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Ahstract

An intertwining operator linking a non-Hermitian Hamiltonian to the adjoint of its nonlinear pseudo-supersy mmetric partner Hamiltonian has
been found. Explicit realization of this intertwining operator, which gives rise to a new pair of isospectral Hamiltonians, is given for complex

Scarf and Morse potential.
© 2006 Elsevier B.V. All rights reserved.

Recently, there has been growing interest in the study of non-
Hermitian Hamiltonians which appear in different branches of
physics [1]. An important subelass of non-Hermitian operators
is the pseudo-Hermitian operators [2], i.e. those operators A,
which satisf’y

nAg~! = AT, (1)
where i is a linear invertible operator satisfying

n=n'. (2)
Whenever (1) holds without the constraint (2), A 15 called
weakly pseudo-Hermitan [3]. Many interesting properties of
both pseudo-Hermitian and weakly pseudo-Hemmitian opera-
tors have been examined by several authors [4.5]. Particu-
larly, a generalization of supersymmetry [6], namely, pseudo-
supersymmetry was developed in Ref. [7] that would apply
for general pseudo-Hermitian Hamiltonians. In this Letter we
attempt to find an intertwining operator connecling one com-
plex Hamiltomian with the adjoint of 115 nonhinear pscudo-
supersymmetric | 12] partner Hamilwonian through a proposition
stated and proved below. The motivation 15 0 generate exactly
solvable non-Hermitian potentials.

Theorem. Let H = AB, A and B being first ovder differen-
tial operators, be a non-Hermition diagonalizable Hamiltonian
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having diverete spectrum consisting of real or complex conju-
gate pairs of eigenvalues and the multiplicity of complex conju-
gate eigenvalues are the same. Then there exists an intertwining
aperator 1 such that

nH =Hn. (3)

where Hy = BA is the parmer Hamiftonian of H and H_: ix the
adjoint of H;.

Proofl. Since H and H, are of the form & = ABand H, = B A,
where the operators A and B are of the form A = % + Wix)
and B = —% + Wix), Wix) being any function of x, there
exisls an mtertwining operator iy such that

mH = Hgn. (4}

An almost trivial first order solution for 7; is B or A~L, if
the Tatter exists.

H is diagonalizable with a discrete spectrum. By this it
is meant that A admits a complete biorthonormal system of
eigenvectors {1, al, ldhy, al}. The latter satisfy the following
defining properties [8]:

Hlry, a} = Ey iy, al, H+E¢Ji"ﬂ} =E.|ﬁ¢1r~“}~ (3)

(i By, a) = dpdiap. ()
iy iy

Y ldwalyn.al =Y Y |¥n. adign.al =1, (N

" oa=I1 h oa=]
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where T stands for the adjoint of the corresponding operator, d,
is the multiplicity (degree of degeneracy) of the eigenvalue E,,
n s the spectral label and @ and & are degeneracy label.

Since H, is the partner of H in the sense described above,
H, also admits a complete biorthonormal system of eigenvec-
tors and has either a real spectrum or complex conjugate pairs
of eigenvalues and the multiplicity of complex conjugate eigen-
values are the same. Then, as shown by Mostafazadeh, H; is
nz-pseudo-Hermitian [4], i.e.

naHy = Hna. (8)
Using (8) we oblain from (4),
namH =mHn = H_:u:m. i

Taking = nani. we get yH = Hly. 0O

Now using the adjoint of (3) in (4) we get
.'r;r+mH = .'r;r+H.,-m = H+31+m. (1)

Therefore H is 77 = 5’ pseudo-Hermitian.
Taking adjoint of (8), we get

H_:.'r;r; = IJ'-IH_.. or {n;}_ lH_:-l]; = H,, (11

which shows that H_:-r 13 {l]‘:}l_l pseudo-Hermitian.

Al this point let us remark that since H is non-Hermitian,
H; and H_: are non-Hermitian in general, but in some particular
cases they may be Hermitian [9]. The interlwining operator i
and iz may be Hermitian or non-Hermitian. In the former case
we have pseudo-hermiticity [ 2] while in the latter we have weak
pseudo-hermibcity [3].

Now following Mostafazadeh [7] it is possible to oblain a
two-component realization of nonlinear pseudo-supersy mmetry
[12] in which the stale veclor l,yfr}, the nonlinear pscudo-
supersymmetry generator Q, and its pseudo-adjoint QF, the
Hamiltonian H and the operalor g oare respectively repre-
sented as

a (1s) {00 .
'V}_(W-})' Q—(" Nk (12)

« (0 n* - (H 0
Q—(u u)‘ H—(ﬂ H_,T)‘

(7 0

M= (ﬂ UIE}'_[ ) i(13)
Whe q=n"m, @ =)' Qny. and #* = (H~y" x
()"

The nonlinear pseudo-superalgebra 1s given by
Q@*=0%" =0, [Q.Q% = f(i), (14)

whene Q“ = (nar)~ lQi-l]‘,tf and .f'{f;'}l denotes any function
of H.Itis not difficult to see that H. H,| satisfy the intertwining
relations

nH=H'y, n*H =Hy" (15)

oo .
As geonsequence, i oand Ay are isospectral, i maps the eigen-
vectors of H to H, and 5* does the converse except for those

clgeuvecuns i e coeitltd by these operators. They also
have identical degeneracy structure except possibly for the zero
ecigenvalue. In analogy with omdinary supersymmelric quan-
tum mechanmics they are called nonlinear pseodo-superparner
Hamiltonians. At this point it s perhaps pertaining to remark
that in the above mathematical steps we have assumed that in-
verse of the operators like r;r;, 1, ele. exist though 1o find the
analytical expression for the inverse of the operators 175, 5 will
be a nontrivial mathematical task itself and hence we have as-
sumed the existence of the operators like 7%, Our objective here
is to obtain new classes of non-Hermitan Hamiltonians that are
isospectral 1o the known ones. Below we give the realization for
1 in the case of complex Scarf and Morse potential 1o demon-
strate the practical aspects of our finding. In both the cases we
shall consider discrete spectrum only.

Example 1 {Scarf potential { 10] ). For Scard potential
Wix) =—tanhx + iV sech x, (16}
where Va2 18 an arbilrary pammelen
Therefore
d* d*

1+v'r = o
dx= *) dx-

H=AB=— + Wi+ w

-+

d ¥ ¥ &
= ——— — (V5 + 2)sech™(x) — 3iVasechxtanhx + 1,

dx?
d? i d? 5 . 10
Hi=BA=—+V(x)=——+W" —W
dx- dx-
dl
:_n‘ - — Vosech™(x) —iVesechy tanhx 4+ 1 (18}
=3 2
and
H+ _il__i_i;.{-r}-i-__dl +{W2—Wr}+
g dx? T odx?
dl ) ') x
:—F—Vl‘yxh'{.r}+r'r"gscuh.rlanh.r+1, (19
x-

where 7 denotes adjoint.

Following the standard procedure [ 13] for finding # and uti-
lizing the factonzation property of n as illustrated in [14] we
find

dx
= 2. (200

d d
n= —(— —flr’:sl_::h.r)(—— - uinh.1'+f1r’154xh.r)
dx i

where

d
= S tanhx +i Vo sechx {givun in Eq. i4)),
x

d
i;rzzd——f'r"gsu:h.r (given in Eq. (8)). (21)
x
H and H_: of Egs. (17) and (19) respectively are nonlinear
pseudo-superpariner Hamiltonians and following the results ob-

tained eardier in Ref. [10] it can be shown that they are isospec-
tral, both having the weal energy values (when Vi £ {%, oC))

1 . 1
Enz—(n+;—'l.f1), J!={},1,2,...{(Vz—;). (22)



The eigenfunctions corresponding to real eigenvalues are
[10]
Tin —Va+3)

» 1
(x) = Npi"———— = (sechx)'¥2~3)
Y [l T {; V)

{ S TR
3 E{J' sinh x),

i —Va—d _
xuxp[; lan_l{sinh.r}]Pn S

(23)
where N, 15 the normalization constant and Pfr"'b{z}l ane the Ja-

cobi polynomials [ 15].

Example 2 { Complex Morse potentiaf {3,11]). In this case the
function Wix) is of the form

W=(A+iBle ™ —C, i24)
A, B and C being parameters. Therefore
Vie)= W 4+ w'

=(A+iB)Ye ¥ —2C+ 1)(A+iBe* +C2,
Vix)= W2 —w’

={A+iB e ¥ —2C-1)A+iBe " +C2,
Vit =(w2-w)
—(A—iBYe ™ —(2C - 1){A—iB)e *+C>. (25

Here the inertwining operator 1 defined in Eg. (3) is
d - —-X - —p
n=|—g-+(A+iBe™ = C (™) =muna, (26)
where
4 L d
#=tan" (2B/A), p=—i—,
dx
d .
M +(A+iBle ™ —C {giw:n in Eq. (4)),
x
p=e {givun in Eq. (8)). 27)
Vix) and Vix)' given in Eq. (23) when substited in & and
H. respectively give the nonlinear pseudo-superpartner Hamil-
tonians and they are isospectral, both having the energy eigen-
values [11]

Va
2.V
where Vi = (A +iB)” and V3 = (2C + 1)(A +iB). The cigen-
functions corresponding to Vix)" can be wrillen in terms of
associated Lagoerre polynomials as [11]

E,=—(n—C)y, n=012..<C= I, (28)

Ylx) = ZE—JrE—iL:_:{T‘—ZJr{EL s 21|'|'|I|'v_r‘"_'r. (29)

‘47 denoting complex conjugation.

A word of cantion: as far as the application of our result
in generating new exactly solvable complex potentials is con-
cerned, the requirement that iy and 1z appearing in Egs. (21)
and (27}, must be invertible, may be relaxed.

X3

To summarize, we have found an intenwining operator link-
ing a non-Hermitian Hamiltonian to the adjoint of its nonlin-
ear pseudo-supersymmetne partner Hamillonian, Application
of this intertwining operator o any non-Hermitian Hamiltonian
will give rise 0 a new pair of isospectral Hamiltonians not re-
ported before. Also in some cases a third or even higher order
intertwining operator can be obtained for a given non-Hermitian
Hamiltonian on using the result given in Eg. (10).
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