the rough—fuzzy c-means algo-
rithm. A collaboratve rough c-means clustering 15 proposed,
by incorporating collaboration between different partitions or
subpopulations. This is then extended w the formulation of
the collaborative rough—fuzzy c-means clustering. Rough and
rough—fuzey versions of the DB and D clustering validity
indexes are developed for the purpose.

A RFCM

A new rough-fuzzy c-means algorithm is proposed. This
allows one o incorporate fuzey membership value uw;, of a
sample = o a cluster mean v, relatve w all other means
v, Wi # i, instead of the absolute individual distance d;; from

respect 1o different choices of parameters. The major sieps of
the algorithm are provided below.

1) Assign inital means v; for the o clusters.

2) Compute wy by (3) for c clusters and N data objects.

3) Assign each data object (pattern) x; o the lower ap-
proximation BU; or upper approximation BU,, BU; of
cluster pairs U; and U7; by computing the difference
in its membership e — g o cluster centroid pairs
v and vy

4) Let . be maximum and wgy. be the next o maximum.
I 1. — 1y is less than some threshold,

then x;, € BL; and %, € BU; and x; cannot be a
member of any lower approximation,

else x;. € BLY; such that membership 1y is maximum
over the o clusters,

5) Compute new mean for each cluster U, incorporating (2)
and (3) into (4), as in (9), shown at the bottom of the page.

6) Repeal Steps 2)-5) until convergence, ie., there are no
MOME New Assignments.

As indicated earlier, we use wy, = 1 — wigw, 0.5 < Wi, <
L, = 2, and () = threshold < (0.5,

B. DB and D Indexes

The validity indexes DB and D of (7) and (8) involve
within-cluster distance S(L7;) (distance of cluster prototype v;
from pattems x;. in the cluster) and between-cluster separation
d{ L5, U] (distance between prototypes v; and v; ) considering
cluster pairs U and U7,

1) Rough Version: The rough within-cluster distance is for-
mulated as in (10), shown at the bottom of the page, using (4).
Rough DB now becomes

the centroid. This sort of relativistic measure, in terms of DB = 1 Zm“x {M} ; (11)
(2) and (3), enhances the robustness of the clustering with oy g d{ly, Uj)
( ¥ s B, SikXE P e B, By ) RXE T
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Analogously, rough I can be expressed as

(U, U;)

ehifaich: Jahco bl % s 7
i S0 W)

D, = min { min
d i)

2) Rough-Fuzzv Version: The rough—fuzzy within-cluster
distance becomes (13), as shown at the bottom of the page, by
employing (9). Rough—fuzey DB is now expressed as

s Sl + Sl U_..:I
PR ; '51;'3‘{ AT, T;) g
The rough—fuzey D becomes
Dy = min { min i i'r-;“-"--{i’-' 2 (15)
i ] Itl;'_uc ;"-;,.l'l',L [g,:I

C. Collaborative RCM and RFCM

Let a dataset be divided into P subpopulations or modules.
Each subpopulation s mdependently clustered o reveal its
structure. Collaboration is incorporated by exchanging infor-
mation between the modules megardimg the local parttitions,
in terms of the collection of prototypes computed within the
individual modules. This sont of divide-and-conguer strategy
enables efficient mining of large databases. The required com-
munication links are hence at a higher level of abstraction,
thereby representing information granules (rough or rough-
fuzzy clusters) in terms of their prototypes.

The higher the value of the threshold, the larger is the number
of samples in the boundary regions of the rough—fuzzy clusters.
This leads to a stronger collaboration between the prototypes of
different modules, resulting in the movement of the prototypes
of corresponding clusters (from different modules) towards
cach other. Often this is eventually followed by a merger of
the comesponding prototypes, and hence clusters. This implies
that the cluster prototypes from different modules influence and
approach each other, due o the collaboration existing mainly
in the ovedapping (or boundary) regions of the corresponding
clusters. The impact of the collaboration on the ensemble of
modules is expressed in emms of the changes occurring in
the prototypes of the individual clusters. Since the modules
comrespond 1o partitions from the same large dataset, this sort
of collaborative clustering stabilizes the ensemble towards effi-
cient determination of a globally existent structure.

a0

There exist two phases in the algonthm.

1) Generation of RCM or RFCM clusters within the mod-
ules, without collabormation. Here, we employ (L5 <
W < L, thereby providing more importance o samples
lying within the lower approximation of clusters while
computing their prototypes locally.

2y Collaborative RCM or RFCM between the clusters, com-
puted locally for each module of the large dataset. Now,
we use () < wye < 0.5 (we chose wae = 1 — Wi ),
with a lower value providing higher precedence o sam-
ples lying in the boundary region of the overdapping
clusters,

a) In collaborative RCM, a cluster U; may be merged
with an overlapping cluster [/}
if |BU;| < |BU; — BU| (16)
and v; is closest o v; in the featre space with
(1BU;, — BLG| — |BU) being the maximum among
all ovedapping clusters.

by In case of collaborative RFCM, [V, can be considered

for merging with [/

Z Ui =

e Bl

T (17}

>

sy (BU—BI, )

and v; is closest to vy in the featre space with
{Zx,-_.f:[ﬁff;—gffi] Wik — 2 .y, emp, Wik) being the max-
tmum among all overdapping clusters.
Collaboration is done by exchanging cluster prototypes
between modules, leading to a global determination of the
overall structure within the data.

Let there be o and oo clusters, generated by RCM or RFCM,
in a pair of modules (P = 2) under consideration. During
collaboration, we begin with ¢; + co cluster prototypes and
merge using (16) or (17), respectively.

The entire algorthm is summanzed below.

1) Split the large dataset into P modules.
2) For cach modulep = 1,..., P do
Generate ¢ RCM or RECM clusters (Sections 11-C or
II-A) with (L5 = g, < 1.
3) For each module p do collaboration.
a) Accepl e+ (P — 1) cluster prototypes from remaining
(P — 1) modules.
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otherwise
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by Assign each pattern = 10 lower Or upper approximi-
tion of the C'{ = ¢ % P) collaborative RCM or RFCM
clusters, with [} < . < (L5,
¢) Merge overlapping cluster pairs while (16) or (17)
hold.
i) Compute new prototype for merged clusters U
and L'} as the mean of v; and v;.
i) Reduce number of clusters ' by one.
i) Reassign ecach pattem x 1o lower or upper ap-
proximation of the ' collaborative RCM or
RFCM clusters.
iv) Calculate DB and D indexes, using (11}, (12),
(14), and (15).

IV. QUANTIFICATION OF COLLABORATION

The effect of the collaboration between clusters (or infor-
mation granules) can be quantitatively evaluated in lerms of a
pair of measures § and A [2]. In this section, we develop these
measures Lo suit our rough—fuzzy framework. 1t is to be noted
that here, unlike in [ 2], the number of clusters in a module need
not remain fixed but is generalized 1o be different before and
after collaboration.

Memberships of data objects are computed both before and
after collaboration, with respect o the cluster protolypes. Since
the collaboration here allows merging of overlapping clusters,
the final cardinality of partitions within different modules are
often different. Analogously, the number of paritions before
and after collaboration, within a particular module p (p =
Lz Py, can also be nonidentical. This lead us 1o use the
maximum membership value max w,, (p) of a data point x,. of
module p, 0 one of the clusters [, during our computation of
quanbilalive measunes.

Moreover, a data sample may belong to different approx-
imations (lower or upper) of a cluster, before and after col-
laboration both within as well as between different modules.
lrespective of whether a data object falls in the upper or lower
approximation of a cluster al any stage, a higher membership is
always indicative of a stronger belongingness to a cluster (likely
i lower approximation) as compared w0 a lower membership
value (likely in upper approximation). Hence, the concept of
maximum membership elegantly subsumes all such complex
possibilities.

The measure § expresses how close the modules are upon
collaboration. This 1s computed as

ZZ

k=1 | iy

max wip(pp) — max u_..g,.{p,-rj‘ .

R S Alxeell

T NP(P-1) PqP—l
(18}

Here, U; and U correspond to those clusters in modules gy and
pie, respectively, in which x; has maximum membership. We
..... P—1land!" =14+ 1,..., P Note that clusters
[ and U7, coming from different modules, may or may not be
identical to each other.

The larger the value of 1wy, before collaboration, the higher
the value of wy, dunng collaboration (a lower ., during
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Fig. 2. Collabomtive clustering on synthetic data 1 for 1) Module A and
{h) Module B, with RFCM.

collaboration, as explaned in Section 111-C). This leads 1w a
stronger collaboration between modules. Similar 15 the case
with larger values of the pamameter threshold that encourages
stronger collaboration. This results in a lower value of 4. Hence,
a plot of § with respect to this pair of variables provides useful
information on the resultant collaboration within a datasel.
For example, it gquantifies how much a subset (or cluster) is
susceptible to the collaborative impact coming from the other
subsets of patiems.

The second measure A considers the partiioning before
collaboration as a reference point in the computations. Thereby,
it quantifies the effect of collaboration upon the clustering.
Hence, for module p, we have

N
A —

’ Z

Ithlx i A':PLI'I-H 1(]”?1.':-:'

EK"

== "l“‘xr u_,lfr{ﬁ:-r-lin!'-_ru||:|.|:-:| - flg}

dlxeell;

Note that the clusters U and U7, coming after and before
collaboration for the same module, may or may not be the same.
Finally

P
A=3" A

p=1

(20
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Fig. 3. Collaborative clustering on synthetic data 1 for {a) Module A and
{b) Module B, with RCM.

This sum provides an overall indicator of the departure, upon
collaboration, from the referential structure before collabora-
tion. A smooth surface of the A-plot, in the threshold-,,,
space, also implies a balanced collaboratve effect on the pat-
terms of the clusters.

V. RESULTS
Results are provided on asmall synthetic dataset, followed by
the benchmark Iris data, and a highly nonsepamble two-class
dataset. The distance 15 typically represented in terms of the
traditional Evclidean metne for numeric features,

A. Svnthetic Data |

The two-dimensional synthetic dataset [2] 1s shown in
Figs. 2—4. There are two modules (A and B) corresponding 1o
ten samples each, patitioned into three clusters. Sample results
using threshold = 0.2, 1w, = 0.9 for RFECM and RCM, and
Wigw = 1 — (L9 = 0.1 for collaborative RFCM and RCM, ame
provided in Table 1.

Fig. 2 indicates the clustering before (solid line) and after
(dotted line) collaboration, wsing modules A and B, respec-
tively, with RECM. Analogous resulis are depicted for RCM
and FCM, in Figs. 3 and 4, respectively. Note that there exists
no membership in case of RCM, such that wy € {0, 1}

Hixl

{try

Fig. 4. Collsbomtive clustering on synthetic datn 1 for 2] Module A and
(b1 Module B, with FCM.

The quanttative measures § and A (of Section 1V) are
depicted in Fig. 5 after collaboration using RFCM. The graphs
are plotted for different values of threshold and wy,, (0 <
Wiy < .0, during collaboration). This demonstrates how the
collaborating modules influence each other. On the other hand,
a lower value of A pertains to a decreased adaptation within a
cluster, in a module, during collaboration. This imphies reduced
impact of collaboration from outside on a data subsel

B. Iris Dara

Iris data 1s a typical benchmark, consisting of 150 samples
of three categories of the ins flower. There are 50 samples in
each class, which are expressed in terms of the four features
viz., sepal length, sepal width, petal length, and petal width, We
partition the dataset into two modules A and B of 75 samples
each, todemonstrate collaborative clustenng. Table 1T hists sam-
ple results for collaborative clustenng, vsing threshold = (0.1
and 1y, = 0.9, Results are reported for both clustering validity
indexes, viz., DB and D).

It 15 observed that minimum values for the DB of (14)
generated for both the modules in case of collaborative RFCM,
mdicating an optimal clustering vpon collaboration. The num-
ber of pattems being too large 1o be individually indicated in
the table, we provide counts of those lying i the lower approx-
imation and boundary. Note that the value of DB, and DB
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TABLE 1
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Fig. 5. Chuntification of collsboration for two modules, wsing RFCM an
synthetic dataset 1 with {a) & {delta) and (b) A {DELTA).

are also found o decrease for both modules after collaboration.
This implies a resultant minimization in roughness of the parti-
tons. Although module B contained a number of points in the
cluster boundaries before collaboration, ulimately it is found
o converge o a more definite (less ambiguous) partitioning
with zero samples in the cluster boundaries. The absence of the
membership concept leads o poorer results for RCM.

(bl

Fig. 6. Cuamification of collshomtion for two modules, using RFCM on Iris
with {a) & {delta) and {b) A {DELTA)L

Fig. 6 illustrates the guantitative measures § and A after
collaboration using RFCM. It is observed that § decreases
with mcreasing values of threshold. This s indicatve of m-
creased collaboration between clusters. Simultaneously, a lower
value of 1y, (during collaboration) 1s associated with higher
collaboration. The slope of the d-plot in Fig. 6(a) ascer-
tains this. Analogously, a higher value of A implies stronger
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Fig.7. Dataset Pat for (1) Module A and (b) Module B. Fig. 8. Dutaset Pat after colluborative BFCM clustering on (a) Module A and

collaboration, and is data dependent. The slope of the A-plot in

Fig. 6(b) vahidates this.

C. Synthetic Data 2

The synthetic data Pat consists of 420 pattems in the two-
dimensional space. It consists of two linearly nonseparable

{b) Module B.

pattern classes () and ('2), represented in the form of an
intedeaved pair of horseshoes.

First, we partition the dataset mto two modules with 210
samples cach. This s depicted in Fig. 7, for modules A and B,
respectively. Since the Pat data is highly nonseparable, we
choose w partition it into ten mibal clusters for both modules.
Upon collaboration with 20 cluster prototypes, accompanied by
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{b) Module B.

merging, the resultant number of partitions reduced to 11 and
13 for RFCM, and 2 and 4 for RCM. Figs. 8 and 9 depict sam-
ple clustering outputs generated by the collaborative versions of
RFCM and RCM. Different clusters are indicated in the figure
using different symbols.

Mext, the number of modules was increased to three, with
three clusters cach. Collaboration was done with nine initial
cluster prototypes. The guantitative measures 4§ and A are de-
picted in Fig. 10, after collaboration using RECM with P = 3.
It is observed that both plots indicate a smoother surface over
here. This 1s because a larger number of modules are able 1o
mtroduce greater collaboration, and hence larger umiformmily
among partitions. However, this is at the expense of increased
computational complexity for evaluating 4.

VI. CONCLUSION

Collabomtive clusienng 15 a promismg approach towards
modelng agent-based systems. A mulbagent system 1s one
in which a number of agents cooperate and interact with
each other in a complex and distributed environment, therehy
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Fig. 10, CQuantification of collaboration, for three modules, using RFCM an
Pat with {a) & {delta) and (b} A (DELTA).

achieving a global objective based on distnbuted data and
control [12]. While handling large data in this framework, each
intelligent agent may concentrate on information discovery (or
clustenng) within a module. Subsequently, these agents can
communicate with each other at the cluster interface, vsing
appropriate protocol, their cluster profiles represented in terms
of the centroids. Thereby, an agent can refine the partitioning
within its own module by collaborating with the other agents.

We have presented an RECM clustering algonthm by n-
corporaling membership in the RCM framework. Novel col-
laborative clustering is developed using the RCM and RFCM
algorithms. The DB clustering vahidity mndex 15 suitably maod-
ified, by incorporating rough concepts, 10 delermine opli-
mal clustenng dunng collaboration. Quantitative evaluation
of the level of collaboration has been completed in terms of
rough—fuzzy membership function.

Particle swarn optimization { PSO) is a biologically motivated
scheme, which holds ample promise in modeling distributed
agents. We are currently investigating the use of PSO in col-
laborating clustering. Moreover, finding suitable applications
of this novel approach is also challenging and requires further
research; specially for handling heterogeneous data and/for car-
dinality of the data subsets under consideration.
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