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SUMMARY. Lot =z, 7y ... be a soq of indopend and idontically diatributed
obsorvations with distribution dotermined by a real valued parametor 9. For cach n = 1,2, ..., lot
Tp=Ty(zys Z2. <., 2n) bo & statistic such that the saq {Tp)isn i timate of 8. Tt ia shown,

undor woak rogularity conditiona on the samplo space of a singlo obsorvation, that tho asymptotic offective
standard deviation of T, cannot bo lass than [n1(8)]-). Tho asymptotic effoctive standard davistion
of T, is definod, roughly apeaking, as tho solution 7 of the oquation P(|Ta—8] > £|8) = P(|N| » ¢/7)
when n is lorgo and ¢ is a small positive nuinber, where N denotos a standard normal variable. Tt ia
also shown, under stronger cogularily condilions, that the asymptotic offectivo standard deviation of the
maximum likelihood estimato of & is (nf(4)]~d. Theso lusi concorning eati are dorived
from cortain conclusions concerning the rolative efficicncy of alternative atatistical tests based on large
samples.

1. INTRODUCTION

Let X be an abstract sample space of points 2, and suppose that the distribution
of z is determined by & (not necessarily real valued) parameter 0 taking values in a
set @ Let g be a given reel valued function of # and suppose that it is required to
estimateg. Foreachn =1, 2, ... let (x), 2, ..., Z,) = z,, (say) denote n independent
observations on z, and let X,,, denote the sample space of x,,. An estimate is defined
(without explicit referenco to g) to be a sequence {7} = T (say), such that
T, = T,(x,) is & real valued measureble function on X, (n = 1,2, ...). Anestimate
T = {T,} is said to be consistent if for each § and esch & > 0, P(| T',—g(0)| > €]6)—0
asn— o0; T is consistent and asymptotically normal (c.a.n., in short) if for each 6 in
@ there exists a sequence {0,} of positive real numbers such that ﬁ_{nwa,(ﬂ) =0

»

and lim P({7,—g(0))/on(6) € 2|6) = P(N < z) for every x, where N denotes a
n—0

pormally distributed random variable with E(N) = 0 and E(N%) = 1. %) is then
called the asymptotio variance of 7', when 8 obtains.

The classical theory of estimation from large samples (cf., o.g., Fisher (1922,
1926), Neyman (1849), Gurland and Barankin {1951), LeCamn (1953), Kallianpur and
Rao (1965); of. also the referencea cited by these authors) has been concerned mainly
with c.a.n. estimates, the usual criterion of assessment of a particular estimate being
its asymptotic variance. As is well known, rigorous theoretical development of
the coriterion just mentioned has proved full of complications and difficulties. One
of the reasons for the difficulties encountered is surely that the asymptotic variance
o? of a statistic T, has a very weak (or at least ill-determined) relation to the F.obual
concentration of the distribution of T, at the value of g —unless , of course, T', happens
to be exactly normally distributed with mean g, and o is the actual variance of T',.
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To put it in another way, in comparing estimates which are c.a.n., but otherwise
arbitrary, oomparisons of their asymptotioc variances sppesr to lack justification.
Indeed, Basu (19566) has given an example where such parisons ssem
mialeading; this example exhibits two o.a.n. estimates, {7,} and (U}, with asymptotic
variances {a,} and {b,} respectively, such that a,/b, — 0 88 n—» co but, for every & > 0,

P(T,—¢(0)| > ¢l0)
U0 >0 v (L)

One of the objects of this paper ia to suggest an approach, parallel to the
classical theory, in which a given c.a.n. estimate {7} (or indeed any estimate) is
discussed in terms of ‘effective standard deviations', the latter being scaling constants
which are well articulated with the actual probability distributions of the estimating
statistics T,. This approach can be effected in several different ways. The
partioular version presented here is tentative, and has no olaim to logioal necessity.

Consider a o.a.n. estimate T = {7}, and suppose that for a particular n, 8,
and € > 0 we wish, for some practical or theoretical reason, to compute P(| T',—g| > ).
If o3 is the asymptotio variance of T',, P(|N| > ¢/o,) is an approximation to the
probability required. This approximation is, however, of unknown acouracy, and that
is precisely why o is in general an unsatisfactory index of the performance of T',.
Suppose we define 7 as follows:

Definition 1.1 : For any real valued atatistic 7,, any 6, and any e > 0,
7 =1,T,, 6 0) is the solution of the equation

P(IN| > elr) = P(|T,—g(8)] > &[6), O<T<®). .. (12)

Then 7 achieves what o is supposed to do, i.e., the right side of (1.2) can be computed
exaotly by entering a standard table of the normal distribution with ¢/7.
Consequently, 7 might be called tho effective standard deviation of T', when (a) 7', is
regarded as & point ostimate of g, (b) 6 obtains, and (o) it i3 required to compute the
right side of (1.2). If 7, is exactly normally distributed with mean g then, for
overy €, 7,(T,, 6, 0) equals, as it should, the actual standard deviation of T',.

Although suggested by the study of o.a.n. estimates, Definition 1.1 is
applicable to any estimate whatsoever. In partioular, if 7, and U, are any two real
valued statistios then P(|T,—g(8)| > €|0) > P(|U,—g(f)| > €|6) if and only if
1T, €,6) 3 7(U,, €, 6). Again, T = {T,} is & consistent estimate of ¢ if and only if,
for each ¢ and each 6 in @, 7,(T',, 6, 8) = 0 aa n — 0. In the following development
based on Definition 1.1, we consider the class of all consistent eatimates. The
restriction to o.8.n. estimates is not made henceforth b it is ry, and
because the present definitions and lusions oonocerning the wider olass of estimates
may have some bearing on formulations of large sample estimation theory (e.g.
Savage (1954)) in which asymptotio normality is not an a priori requirement.
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Let T = {T,} and U = {U,) be two estimates of g. We shall define the upper
asymptotic efficiency of T relative to U when 6 obtains, £,(T, U|6) say, as follows :

En (rfU,, e 0)/ry(To ¢, 0)- . {13)

-]

4T, U|0)= Em

Similarly, the lower asymptotic relative efficiency, (T, U|6) say, is defined by (1.3)
but with im [m replaced by lim lim. In the brackets on the right side of
—0 n—rc0

—0 n—0
(1.3), and elsewhere in this paper, we take the ratios 0/0 and cojco, if they ocour,
to be equal to 1. Then ¢ and # are always well defined, with 0 < ¢ & < «o.

The following considerations are relevant to the definitions of the preceding
paragraph. In the first place, for given 7', ¢, and 6, 7* is in many cases of the order
1/n, 80 that lim {r%U,, e, 0)/7}(T,, ¢, 6)} exists in such cases, and (roughly speaking)

 n—o0

equals the limiting ratio of sample sizes required to obtain comparable probabilities
of the event {|estimated value—actuel value| > €} = E (say). In the second place,
when # is large, the distribution of any tolerable estimating statistic will be concentrated
in a neighbourhood of g, so that small values of € become of primary interest. Since
2 is made infinite as the firat step in the definition of e, it is therefore appropriate
that € then be made to tend to zero.

It may be added here that if we were to let » — o0 and ¢— 0 simuitaneously,
by setting ¢ = A/4/n where A is a constant, then the above definition of relative
efficiency would reduce to the classical definition for c.a.n. with asymptotic
variances proportional to 1/n. (of. remark 3 in Section 8).

$3imaot

It is of some interest and importance to the present formulation that if {7}
is any consistent estimate of g then, for large n, 7% is approximately inversely
proportional to log [1/P(E)); more precisely, for fixed ¢ > 0 and 6,

2 1

'6—5108 P(|T,—g(0)| > ¢€|6) = — m[1+0(1)] e (14)
as n— 00, where 7 is given by (1.2). This asymptotic relation is an i diat
consequence of Lemma 2.3. It follows from (1.4) that definiti and concl

concerning effective variances 73 can be readily phrased in terms of probabilities of
deviations instead.

It follows from (1.4), in partioular, thet if T = {T,) and U= {U,} are
consistent estimates of g, and ¥T, U|f) < 1, then, for each sufficiently small
&> 0, P(|T,—g| > ¢€|6) > P(|U,—g| > ¢|0) for all sufficiently large #; in fact (1.1)
holds as 2— co.

Definition 1.2: An estimate T* = (T2} is an asymptotioally efficient esti-
mate of g if T* is consistent and if, for each 6 in @, &4(T, T*|6) € 1 for all other
consistent estimates T.
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It is shown in Section 5 that asymptotically efficient estimates exist under
fairly general conditions, and that the method of maximum likelihood (m.l.) typically
leads to such estimates. The main results may be desoribed as follows. Suppose
for simplicity that @ is real valued, that @ is an interval, and that g is a monotonic
and differentiable funotion with derivative g'(f) # 0. Suppose also that the sample
space of a single observation z satisfies certain weak regularity.conditions. It is shown
that for any consistent T = {T',} and any 6 we then have

lim lim  {n (T, 6 > [FOPIO). e (1B)

€30 n=p0

Here I(6) corresponds to (and, under certain” additional conditions, coincides with)
the classical ‘information concerning 6 contained in 2. It is also shown, under certain

additional r'egulnrity conditions, that if 0={ﬁ,,} is the m.l. estimate of g then, for
each 4,

T m {nrX0, ¢ 00} < [POPIO). . (L8)

=0 n->mo

It follows easily from (1.5) and (1.8) that the m.l. estimate of g is efficient
acoording to Definition 1.2.

Definition 1.3: Let T = {T,} be an estithate of g, and suppose that there
exists a sequence {v,(6)} of real numbers (0 < v, <  for each n) such that

=30 n o

lim Hm (YT, ¢ O)fol0) =1 = Em Bm ()T, 6, 0)/00)). ... (L7)
L] n w0

Then v,(0) is called the asymptotio effective variance of 7', when 6 obtaina.

It follows from (1.5), with 7', replaced by U,, and (1.8) that [g'(6)]*/nI() is
the asymptotio effective variance of the m.l. estimate of g. In view of (1.4), this con-
clusion can also be stated as follows : With {fl,,} the m.l. estimate of g,

P(|U,—g(6)] > 6|6) =exp (—kn & L, [1+8,(0]) .. (L8)
where I(6) = I0)[¢’)) and lim Lm (|85 0)]}=0. .. (L.9)
—0 n—xm

In the following Section 2 some purely analytical lemmas are stated, the main
one (Lemma 2.1) being a result of Chernoff (1952) conoerning the distribution of a sum
of independent and identically distributed random variables. Lemme 2.1, together
with the fundamental lemma of Neyman and Pearson, are used in Section 3 to study
the asymptotio efficiency of tests of & simple hypothesi inst & simple alter
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ON THE ASYMPTOTIC EFFICIENCY OF TESTS AND ESTIMATES

It is shown that, when the sample size » is large, and the probability of an error of type
two is bounded away from 1, the minimum attainable probability of an error of type
one is approximately .exp(—nH), where H is one of the information functions
introduced by Kullback and Liebler (1951). (of. also Savage (1064)). An application
of this lusion to the stochasti parison of tests (Bahadur, 1980b) is given in
Section 4. The theorem of Seotion 3 is shown in Section 5§ to lead to the asymptotic
inequality (1.5), by using the fact that a consistent eatimate of g also provides a
consistent test of the value of g. The inequality (1.6) is established, however, by
methods typical of estimation theory.

C ti bet asymptotic theories of estimation and of testing
hypotheses have appeared in the literature from time to time, in more or less concrete
forms, The present paper provides an example of a very conorete and explicit
connection. Estimation theory appears here as a limiting case of the theory of tests,
with the considerations of Section 4 marking the transition from one theory to the
other. In partioular, the asymptotic efficiency of the m.l. estimate of 8 is formally
equivalent to certain conclusions to the effect that teats of § = 6§, based on the m.l

estimate are asymptotically efficient against alternatives & in the neighbourhood of 8,.

2. LEMmas

Let 2,2, ... be a sequence of independent and identically distributed real
valued random variables. For eachn =1,2,...let

8, = iz‘. e (2)
f=l

Let k,, k, ... be & sequence of constants, and define
@y = P(8, > k). . {(2.2)

Suppose that the following conditions (i}iv) are satisfied; these conditions imply,
among other things, that , s 0 but «, — 0 very rapidly as n— co. The conditions
are (i) that

lim {k,/n} = H (say), where —c0 < H < . o (2.3)
n o

Let ¢ denote the t g ting function (m.g.f.) of z, i.e. (1) = E(e®). We
suppose (ii) that ¢(4) < co for some ¢, > 0. It then follows from well-known properties
of m.g.fs that the set {¢ : ¢(t)<Cco}, T' say, is an interval which includes positive values.
It also follows that ¢ possesses derivatives of all orders in the interior of 7', and that
the denva.t.xves may be obtained by differentiating E(e*) under f.he expectation sign,

We auppose (iii) that there exists a positive ¢, in the interior of T, such that

) _ Y
Fit) @4)
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Finsily, it is assumed (iv) that z is non-degenerate, i.e.
P(z = ¢) < 1 for every oconstant c. . (2.5)

The reader may verify that conditions (ii), (iii) and (iv) are satisfied, in
particular, if $(t) < co for all t, H > E(z) and P(z > H) > 0.

Define
Yit) = e Tg(t) = e~ TE(h); o (2.8)
It follows easily from (2.4) and (2:5) that y{t,) = p (say) is the minimnm value of v,
and that 0 <p < 1.

The following lemma, due to Chernoff, is basic to this paper.

Lemma 2.1: Suppose that
knfn = H for every n. o (27)

Then (a) a, < p" < [Y1)])" for every n and ¢, and (b) forany given ¢, with 0 <6 < p,
o, > (p—6)* for all sufficiently large n.

Proof : For the proof aee Chernoff (1852). An alternative proof, and certain
refinements of Lemma 2.1, have been given by Bahadur and Ranga Rao (1860).

It follows from Lemma 2.1 that if (2.7) holds then n~! log a, = log p+-o(1).
The following lemma states that this asymptotic formula remains valid when (2.7)
is relaxed to (2.8).

Lemma 2.2: Um {n! log o} = log p.
e

Proof: It follows from (2.5) that the second derivatives of log ¢(t) is positive
throughout the interior of 7', so that ¢'(t)/¢(¢) is strictly i ging and conti
therein. Consequently, by (2.4), the equation ¢'(t)/¢(t) = « has a positive solution,
f(u) say, in the interior of T, provided |u—H| is sufficiently small. Chooss and fix
a u > H so that u—H is sufficiently small. Then we have a, > P(8, > nu) for all
sufficiently large », by (2.2) and (2.8). Henco lim n-log &, > —u f(u)+log 4(, f(w)),
by an application of Lemma 2.1. B8ince f(u) iz & continuovs function of u
in & neighbourhood of 4 = H, and since ¢(t) is continuous in ¢ in a neighbourhcod of
t = t, = f(H), it follows by letting u— H that lim n~1 log &, > —Hto-+log ¢(t)=log p.
By teking u < H, a similar argument shows that Iim n~1log &, € logp. Thus
lim n-'loga, =logp, and this completes the proof.

Lemma 2.3: log P(|N| > )= — “i;[uro(l)] ez > .

Proof :  This is an immediate consequence of the lemma given in Feller (1857,
p. 168),
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The next and final lemma is to the effect that the asymptotio effective variance
(of. Section 1) of the sample mean of n independent and identically distributed random
variable z,, z,, ... exists and equals n~1 times the actual varisnce of each z. It is
sassumed now that the m.g.f. of z exists, i.e. that there exists a 8 > 0, such that
$(8) = E () < o for all  with [¢] < 4. We also suppose, without additional loss of
gonerality, that

E(z) =0, and 0 < B(z") < 0. . (2.8)
S, is defined by (2.1) for each =.
Lemma 2.4: If A(6) ss defined by

P(|S,[n| > €) = P(|N| > ¢/As(e)) v (29)
Jor e>0and n=1,2,.. then
lim Um {n Aje)} = E(z). v (2,10
=0 o
. ~ 7 {1+ 2o
Eguivalendy, P(|8,/n| > 6)=¢ v (211)
where Uim Um {3,(e)} = 0. e (212)
=0 a—w

Proof: Consider a fixed ¢ > 0. Let ¢, and ¢, denote the solutions, respectively,
of the equations ¢'(t)/d(t) =¢ and &'(1)/¢(t) = —s. It follows from (2.8) that
4, and ¢, exist and are uniquely determined for all sufficiently small 6. Let a = y(4)
and b = yY(—4,), where y is defined by (2.6), with H replaced by ¢ therein.

The left gide of (2.9) is equal to p[ fzz‘ > ne) +P( ? (—2) > ns). Appli-

cations of Lemma 2.2 show that this equala a34-5% , where a,—» a and b, —» b as n—c0.
It follows hence that P{|S,|/n > 6) = o, where c,—> ¢ = max {3, }}. Consequently,

.li_g:o(n" log P(|N| > 6/2,(6))} = log o, - (213)
by (2.9). - It follows from (2.9) and (2.13) by Lemma 2.3 that

lim {n A(e)} = (2.14)
a—ym

&
—2Tloge *
It follows from the definition of ¢, and (2.8) that ¢, = 6/o%+-0(s) a8 6— 0,
where o® = ¢7(0) = E(z*). Since ¢(t) = 14-8%0%/2+0(") as ¢ — 0, we have loga =
—éh+ log $(4) = —6*/20%+-0(e%). This last expansion is valid also for b, and there-
fore for ¢. The deaired conolusion (2.10) now follows from (2.14). The equivalenoce of
(2.10) with (2.11), (2.12) ia & consequence of Lemma 2.3. This oompletes the proof.
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3. ASYMPTOTIO R¥FIOIRROY OF TESTS

In this section and the following one we consider the statistical framework
desoribed in the first paragraph of Section 1, but no parametric funotion g ia apeoified.
The following thres conditions on the sample space X of a single observation z are
assumed to hold.

COondition 3.1: O is identifiable, i.e. if 8, and 8, are points in & with
8 7 6, then Pz in A|0,) # P(z in A|6,) for at least one measurable set 4 C X.

Condition 8.2: The set of alternative distributions of z is dominated, i.e.
there oxists a o-finite measure on X, say u#(4), and a non-negative function f(z{8) on
X x @ such that, for each 8 in @, f is measurable in z, and such that

Plxin A6 = [](zw)a,. for all ACX. .. (A1)

4

Define 2(z|6;, 6,) = log [f(z]6,)/f(2]6,)). o (3.2)

As in Seotion 1 in another context, 0/0 and cofco are here understood to be equal to 1.

Condition 3.3 : For any two points §, and 6, in e,
E(z#|6,) < 0 . (3.3)
and Elexp (£2)|6,) < oo for some s = &(f,, 6;) > 0 o (3.4)
where 2 is given by (3.2).

Of these conditions, Condition 3.3 is the only one that is at all restriotive.
The condition implies, in partioular, that the set of alternative distributions of z is
homogeneous, i.e. if P(4|8) = 0 for some & then P(4|8) = 0 for all 6.

Let 8, and 8, be any two points of ® with 8, % ;. In the remainder of this
section we restrict attention to the problem of testing the simple hypothesis that
6 = 8, against the simple alternative that & = 6,. For each n, let 2, denote a sample
(4, %y, -.., Tp) of n independent, observations on 2, and let X, denote the sample space
of Zyy, 86 in Section 1. A teet is defined to bé & sequence {W,} = W say, such that
W, is & measurable subset of X,,. For any givep test W = {W,}, let

@ W) = a(W,) = Play, in W,|600), fu(W) = A(W,) = Plasy not in W, 0). ... (3.8)

a, and f, are then the probabilities of errors of the first ind second kinds, respectively,
in using W, as the oritical region.
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Definition 3.1: €(= &(6,)) is the class of all tests W such that

im {B(W)} <1 e (3.8)
A—>m

For any test Win &,
(W) = lim (20~ log[t/a(W)]}, &W)= l@ {ontlog [1fa (W)]). ... (3.7)
[ =YY Ll {-<]

c[é] is called the lower [upper] asymptotio slope of the teat W.

The notion of asymptotio slope has been disoussed by Bahadur (1960b) in
the special case when the test W = {W,} is based on a sequence of real valued statiatics
satisfying certain oonditions. This special case is also discussed in the next section of
this paper. For the present, let us note that the ratio of the slopes of two tests serves
as their relative asymptotic efficienoy in the following sense. Let W) = (W} and
W = (@) be two tests, and suppose for simplicity that 0< ¢{W!) = gWh) = ¢
(say) < 0,4 =1,2. Givene, 0 <& <1, let MW(e) be the least positive integer
n such that o(W{®) < ¢, where « is defined by (3.5). It then follows ei.sily
from the definition (3.7) of ¢; that M'¥e) = (—2 log e)f(c,+6;), where &;— 0
a8 ¢-0. Consequently, ]il;n (M) M)} = cyfey, i.6. cyfe, i the limiting ratio

L] @
of the sample sizes required by W and W®, respectively, to attain an arbitrarily
small probability of an error of the first kind. In particular, Wi} is more efficient
(in the present sense) than W if ¢, > ¢,.

The following Theorem 3.1 states in effect that, in the class @, each one of &
class of Neyman-Pearson likelihood ratio tests has the maximum slope, and tha} the
numerical value of the maximum slope is 2H, where

Definition 3.2 : H = H(6,, 8,) = E[2(z|6,, 6,)|6,]- .. (3.8)
It follows easily from Conditions 3.1—3.3, the definition (3.2) of z, and the inequality
log t € t—1 for ¢ > 0, that we always have 0 < H < co.

Let o* = 0%6,, 6,) denote the variance of z(z|6,, 8,) when 6, obtains. It
follows from Conditions 3.1 and 3:3 that 0 < o* < 0. Let a be a constent,
—w<a < w,snd put r, = exp [nH+1/n a 0], where H is given by (3.8), 0 < r, < c0.
For each n, lot W= {2 : 11£(z,]6)) > ra [Lf(z|6p), and let W* = {W2).

1 1

Theorem 3.1: (5) W* 45 in @. (i5) c(W*) = §W?®) = 2H. (iis) ¢(W) < 2H
Jor all W in C.

Proof : Write z = z(z;|6,, 6,), Then by the definition of W, and (3.5)
we have S(W;) = P({3] z,~nH)//# 0 < a|6;). Since H and o® are the mean and
variance-of z when 6, obtains, it follows from the ocntral limit theorem that

lim A(W;) = PN <a). . (3.9)
Since a is finite, it follows from (3.9) that W* satisfies (3.8), and part (i) is established.
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We have a(W;) = P(Z} % 3 nl++4/8 ac|8,), by (3.5) and the definition of
W;. We shall apply Lemma 2.2 to this a,. Putting &k, = nH-++/n a0, we see that
(2.3) is eatisfied. Since E(e!'t"?]6,) = E(e**|6,) by (3.2), it follows from (3.4) that
agsumption (ii) preceding Lemma 2.1 is satisfied and that ¢ = 1 is an interior point of
the interval on whioh ¢(t) = B(e”|0,) is finite. Since @'(t)/d(t) = E(ze"|0,)/(t), it
follows from the present, definitions of z and H that ¢'(1)/¢(1) = H, so that assump-.
tion (lii) is also satisfied, with £, = 1 (cf.(2.4)). It is readily seen that assumption
(iv) must also hold, otherwise Condition 3.1 would be violated. Thus Lemma 2.2
applies. In the present case, p = Y1ty = exp(—{H]. $(4) = exp [—H], so that
n~1log ay— —H as n— 0. In view of (3.7), this establishes part (ii).

To prove part (iii), choose and fix a test Win @. Then choose and fix constants
a and ¢ > 0 such that B,(W) € P(N < a)—¢ for all sufficiently large »; the existence
of @ and ¢ is assured by (3.8). Let W* be defined as in the paragraph preceding the
statement of Theorem 1. It then follows from (3.8) that #(W,) < A(W;) for all suffi-
ciently large n. Since W, is a likelihocod ratio test, it follows from the lemma of
Neyman and Pearson that we must have a(W,) > a(W,) for all sufficiently large n.
Hence &W)  {W*) by (3.7). Since §W?*) = 2H by part (ii), this completes the
proof of the theorem.

The quantity H has been atudied by Kullback and Leibler (1961) in terms of
the sample space of a single observation z. They showed, in particular, that if
y = S(z) is & statistic defined on X, and if H(6,, 6,) is the resulting quantity when
z is replaced by y in the definition of H, then Hy  H, with equality if and only if y
is a sufficient statistio relative to the two-point parameter space {f,, 6,}. Theorem 3.1
affords the following statistical interpretation of the stated th of Kullbacl
and Leibler. Writing y; = S(z;), suppose that instead of the original sequence
%3, Ty, ... only the sequence y,, ys, ... is made available to the statistician. Then the
maximum asymptotic slope available (i.e. 2H,) is the same as before (i.e. 2H) if Sis &
sufficient statistic, but is otherwise smaller.

4. THE MAXIMUM SLOPE OF A STANDARD SEQUENCE

In this seotion we consider the problem of testing the null hypothesis that
0 = 6,, where 8, is a given point of ®, by means of suitable real valued statistics.
Let Ty, T,, ... be a sequence such that 7', is a real valued measurable funotion of .
Write P(T, < u|6y) = F,(u).

Definition 4.1: {T,} is eaid to be a standard sequence for testing 6 = 6,
if the following three conditions are satisfied. (I) l:’m F,(u) = F(u) for every u,

A n—pao

where F is a oontinuous probability distribution funotion. (II) There exists a funotion
on (0, o) into (0, ), say f, such that for any sequence {u,} with u,—» co, uifn— d,
where 0 < d < 0, we have 2n~1 log [1 — F,(u,)]— —f(d). (III) There exists a function
b on @ such that 56,) = 0 and 0 < ¥6) < o for 6 # 6,, and suoh that {T',//%}
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is & consistent estimate of b. If {T,} is & standard sequence, f(5%6)) is called its asymp-
totio slope when 6 obtains, (6 5 6,).

Suppose that {T'} is a standard sequence. Then 7, has = limiting distri-
bution if § = 6,, but T, — co in probability if 8 3 6,, so thet large values of T, are
significant wheri T, is regarded os a testing statistic. Consequently, given z,,
1—F (T (zi)) = L, (say) is cslled the level attained by 7, in the given case, i.e.
L, is the probability of obtaining & value of 7, which is greater than or equal to the
value actually observed. Write K, =—2log L,. It can be shoWwn that in the null
case K, tends in distribution to a chi-square with two d.f.,, and that in the
non-null case K,/n — f(b%6)) in probability.

This last result implies that the ratio of the asymptotic slopes of two alter-
native standard sequences is, roughly speaking, the inverse ratio of the sample sizes
required in order to attain comparable levels of significance in the non-null cagse. A
number of examples of this method of comparison of tests are given by Bahadur
(19608, 1960b). As is stated in these papers, although the method makes no explicit
reference to the Neyman-Pearson theory of tests, there is a formal connection with the
latter theory. This connection is exploited in the proof of Theorem 4.1 below.

A standard sequence {T'} is said to be non-degenerate at 6, if there exists
a sequence of constants, {k,} say, such that

0 < lim P(T, < k,|0) < im P(T, <k,|6) <1 e (41)
— n—»oo

n—»o
Assuming Conditions 3.1, 3.2, and 3.3, we shall now prove

Theorem 4.1 : If the slandard sequence {T,} is non-d.
tic slope cannot exceed 2H(6, 6,) when 0 oblains.

generate at 0, its asymy

Proof : Choose and fix a 8, # 0, and suppose (T,,) non-degenerate at 6,.
Then there exists & sequence {k,} such that (4.1) holds. For each =, let
W, = (Zim : TlZen) > ¥}, 8nd regard W = (W} as a test of 0, against 6, (cf.
Seotion 3). Then W is in olass @, by (4.1) and Definition 3.1. We shall show that
¢(W) = §(W) = f(b%8,)). e (42)
The desired conclugion will then follow from part (iii) of Theorem 3.1.

By condition (ITI) of Definition 4.1, T,/4/n — b(6,) in probability, where
0 < b(6,) < co. It follows hence that

Lm {kn/o/n} = b(6)), o (4.3)

for otherwise (4.1) would not hold. Now, a(W,)= P(T, > k,|6,) = 1—F,(k,).
It follows, therefore, by (4.3) and cendition (II) of Definition 4.1, that 2n~! log [1/a(W,)]
= f(4%(6,))+0(1) 88 n—» 0, i.e. that (4.2) holds. This completes the proof.
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In general, there exista no standard seq which is optimum in the sense
that its slope equals 2H(9, 6,) for each 0 in @. This is essentially because in general,
for given n and given size «, there exists no uniformly most powerful critical region
in X, for testing 0 = 6, againat the composite hypothesis &  8,. A special case
where such regions do exist, and consequently an optimum standard sequence also
exists, is treated by Bahadur (1060a).

It seems fairly certain, however, that under general conditions there exists a
tandard or nearly standard sequence {T',}, with slope ¢* say, which is locally optinium
in the sense that c*/2H tends to 1 as 0 tends to 8, throughnon-null values, i.e. (T is
nearly optimum throughout a neighbourhood of #,. This is argued in the subsequent
paragraphs of this section. The notion of local optimality seems to be of considerable
interest. One reason is that if 0 is very distant from 6, it is implausible that a large
sample will be drawn for testing purposes, so that asymptotic comparisons of alter-
native standard sequences (whatever such comparisons may be worth) might as well
be confined to the immediate vicinity of 6,. Consequently, a locally optimum sequence .
is, for praotical purposes, an optimum sequence. This argument is, of course, parallel
to the argument for letting € tend to zero in the definition (1.3) of the relative efficiency
of two estimates of a given parametric function g. Another reason is that (as is already
suggested, and as will be clear from the following paragraphs) the problem of local
optimality lies well within the relatively unexplored transition stage from the problem
of efficient testing to that of efficient estimation.

Suppose that @ is an open set in the k dimensional Euclidean space of points
0= (oW, 6®, ..., 6%), 1 k< co. Suppose that, for fixed 6, = (6", O, ..., 6§,
H(8, 6,) is & sufficiently smooth function of §; to be specific, let D; denote partial dif-
ferentiation with respect to ', and assume that the second order derivative D,D,
[H(8, 6,)] exists and is a continuous function of 6, for all r, s =1,2, ...,k Since
H(6,, 6,) = 0, and H(6, 8,) > 0 for 6 5 8, it then follows from Taylor's theorem
that with 1,(8,) = {D,D;H(6, 6,)}a=4,, and

&
Q6,80 = D L,(6,) (00 —6§) (69—, e (44)
Li=1
we have
H(B, 80) = § Q(6, 0) [14+€(6, 6)) . (45)

where € — 0 as 68— 8,. {I,,(0,)} is necessarily a symmetric positive definite matrix.
It follows from the definition (3.8) of H that with z = z(2|6, 6,) we have
H(6, 6,) = E(z ¢|8,), and E(e’|6,) = 1. o (4.8)

Assuming that Dj(z] and D, Dy[2] exist for ench z, and that the operators D; and D.p,
commute with the expeotation signs in (4.8), (,5 =1, 2, ..., k), it follows from the
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preceding definition of I;; by & straightforward oaloulation that
14(8,) = E(uy|6), where , = {D,[log f(z|0)]}s=s, o (47)

and E(u,|6,) = 0. Thus [I,] ooincides with the classical information matrix.

Now, for each #, let ¥V, be a measurable function on X, into & dimensional
space, 88Y V(z(m) = (V¥ z(y), ..., V& z(w)), such that, for ench 8 in 8, 4/n (V,—6)
tends in distribntion to the k-variate normal distribution with mean zero and covariance
matrix (I9(6)} = {I,(6)}. It iskmown thet these requirementa are met if, for example,
V, = the m.1. estimate of 6 based on #,), and if certain regularity conditions (which
need not be apeoified here) are satisfied. Let

13
Tyzm) = J nZlu(o,)(vgn—og))gvg)-oy)). we (48)
tgm1

Then it is easy to see that {T,} satisfies condition (I) of Definition 4.1 with
Flu) = Py < u), where x} is a ohi-square variable with k d.f., and that (ITI) is
satisfied with B(6) = 4/, where Q is given by (4.4).

It seems very difficult to verify condition (IT) in the general case, and to deter-
mine the function f* associated with {7’} by that condition (assuming that such a
funotion exists), Consequently, the exact level attained by T}, in a given case, L:.
say, cannot be treated by the method desoribed in the paragraph following Definition
4.1, However, given z.,, P(x; > Ti(#)) = L3 say, is an approximation to L’ and
this approximate level L ia easy.to analyse. It can be shown that Lemma 2.3 remains
valid if | N'| is replaced by x; (of. Bahadur, 1960b). It follows henee that, with
K= —2log L3, K%/n tends in probability to Q. Thus, in a certain approximate
sense, @ is the slope of {T,}. It now follows from (4.5) that, again in & certain
approximate sense, {T';} is & locally optimum sequenee.

In order to show that {T';} is exactly a locally optimum sequence, it is necos-
sary to show at least that —2n-1log P(T, > T(%,)|6,) tends in probability to ¢¥(g)
(say) when 6 obtains, and that c*/Q— 1 as §— 6, It is to be hoped that this can be
done by the methods used in the following seotion, provided {7} is constructed acoord-
ing to (4.8) from the m.l. estimate of 6.

5. THEOREMS ON ESTIMATION

In this section we consider the framework described in the firat paragraph of
Section 1, with g & given real valued function defined on @, It is assumed that
Conditions 3.1, 8.2 and 3.3 are satisfied. In the statements of the additional condi-
tions required in this section, 6§, denotes an arbitrary but fived point of &,

Condition 5.1: Given 6, the set

{0:0ine, |g6)—g(6y)| = &) = S,(c, 8;) (ssy) (B
is norzempty for all sufficiently small e > 0.
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Definition 5.1: For any &> 0 suoh that Sjfe, 6,) defined by (6.1) is non-
1
J,(6]6,) = inf {H(8, 6)) : 8 in Sfe, 6,)}, . (5.2)
where H is given by (3.2) and (3.8). For any real r > 0,

empty,

Ep6) = {if%"a)}. e (8.3)

=
Although K{ is always well defined, with 0 £ K’ < oo, the interesting
case is when
0 < K¥(8) < co. o (5.4)

It is evident from (5.8) that, given 6§, (6.4) can hold for at most one value of . This
useful value, if it exists, is usually » = 2, and occasionally r = 1. It should also be
nated here that the useful value of r may vary with 6 in a given estimation problem
(of. remark 2 in Section 8).

The following theorem, which gives bounds on the rate of convergence of
any consistent estimate, is valid provided only that Conditions 3.1-3.3 and 5.1 are
satisfied.

Theorem 5.1: If T = {T,} is a consistent estimate of g then, for every 0 in
© and every r > 0,

lim lim {{n€&) log P(|T,—g(6)| > ¢|6)) > —RSX0). .. (6.5)
=30 n-=Hoo -

Proof : Chooss and fix an r,and a 6, in ©. We shall establish (5.5) at this
,. Choose ¢ > 0 sosmall that S,(¢, §;) isnon-empty, and let 6, be a point in the latter
set. Let A be a constant, 0 <A < 1, and put & = Ae.

For each n, let W, = {z,,, : | Ta—g(6,)| > 8} and regard W = {W,} as a test
of 6, against 8, (of. Section 3). Then

AW,) = P(|T,—g(6,)| < 8|6y) v (5.8)
by (3.5). Now, |g(6,)—g(6,)| = ¢, 8o that
|Ta—g(6))| 2> |e—|T\ — gl6n)]| e (8.7)

for gvery z,,,. Since & = Ae < ¢, it follows from (5.8), (5.7), and the consistency of
T, that #(W,)— 0 as n—aco. Consequently, W is in the olass €(6,) of Definition 3.1.
Hence &(W) g 2H(6,, 6,) by Theorem 3.1. Tt follows from the definitions of & and W
that this last conclusion is

Um {n-tlog P(|T,—g(6)| > 8|60} > —H(6y, bo). e (68)
LI T I,
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Since 6; in 8¢, 6,) ia arbitrary, it follows from (5.8) by (5.2) that
1

lim ((n ) log PUT, 001 > 3100} >~ T o)
n~) 00

Since ¢ is arbitrary, and 8 = Ae—» 0 continuously through positive values as ¢ = 0, it
follows from (5.9) by (6.3) that at 6, the left side of (5.5) is not less than —K®Y(G,)/X".
If K{(6,) = 0 or o, this establishes (5.5) at 8y; if 0 < KU(f,) < o, the desired
conclusion follows by letting the arbitrary A tend to 1. This completes the proof.

It is easy to see from the preceding proof that (5.5) is valid not only for consis-
tent estimates but for any {T,} such that g(6,) 5 g(6) implies im P(|T,—p(6)| > &)6y)

n—p)o0
< 1 for all positive & < |g(6,)—g(6)].

A differant but equally effortless generalisation of Theorem 5.1 is to the case
when g is not necessarily real valued. Suppose that g is & function on © into a metric
space, and that Condition 5.1 is satisfied, with |g(0,)—g(0,)| = the distance betweon
9(6,) and g(6,). With the obvious definitions of a istent estimate of g, and of
K!"{(6), the preceding proof of (5.5) applies verbatim.

In the remainder of this section it will be necessary to assume that & takes
values in a Euclidean space, and that H(8, 6,) and g(6) are sufficiently smooth functions
of 8. For simplicity, we shall consider only the case when £ is a real valued parameter.
The parallel development when ¢ is & k-di ional vector is di d briefly in
remark 4 of Section 6.

Condition 6.2: 0 is real valued. ® is an open interval. For £ in the
neighbourhood of 8,,

H@,6,) = @;2@' 1(6,) + o((B—8,), . (510)

where 0 < I(f,) < . ¢ is a differentiable funotion of 4.

It follows by taking k =1 in the paragraphs containing (4.4)—(4.7) that,
under certain regularity conditions, I defined by (5.10) coincides with the classical
‘information concerning & conteined in ', but these additional conditions are not
required at present.

Theorem 6.2: If T = (T} is a consistent estimate of g, then (1.5) holds for
each 6 in ©.

Progf: Choose and fix & 0, in ®. We shall establish the inequality (1.5)
at 0, Since 0 < I(f,) < co, we may assume g'(6,) 5 0, for otherwise the inequality
is trivial. Since g’(6,) % 0, it is plain that Condition 5.1 is satisfied. Moreover, for
each sufficiently small ¢ > 0, we oan choose a 6, in S,(c, 6,) 8o that 6§, — 6, 88 € — 0.
Sinoe J,(¢]6,) < H(B,, 8,) for every & by (6.2) , we have

Jdelb) o _ Hlbuby) e (611)
e T [g(6)—g0]

243




Vor. 22) SANKHYA : THE INDIAN JOURNAL OF STATISTICS [PArTs 3 & 4

It follows from (5.10) by letting ¢ — 0 in (5.11) that
K®(6,) € 41(60) [ [9/(6p)12. v (5.12)

It follows readily from (1.4), (5.5) with 7 = 2, and (5.12) that (1.5) holds at 6,, and this
completes the proof.

Theorem 6.2 states in effect that the agymptotio effective variance (Definition
1.3) of & consistent estimate of g cannot be less than [g’]®/n]. The remainder of this
saction is devoted to showing that, under certain additional conditions, the asympto-
tic effective variance of the m.). estimate is equal to this lower bound. The conclu-
sion to be established is, in a sense, stronger and more precise than the conclusion that
the m.l. estimate of g is & c.a.n. estimate with asymptotic variance [g'}/nl. The
regularity conditions which we shall require are essentially & combination of Wald's
conditions for the consistency of the m.1. estimate of 0 (Wald, 1949), of Cramér's condi-
tions for the asymptotic normality of a root of the likelihood equation (Cramér, 1946)
and of conditions required in order to apply the lemmas of Section 2 in certain ways.

Let L(0]x) = log f(x|6), where [ is given by (3.1), and let D = 3/30.

Condition 5.3 : (i) For each x in X, L{6|z) is a thrice differentiable function
of 0. (i) With

u(%]6o) = {DL},_, end o(z|6) = {DL},_, . . (6.13)

we have
Blu|6p) = 0, E(u?|6y) = ~ E(v|6p) = I(6,). e (6.14)

(iii) There exists & measurable function w(z|6,), and a neighbourhood of 6,, such that

| DAL} < w(z|6,) ... (6.15)
for every z in X and every & in the neighbourhood. (iv) The m.g.fs of %, v, 2nd w
exist when 6, obtains.

In Condition 6.3 (iv) and in Condition 5.4 below, the finite existence of m.g.fs
is required only in a neighbourhood of the origin.

In the following, for any real valued function % defined on @ and any set
0 Co, we write H{Q)=sup {h(d) : 6in Q). In particular, with z(x|6, 6,) defined
by (3.2),

2{z| 0, 6,) = sup {x|6, 6,) : 6 in 1} . (5.18)
Since z(z|6, 6,) is measurable in z for each & and, according to Condition 5.3(i),
continuous in @ for each z, it is easy to see that z(z|Q, 6;) is measurable (but not
necessarily finite valued).

Condition 54 : The m.g.f. of 2(z| @, 6,) exists when 8, obtains.

Sinee 0 < z(z|0@, 6,) < oo, this condition is equivalent to E(e* | 6,) <
for some ¢ > 0. The reader may verify that if X is a disorete sample space, and
Z[P({}]6,)}° < oo for some power p < 1, then Condition 5.4 is satisfied.

L d
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In order to state the next and final regularity condition, suppose
8= (f:a<8<b) where —0 La <bco
Condition 5.5 For each z in X, f(z|6) tends to a limit as 6 tends to a or

to b, With
= li o), b= Lim 6 o (5.
fz]a) = lim =10, fzld) = lim {f(=16)} (5.17)
we have a(z:f(z|a) #f(z]|6,)} > 0 and pfx : f(z|d) # f(z|6,)} > O.
Now, for any n =1, 2, ... and any 2,, = (2, Zy, ..., Z,) in Xy, lot L (0|x,)
denote the logarithm of the likelihood function given z,, i.e.

L8lzw) =10g [[ fzl0) = L)z + ... + Llz). ... (5.18)

=1

Lot M,(z,) be the (possibly empty) set of points 8 in € such that

L(0)|2in) = Ln(@|Zim)-

Definition 5.2: A sequence F= (i’,}:ia said to be an m.l. estimate of §
if, for each n, T, is & meaaurable function on X, into @, and if f',,(a:(,,) is in My(z,,,)
whenever the latter set is non-empty. A sequence 0= (ﬁ,} is said to be an m.1,
estimate of g(0) if U, = g(T,), where 7', is an m.l. estimate of 6.

We can now state

Lemms 6.1: There exists an m.l. estimate of 8.

Given #n and 2, we can surely choose & point 7',, in @, in such a way

that 7, is in M, if the latter set ia non-empty. Lerama 5.1 asserts that this choice
ean be exercised (for those z,, for which M,(z,,,) is empty or consists of more than one
point) so that the resulting function of z,,, is measurable. The proof consists in giving

a construotive definition of 7, based on the continuity of the likelihood function and
the separability of ®. This proof is omitted because it is rather long and uninterest-
ing, and becsuse the arguments of the following paragraphs apply to any given m.l.
estimate. (of LeCam, 1056).

In what follows, {T,} is & given m.l. estimate of 6. It is assumed that 6,
obtains, where 6, is an arbitrary but fixed point of ©.
Lemma 5.2: Given h > 0, there exists p, 0 < p < 1, such that
P(|T,—0,| > b < o e (519)
Jor all sufficiently large n.

This lemma implies the strong consistency of the m.l. estimate of 6. Its
proof is along the lines of Wald’s proof of consistenoy (Wald, 1849).
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Proof : Consider & 8 in © with 6 3% 6,. We shall show that

E100h <1 foro <t < 1. e (5.20)
Letting ¢() denote the expectstion in (5.20), we have $(0) = ¢(1), by the definition
of z and the present assumption that-§, obtains. Since ¢ is an m.g.f., ¢ is convex
in(0,1). Suppose that ¢{4,) = 1 for some ¢, in (0, 1). It then follows from convexity
that ¢ = 1 for all'z in (0, 1) so that ¢°(t) = E(z%") = 0 in that interval. Hence
Pz = 0) = 1, 0. P(f(z]6) = f(z|00)|8p) = 1. Consequently, u(f(z|6) # f(z|0g)} =0,
and this is contrary to Condition 3.1.

Next, let.f(z|a)'be defined by (5.17) and z(z|a, 6,) as usual by (3.2), —0 Kz,
\VWe shall show that (5.20) continues to hold with & replaced by a. Let 0,, 6,, ...
be a sequence in ® which tends to a. Writing ¢, for ¢ when 6 is replaced by 6;
in the preceding paragraph, we have ¢(1) = 1 for each i. Writing z = 2(z|a, 6,),
it follows hence by (5.17) and Fatou’s lemma. that with ¢(t) = E(e”) we have ¢(1) < 1.
Let x =1 if z> —eoand y = 0 otherwise, and let 3,(t) = E(xe”). Then @) < ¢(t)
for all ¢, with equality for ¢ > 0. Suppose that there exists a ¢, with 0 < ¢, < 1 such
that () > 1. We then have gy(t;) > 1, $,(0) < 1, and ¢(1) < 1. Since ¢, is convex
on [0, 1], it follows -that ¢,= 1 on this interval. Now $,(0) = 1 implies E(y) = 1,
ie. P(z> —)=1. Consequently, ¢(¢) = ¢y(t) = 1 on [0,1]. It follows hence,
aa in the preceding paragraph, that P(z = 0) = 1, and hence u({f(z|a) # f(z]6,)} = 0,
which contradicts the second part of Condition 5.5. The argument of this paragraph
obviously remains valid when a is replaced by b.

It ia therefore established that (5.20) holds for each 6 % 6, in o*
= {0:a < 6 € b}, with z{(z|a, 6,) and z(z|b, 6,) defined as in the preceding paragraph.
Now choose and fix a ¢ such that 0 < ¢ < 1 and such that E(exp[iz(z|0, 6,)]) < oo;
such & ¢ exiats by Condition 5.4. It then follows from (5.20), by an application of
Lebesgue's dominated convergence theorem, that for each 8 in ©* with 6 3 6, there
exists an interval contsining 6, J(6) say, such that with

2*(z|0) = sup {z(z|6,, 6,) : 6,in HAB)}, p(P) = E(e*) ... (6.21)
we have p(f) < 1, and such that g(6) is open in @*.

Given &> 0, let 0 be the set {#:6ine*, |§—6,| > h}). If Q is empty, (or

indeed if n—{a}—{b} is empty) then [f‘n—ﬁol > h is an impossible event, so that
(6.19) holds for every n with p = } (say). Suppose now that Q is non-empty. Since
Q is a compact subset of ©%, and 0 does not contain 8, it is possible to find a finite
number of points in Q, say 8, 6, ..., 0, such that @ C HO,)+IG)+...+H6y),
where J(0) is defined for each 6 s 8, in the preceding paragraph.

Now oconsider & fixed n and z,,,, and suppose that |F,—8,] > h. Suppose
first that there do exist 6 valuesin @ for which L,(6) = L,(®), i.e. M, is non-empty.

Then £, is in M, end slso in 0. Consequently, L,(n) » L%} = L,(8) > L,(6,).
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Thus
Lo(02|z) 3 Ly(fo|Zm)- o (6.22)

Suppose next that M, is empty, i.e. L,,(f‘,,) # L,(©). In that case, L,(o) =
max (Ly(a), L,(b)} > L,(6,); hence (5.22) continues to hold, since a and b are included

in 0. Thus |7,—6,] > h always implies (5.22).
Since- 2 C HBy)+...+H6,), (6.22) implies

max  {Ly(H6))|zm)} 2> Lnfo]Timy)- ... (6.23)
1<k

Now, for any 0, L,(H0)|z,y) — Lu(6,| z(m) is less than or equal to ),2' 2%(x;|8), by (5.18)
=1
and (5.21). Consequently, (5.23) implies

max {

3 2| 0)) > 0. . (5.24)
1<i<k

[}

Let 4% denote the event that ¥ z*(]6)) > 0. Then (5.24) is equivalent
i=1
to AN 4 AD 4 ... + A%, Consequently, by the preceding paragraphs,

k
P(|T—6 > B < D PAY). ... (6.26)

=1

1t follows from the definition of 4 by taking H =0 and z = z*(z|6) in
Lemma 2.1 thet P(4Y) < [p(6)))", where p(6)) is given by (5.21). Let p = max
{p(6y), ..., p(6:)}. Then p, < 1, and the right side of (5.25) does not exceed k pj.
Choose & p such that p, < p < 1. Then kgj < p" for all sufficiently large n. Conso-
quently, by (6.25), (6.19) holds for all sufficiently large n. This establishes Lemma 5.2.

It might appear at first sight that a refinement of the preceding argument
would lead to the best possible p in (5.19) and that by determining the dependence
of this p on A it would be possible to determine the asymptotic effective variance of

f',,, but this is not the case. The reason is essentially that the proof of Lemma 5.2
reduces ® in effect to a finite set. When ® is finite, the m.l. estimate of & has
necessarily a discrete .distribution, and statistios with disorete distributions are liable
to have large effective standard deviations, It is therefore necessary to take into
account the fact that ® is & continuum. This is done in the proof of the following

lemma by using Condition 5.3 and exhibiting the m.l. estimate as & root of the
likelihood equation.
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Loemma 5.3: Given 8, 0 < 8 < I(6y), there exists 6 p < 1 such that, for every
6> 0,

PO, —04] > 6) < P(|{a| > el(8)—8]) + p° .. (5.28)
Jfor all sufficiently large n, where

i u(z|6y)

& (8.27)
Proof : Write
Z v(a:,]ﬁo‘) Z w(z;| 6)
1= I(6) + = V= - ... (5.28)

where v and w are given by (5.13) and (5.15). Choose and fix an % > 0 such that
© contains the interval {8 : [6—6,| < A}, (5.15) holds for every 6 in this last interval,
and &/k > E(w|6,). Since v and w possess m.g.fa when 8, obtains (Condition 5.3),
and E(v) =—1I(6,} by (5.14), it follows from (5.28) by means of Lemma 2.1 that

P> D<o Pn< - D<m Pe> <m0

for every n, where each p; is less than 1.
Suppose that for given » and z;, we have
[, —6,| <, L(D,) = L,(®). .. (6.30)
Write A,(6) = D[L,(f)]. Since 7', is in ®, and @ is open, it follows from (5.30) by
Taylor’s theorem that there exists a 8¢ with |6*—6,| <[T,—6,| < b such that

A8y +(F—60) A8 +3(F,— 052 82(6*) = A,(F,) =-0. It follows hence by referring
to (5.13), the definition of A,,, and (5.27), (5.28), that

(Fo—0)IBs) + 1] = & e (531)
where
[7a] € [7a] + A&, . (6.32)

It is not required here that r, be a measurable function of z,, or that (5.30) be a
measurable event in X,

Let A4, denote the event [f’n—ﬂol >k, B, the event LT,) # L,(®), and
C, the event |7,]+3 A &, > 8. Asis shown in the proof of Lemma 5.2, each of the
events 4, and B, implies (5.22), and the probability of (5.22) is < p§ for all sufficiently
large n, where p, < 1. O, implies at least one of the three events whose probabilities
are considered in (5.20). We conclude that there exists & p < 1 and & measurable
event E, such that 4,4 B,+C, implies E,, and suoh that P(E,) < p* for all
sufficiently large n.
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For any given 6, the left side of (6.28) does not exceed P(z, nof in

E,,|P,—6,] > &)+ P(E,). Tt follows hence from (5.31), (5.32), and the preceding
paragraph that (5.28) holds for all sufficiently large n, and this completes the proof.

We ocan now establish

Theorem 6.3: If (l7,,} is an m.l. estimate of g, then (1.8) holds whenever
g'6) # 0.

Proof : Choose and fix a 8,0 <& < I(f,), and write a = I(6)—6. It
follows from (5.27) by Lemma 2.4 and Condition 5.3 that, given p < 1,
n-1 log P(|¢,| > ea) tends to & limit > log p as n— oo, provided only that ¢ > 0 is

sufficiently small. It follows hence from (5.26) that, with 4,, = {2, : [T —0,| > €},

we have

im {n2log P(4n;)} € Lm {n~'log P(|L,] > ea)) .. (6.33)
n— o n—0

for all sufficiently small ¢. Multiply (5.33) with 1/¢% and let € —» 0. It then follows
from (6.14) and (6.27) by Lemma 2.4 that

fm  Om (e log Pd,.) < — 4 1%0’.,) o (634)

=0 n—oo

Since @ = I(6,)—45, and & is arbitrary, it follows from (5.34) that

Im Hm  {(ne?) log P(dy,.)) < —41(6o)- e (5.35)
—0 n—w

In view of (1.4), (6.35) is equivalent to (1.6) at 6, in the special case g(d) = 4.
To treat the general case, suppose (17,,) is an m.l. estimate of g. Then Z'j,, = g(f‘,,),

where {’f’,,} is an m.l. estimate of #. Suppose that g(f,) # 0. Chaose and fixa A >1,
It is easy to see that, for all sufficiently small e > 0, |g(8)—g(6,)| > ¢ implies |0—8,| >4,

where & = ¢/A|¢'(8,)|. Lot By, =.(2m :| Un—g(6a)| > €}. Then B,, implies Ans
80 that P(B, ) € P(4,,). Since df¢ = 1/A|g’], it follows from (6.35) that

. 16,)
i Bm {fn e log P(Ba) < — b . (5.38)

Since A > 1 is arbitrary, (5.36) implies

(5.37).

; 169
i, 1, (netlog PR, < —dg e

It follows from (5.37), the definition of B, ,, and (1.4) that (1.8) holds at 8, , and this
completes the proof of Theorem 6.3,
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6. FURTHER REMARKS ON ESTIMATION

The following remarks concern the definitions and conolusions of Sections
1 and 6.

1. It is olear from (1.4), and from the proofs of Section 5, that the present
study of estimation is based in effect on the logarithm of the probability of & devia-
tion of ¢ or more from the value being estimated. However, when this last probabi-
lity is the criterion, the interposition of the logarithm means that only the dominant
features of the estimates being compared are taken into account. In particular,
there may exist two alternative estimates T = (7'} and U = {U,}, such that both
T and U are efficient estimates of g according to Definition 1.2, but such that T is
actually more efficient in the sense that

im m [ PUTa—g(6)| > €]6)
ﬂ E“{W} <1 o (8.1)

for all 8. This is the case if, for example, z is real valued and normally distributed
with mean 6 and veriance 1, g(d) =0, T, = (z,+...+a,)n = %,, and U, = Zm,,
where my, mg, ... is & sequence of positive integers such that m, < n for every =,
lim {m,/n} = 1, and lim {n—m,} = co.

n—00 n— 0

It is possible to formulate asymptotic relative efficiencies in terms of limits
such as the left side of (6.1), but the analysis then required seems very difficult, even in
the simplest cases.

2. The following example shows that, in general, the r for which (5.4) holds
depends on 6.

Suppose that z is real valued, X ={z:0<2<1}, 0={0:0<8 <1},
# = Lebesgue measure on X (of. Condition 3.2), and
if 0<2<6
flz]6) = .. (8.2)

8~

if f<cz<l,

21—0)

Let g(6) = 6. Tt is readily seen that Conditions 3.1, 3.2, 3.3 and 5.1 are satisfied,
80 that Theorem 5.1 applies.

Let us write X instead of K, since here g is the identity funotion. A straight-
forward but lengthy caloulation, which is omitted, shows that

2 if 6=}
E®g) = { o (8.3)
o if 654,
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and that
0 f 6=14%

Koy = {zlal(%—k lox(l—?)] To=4.

(6.4)

where § = max {6, 1—6}.

It is plain from (6.2) that 6 is the median of the distribution of z. Consequently,
if 7%= the medisn of the sample values (1, T3 ...r 2}, T* = (T} is & consisten
estimate of 6. By expressing the distribution of 7 in terms of the binomial
distribution, and applying Lemma 2.2 to the latter distribution, it can be shown that

lim  lim {(ne?)2log P(|Ti—0] > €|6)) = — — o (85)
=0 no® 252
for overy 6. It follows from (6.3) and (8.5) that T* is efficient when 6 = }. It does
not follow from (8.4) and (8.5) alone that T* is inefficient for other values of . This
is because Theorem 5.1 only provides & bound which may or may not be attainable
in a given case.

It would be interesting to know whether, in the present case, there exists
an estimate which is efficient according to Definition 1.2, and if so, whether officiency
oan be established by means of Theorem 5.1.

3. Let T = (T} be a c.e.n. estimate of g, and suppose that, when 8 obtains,
the asymptotic variance of T, is v(6)/n, where 0 < v < co. It was generally believed,
following the work of R. A. Fisher, that we must then have v(6) > [¢'(6)]2/1(0) for all
0. This belief was shown to be erroneous by J. L. Hodges, who constructed examples
of estimates which were superefficient in the sense that v(6) < [¢'(6)]*/1(6) for all 8,
and

v(6) < [g'(O)}/1(6) .. (8.8)
for some values of 0. A detailed study of superefficiency is given by LeCam (1953),
who showed that in general the set of values 6 for which (6.8) holds must be a set
of Lebesgue measure zero.

It follows from Theorem 5.2 that the phenomenon of superefficiency depends
on a certain lack of uniformity in the approach to normality. To see this, let A be
a positive constant. Then

m  P(VA|T,—0(6)| 2 A16) = P(IN| > N+/o0)) (%)

by the asymptotic normality of T. It follows from (6.7) and Definition 1.1 that
. A

lim- UTy, =, )} = (0 .. (6.8

lm, {741, 2.0} = w0 (68)

for every A and 6, Suppose, for a given 6, that (6.8) holds uniformly in A. It then
follows from (1.5) that (6.8) cannot hold for that 6.

4. Suppose that @ is an open set of the k dimensional Euclidean space of
points 8 = (69, 6, ..., 6%), and that the conditions stated in the paragraph
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containing (4.4)—(4.5) are satisfied. Suppose that the given real valued function
g(f) possesses continuous partial derivatives dg/d6!h = k(6) (say) for i =1, 2,..., k.

The conditions just stated generalise Condition 5.2. If Conditions '3.1—3.3
are also satisfied,

im  lm (ar¥(T, 5 6 > z 1%(6) h(OYA(6) . (89)
TS0 A 3 ® =1
for any consistent estimate of g. The proof of (8.9) is exactly the same as that of
Theorem 5.2, with 8, in the proof of Theorem 6.2 so chosen t,lmt: the vector 6,—8,
is proportional to the vector (r, ry, ..., r;) Which minimises 2 I,,(Oo) r;r; subject to
the condition Z hi(6,) r; = 1 (say).

Itis a ht.t,le more difficult, but quite possible, to generalise Theorem 6.3, i.e.,
to show (under certain conditions) that if'(l‘),.) is an m.l. estimate of g then

x
im fm {(nr%D,.60) < Z 14(0) h,(6) k(6) e (8.10)
0w &4
whenever the right aide of (6.10) is positive. . The main difficulty is in formulating
a satisfactory generalisation of Condition 5.5; once this is done the proof of (8.10)
proceeds along the same lines as that of Theorem 6.3.
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