Fast mean filtering technique (FMFT)

S. Rakshit, A. Ghosh*, B. Uma Shankar

Machine Inrelligence Unit, Indian Staristical Institwe, 203 BT, Road Kolkata - 700008, India

Abstract

This article presents a novel method for mean filtering that reduces the required number of additions and ediminates the need for division
altagether. The time reduction is achieved using basic store-and-feted operations and is irrespective of the image or neighbourhood size. This
method has been tested on avariety of greyscale images and neighbourhood sizes with promising results. These results indicate that the relative
time requirement reduces with increase in image size. The method’s efficiency also improves significantly with increase in neighbourhood
size thereby making it increasingly useful when dealing with large images.

@ 2006 Pattern Recognition Society. Published by Elsevier Lid. All rights reserved.

Kevwords: Mean filtering: Spatial averaging: Image smoothing: Moise reduction: Image processing

1. Introduction

A major component of image processing deals with spatial filtering of images by convolution masks. Blurming, sharpening,
noise reduction, edge-detection and varnous other spatial enhancements necessitate the use of masks. The mean or averaging
Jilter 1s one of the more important masks and finds extensive use in a variety of image processing and pre-processing tasks [1-5].

While dealing with large images and/or large neighbourhood (window) sizes, application of these filters can be quite time-
consuming, if not efficiently implemented. For example, the basic implementation of a mean filter for smoothing a 1024 x 1024
image with a 7 % 7 neighbourhood needs over 50 x 10P additions and 1 x 10° divisions. We must address and exploit the
mherent redundancies in this basic implementation and do away with re-computations. In this aticle we propose a method that
reduces the number of additions to a large extent and completely eliminates the need for any division in caleulating the mean.

The rest of the paper is organized as follows, Section 2 deals with the concept of mean filter and its applications. Section
3 presents the basic method of mplementing the mean filler and explaing its inherent redundancies. This is followed by the
proposed method in Secton 4. Implementation details and results are tabulated in Section 5. Section 6 gives the conclusion and
scope for further research.

2. Mean filtering

Image smoothing refers o any image-to-image ransformation designed o smocthen or flatten an image by reducing the rapid
pixel-to-pixel variatbon in greylevels [1-5] Smoothing may be accomplished by applying an averaging mask that computes a
weighted sum of the pixel greylevels in a neighbourhood and replaces the centre pixel with that greylevel. The image 1s blurred
and its brightness retained as the mask coefficients are all-positive and sum o one. The mean filter is one of the most basic
smoothing filters. Mean filtering is usually thought of as a convolution operation as the mask is successively moved across the
image until every pixel has been covered [2]. Like other convolutions it s based around a kemel, which represents the shape

a1

1 1 1 1 i
1T 1 1 11 1
)] - ih

Fig. 1.{a}3 = 3 mean flter; (b} generl n = n mean flier.

Fig. 2. Effect of mean filtering: {a) original crowd image: (b) Blurred image withs =7 and {c) 1L

and size of the neighbourhood to be sampled when caleulating the mean. Larger kemels are used when more severe smoothing
s required. Fig. 1a) shows a mean mask for a 3 = 3 window, while a more general n = n mask 1s shown in Fig. 1(h).

Varwtions on the mean filler include threshold averaging [6], wherein smoothing is applied subject o the condition that the
centre pixel greylevel 1s changed only if the difference between its original value and the average value is greater than a preset
threshold. This causes the noise 0 be smoothed with a less blumring in image detail.

It must be noted here that the smoothing operation 15 equivalent to low-pass filtering as it eliminates edges and regions of
sudden greylevel change by replacing the centre pixel greylevel by the neighbourhood average. It effectively eliminates pixel
greylevels that are unrepresentative of their sumoundings. Noise, doe to s spatial decomrelatedness, generally has a higher
spatial frequency spectrum than the normal image components. Hence, a simple low-pass filter can be very effective in noise
cleaning [1].

Smoothing filters thus find extensive use in bMurring and noise removal [1]. Blurring is usually a preprocessing step bridging
gaps in lines or curves, helping remove small unwanted detail before the extracton of relevant larger objects. Figs. 2(b) and (c)
show the effect of averaging for vanous window sizes n (7 and 11) [2].

The mean filter is an important image processing ool and finds vse in Ganssian noise reduction [1-53], blurnng before
thresholding to elimmate small detail, bndging gaps in broken characters for improved machine perception in OCRs, cosmetic
processimg of human faces images o reduce fine skin lines and blemishes, ete. The mean 1s also wsed as a derived or texture
feature in image segmentation process [7,8]. Let us now take a look at the basic implementation of this mean filter.

3. The basic method

Consider an L level image FP = (). whose pixel greylevels are stored in a 2-D aray, say, data[P][Q] such that data[0][(0]
and datal P — 1][Q — 1] contains the first and last pixels, respectively [2]. In order to apply the mean-filter to this image over a
rectangular neighbourhood window m = n (m & n are odd positive integers), the image must be appropriately padded by some
method like replication of boundary rows and colummns [1] at the four sides of the input image. The avermge greylevel of a pixel
datalrow][col] over an m = n neighbourhood s then caleulated as follows,

Formw="0t P—1
Forcol=010 Q-1
Sum = Sum af m = n pixel grevlevels in the neighbourhood centred at datalrow][col]
newdatalrow|[col] = Sum/(m = n)

End

End

210 209 204 | 202 197 2101 209 204 202 | 197

2&52&3 197 195 206 | 196 | 208 |197 |198

201 207 192 |201 198 2010 | 207 192 201 |198
(Al {b)

210 208 204 202 197
206 196 203 197 195
201 207 192 201 198

el

Fig. 3. {a) Neighbourhood around 196; (h) neighbourhood armund 203 {c) un-shaded portion represents 6 out of 9 common pixels.

Here newdatal PI[Q] 15 a 2-D array contaming the computed averages. This basic method, though simple to implement is
mefficient due to unnecessary re-computations in terms of both additions and divisions. The required number of additions is
P 0 = moxon, while that of divisions 15 P x Q). Thus, both are in direct relation o the image size and increases proportionately
with it

A major redundancy stems from the fact that the sum over a neighbourhood 15 repeatedly computed as the mask s shifted
from one pixel o the next. As the mask 15 shifted by only one pixel at a time, we need only add that new pisels and subtract the
old ones nstead of computing the whole sum all over again [2]. Consider the 3 = 3 neighbourhood window around the pixel
196 a5 shown in Fig. 3(a). When this neighbourhood s shified nght w the next pixel, 203 we get Fig. 3(b). The pixels common
o both these neighbourhoods are shown un-shaded in Fig. 30¢) and their sum can be camied forward to the next neighbourhood
without the need for re-computation.

The algorithm for the aforementioned addition reduction procedure 15 summarized below,

Formw=01t P—1
cof =1)
Sum = Sum of m = n pixel grevlevels in the neighbowrhood centred at datalrow|[col]
newdata [row][col] = Sum/f{m = n)
Forcol=1 i @ —1
Sum = Sum — m number of pixel grevievels in columnicol —njf2)
Sum = Sum + m number of pixel grevlevels in columni{col +n/2)
[r/2 is the mteger part of 1 by 2]
newdata [row][col] = Sum/(m = n)
End
End
Al the beginning of every new mow, the sum of m x n pixel greylevels is computed. This otal neighbourhood pixel greylevel
summation is carried out P times as against the P o< Q times i the nomal case. The required number of additions 15 now
reduced to P oscom o=+ P s @ xom x 2, which is almost equal to P s @ xom o= 2.
The proposed column-summation store-and-felch method [9.10] will reduce this number drastically.

4. Proposed methods

In this section we discuss the proposed algorithms for addition and division reduction.

4.1, Pmposed addition reduction

The number of additions can be further reduced by grouping the m pixels in each column of 2 window (around the central
pixel) having m rows and n columns, and storing their sums in an arry, say, s[n] as shown in Fig. 4. The size of the array s n
and it 1% used as a cireular aray.

In this case, when the neighbourhood is shifted one pixel to the right, only one new column (of the new window) sum
needs to be added and one old column (of the old window) sum subtracted. The number of additions is further redoced

AR]

el o4y 2
[|
210 [203 | 204
191|209 [190
167|217 | 182

B s[0] 0 &[0 7]

Fig. 4. Grouping of pixels in columns over a window of 3 = 3,

o il £t 238 235 258

o i i Emm— Lk 235 k]

i i} o 253 250 253
Sum =0 Sum = 2284

Fig. 5. Range of summations of 9 pixel greylevels for a3 x 3 neighbourhood.

w m 4 2 per pixel from m % 20 Thus we now require only P x @ = (m 4 2) additons. The algorithm s as follows,

Formw=0ta (P—-1)
col=10
Store sum af pixel grevlevels of columns 0.1,n — 1 in s[0], s[1], g[n — 1]
[each column contains m ¢lements, |
Sum = x[0]+ 5[]+ -+ 5[n = 1]
newdatalrow][col| = Sumf(m = n)
j=10
Forcol=11ta (2 —1)
Sum = Sum — 5[f]
5[f] = Sum of pixel grevlevels in column (col 4+ n/2)
[12/2 15 the integer part of n by 2]
Sum = Sum + 5[f]
newdata[row|[col] = Sumf(m = n)

i=i+1
Ifj==n

=0 [Mote: this ensures the circular nature of the army|
End

End
End
For a 1024 % 1024 image, filtered over a 7 % 7 neighbourhood, the required number of additions is reduced o a mere 9 x 10°,
which is less than 20% of the original number. Let us now look into the aspect of division reduction.

4.2, Pmposed division reduction

Division, being a floating-point operation, contnbutes most significantly towards the computation time in any filtering al-
gorithm. Thus, it is of primary importance to try and redoce their number. Let us look into the innate redundancy in the basic
method as regards divisions, by considering 4 3 ® 3 neighbourhood-averaging example. The possible mnge of summation of 9
greylevels, (considering an 8-bit greylevel image), 1s from) w00 2295 (255 = 9) as shown in Fig. 5. It may be noted here that in
case of 7-bit images we only need to store the averages from 0 to 1143 (127 = 9).

Thus if all pixels are black, the summation is 0, while if all pixels are white the summation is 2295, with each sum having a
corresponding average as shown in Fig. 6.

For example when the sum of 9 pixel greylevels is between 0 and 8, the average is 0 (considering the floor function for
simplicity). Similarly for a sum in between 2286 and 2294, the average is 254, 50 we need only store these averages in an aray

o4

E1EEZ 1A K A A E A E R FE R R ET R CT I BN

. A ",
Y

Meanof 0-8 Mazan of B-17

. . 254 25 254 204 254 254 2a4 254 254 244

N .
~

Maan of 2285 - 2294

Fig. 6. Stonng averages in an army with the sum as index.

(say mean|) of kength 2296, (255 = m x n 4 1), and access them using the sum of neighbourhood pisel greylevels as the army
index. The mean storing algorithm is as follows,

i=k=0
Fori=01to235xmxn
ffk=mxn
k=10
j=i+1
End
mean(i | = j
k=k+1
End

In this case the number of divisions 1s redoced w0 255 =< m = 0 + 1. This number may be reduced to zem by using multple
additions, as they are far less computationally intensive. The final algorithm 1s as follows,

Formw=101m (P —-1)
col =0
Store sum af pixel grevievels of coltmns 0,1, .., r — 1 in s[0], 5[1],...,: s[n—1]
[each column contans m elements. |
Sum =x[0] + 5[]+ --- 4+ 5[n — 1]
newdatarow || col | = mean | Swum |
i=0
Forcol=110 (02 —1)
Sum = Sum — 5[]
5[] = Sum af pixel greylevels in column (col +n f2)
[r2 /2 1 the integer part of n by 2]
Sum = Sum + 5[]
newdata|row |[col] = mean| Sum|
=i+
fj==n
F=0 [Note: this ensures the cireular nature of the army |
End
End
End
It 1 identical to the one in Section 4.1, except for the lines marked bold, where the method of mean storage has been changed
o one of direct-access. Going back to our original example, a 1024 x 1024 image with a neighbourhood of 7 x 7 now requires
around 9 x 10° additions and 0 divisions instead of the original 50 = 10° additions and 1 x 10° divisions.

5. Implementation and results
The images used for the purpose of westing the time requirements of the above methods were 7-bit and #-bit greyscale images

of various sizes, like 128 x 128, 256 x 256, 480 x 6440, 512 x 512, 600 x 800, 768 x 1024, 1024 x 1024, 1200 = 1600, etc.
The average was caleulated over various neighbourhood window sizes rmnging from 3 = 31w 11 = 11,

k]

Fig. #. (a) Enhanced (conirast stretched) Kolkata IRS image, (b1 blumed version.

Table 1
Mumber of computations

Method Additions Drivisioms
Basic method FPrxQrxm=xn PoxQ
Commaon addition reduction FPxQxmx2 Pox g
Proposed addition reduction Pudxim+2) Pxg
Proposed division reducti on Foxxim+2)]

Figs. Tia) and 8(a) give two such sample images, Lenna and the IRS-1A (Band-4) contrast-enhanced image of Kolkata [6].
Due to poor illumination of the IRS-1A image the actually object classes present are not eleardy visible in the onginal image.
A contrast-enhanced image is thus presented here for better viewing. Figs. 7(b) and 8i(b) give the results of 7 = 7 mean filtering
on these images. The aforementioned methods were all implemented in the Standard C + 4+ langoage [11].

Number of computations for each of the above methods in terms of image size, P2 @ and neighbourhood window siee,
m % nis wbulated above in Table 1.

The relative computation time for vanouos image and neighbourhood sizes are summanzed below in Table 2. Here BM stands
for the basic method, RAM for the reduced addiion method and ZDM for the zero-division method. (Mote: Here the time taken
by the 128 = 128 image for ZDM over 1 3 = 3 neighbourhood is considered to be the basis for comparnison).

Here, Figs. 90a)-(c) show the plot of relative time laken agamst image size by the basie method (diamond) and the ZDM
(square) for 3 = 3,7 = 7, and 11 x 11 neighbourhood windows, respectively. As is evident from the graph, the utility of the

bl

Table 2
Relative time taken for different implementati ons over different neighbourhood sizes for various image sizes

Image no Image size Size of neighbaurhaocsd
Am3 Ixd Tl Guxh 11w 11
BEM RaM EM RAM M RAM BM BM RaM
I 128 = 128 al I K 33 7l 35 G 88 60
2 250 W 2 T2 1 S 63 133 0Ol 155 208 71
3 12 x 512 117 HE 209 b 130 110 4712 6i0 126
4 480 2 640 143 a3 236 110 YL Ko 3o 18 165
3 G0 RO 181 121 324 132 53R 1D B35 1192 198
G TOR = 124 268 165 456 132 73 214 1340 1944 214
7 1024w 1024 341 148 ods 237 1143 230 17536 2560 338
1200« 1600 577 263 (R [0E] 011 37 3070 4449 505
TiK)
G0 /
§ 500
2 400
=
a0 d_'_,_./
o 2
é _/_'_‘_,_———’-'___—_-y—
i [et "
0 - T
1 5 b
(] Imagze Mo,
SO0
g 2000 -
= //
1500
S 1000
& 500
5 - = - —Iﬂ—'_'_'_'_—_.
| 5 &
(h) Image Mo,
5000
=
2 000 a
[_.
fopEa:
E A //,,/
S
E 200
é /
100K
F— e
0 - — —— .
1 5 B
ch Image No.

Fig. 9. Plotof time taken by BM (dizmond) and ZDM (square) for {a) 3 3, (b1 7 = T and {c) 11 » 11 neighbourhood against image size.

Lt

optimized implementaion inereases with increase inimage as well as neighbourhood siee. This property is particulardy useful
when working on large remote sensing images like the IRS-1A image (25.2 x 10° pixels in 4 bands).

It is interesting to note that the gain in time reduction (ZDM/ BM) for the 1200 x 1600 image increases from 2.5 times for
the 3 x 3 neighbourhood window to 1008 times for the 11 % 1] neighbourhood. In other words an image-processing task that
would previously have taken 11 h to complete would now take only 1 h.

6. Conclusions and future work

The fast mean filtering echnigue (FMFT) presented here has successfully reduced the time requirements for smoothing
operations with mean filters, especially for large images. This implementation reduces the number of additions o approximately
1/ nth of the onginal number, where n o« n s the neighbourhood size and completely eliminates the division operation by store-
and-feich methods very efficiently. The gain in the performance and usefulness of this method has been demonstrated for
different images.

The vanous applications of mean filtering, as descabed in detail at the beginning of this paper can all benefit treme ndously
from this improved implementation. Noise removal by threshold averaging in remole-sensing applications is one such important
example. The effect of this filtering technigue will be tremendous in such an application. This method can easily be extended
o higher bit-level greyseale images or colour images.

Acknowledgements

Authors would like to thank the DST—Gove of India and University of Trento, Ttaly, the sponsors of the India—Trento Project
on Advanced Research (ITPAR), under which a project titled “Advanced Technigues for Remote Sensing Image Processing™ is
being carned out at the Machine Intelligence Unit, Indian Statistical Institute, Kolkata. The valuable appreciation and suggestions
of the reviewer 15 also gratefully acknowledged.

References

[1] W.K. Pratt, Digital Image Processing, third ed., Wiley, New York, 2001.
[2] B.C. Gonzalez, B.E. Woods, Digital Image Processing, second ed., Pearson Edvcation, 202,
[3] R.C. Gonzalez, BLE. Wonds, 5.L. Eddins, Digital Image Processing Using MATLAB, Pearson Education, 2004
[4] AK. Jain, Fundamentals of [igital Image Processing, Prentice-Hall, Englewood Cliffs, NI, 1989,
[5] A. Rosenfeld, A.C. Kak, Digital Pidure Processing, vols, [& I, Academic Press, New York, 1982,
[6] 1A, Richards, X. Jia, Remote Sensing Digital Image Analysis An Intmoduction, third ed., Springer, Berlin, 1999,
[7] 5.K. Pal, A, Ghosh, B. Uma Shankar, Segmentation of remotely sensed images with fuzey thresholding, and quantitative evaluation, Imernational 1.
Remote Sensing 21 (11) (2000) 2269-2 300,
[8] A. Jain, [} Zongker, Feature Selection: Evaluation, Application, and Small Sample Performance, IEEE Trans. Pattern Anal. Mach. Intell. 19 (2) (1997
153-158.
[9] TH. Commen, C.E. Leiserson, B.L. Rivest, C. Stein, Introduction to Algarithms, second ed., Prentice-Hall of India, 3001,
[10] R. Sedgewick, Algorithms in C, Parts 1-4, third ed., Pearson Education, 1998,
[11] B. Stoustrup, The C4++ Progmmming Language, Special ed., Pearson Education, 2000,

	fast mean filtering-1.jpg
	fast mean filtering-2.jpg
	fast mean filtering-3.jpg
	fast mean filtering-4.jpg
	fast mean filtering-5.jpg
	fast mean filtering-6.jpg
	fast mean filtering-7.jpg
	fast mean filtering-8.jpg

