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Abstract

The phenomena of spontancous PT symmetry breaking, associated with
non-Hermitian Hamiltonians, are investigated. It is shown that spontaneous
breakdown of PT symmetry s accompanied by the explicit breakdown of
paendo-supersymmetry. We also discuss in detail the resulting structure.

PACS number: 03,65, —w

1. Intmduction

Non-Hermitian gquantum mechanics has drawn a lot of attention for almost a decade now,
because of the intrnsic interest of such potentials [1] admitting real spectrum under certain
conditions, as well as their possible applications [2-4]. Among the varnouos non-Hermitian
maodels, a particular class with PT symmetry 15 of special mterest, since their energy
spectrum exhibits a charactenstic feature—the energies are real for unbroken PT symmetry
(when the potential as well as the wavefunctions are invanant under the combined action
of space mversion () and time reversal (7)) while they switch o complex conjugate pairs
for spontaneously broken PT symmetry (i.c., the wavelunctions lose their PT symmetry,
although the potential still retains it) [5-7]. AL the same time, various studies have shown
that PT symmelry is neither a necessary nor a sufficient condition for the existence of a real
spectrum. . The eriteria for the energies o be real (or in complex conjugate pairs) are the
i-pseudo-Hermiticity of these non-Hermitian Hamiltonians [8].

The phenomenon of spectral discontinuity has been the subject of study of a number
of works, both for Hermitian models [9, 10] as well as non-Hemitan ones [6, 8, 11=13],
employing a variety of techniques. In particular, it has been observed that it occurs when a set
of parameters in the potential reaches certain eritical values. While the nonanalytic behaviour
of the energy spectrum was interpreted in temms of supersymmetry breaking in Hermitian
systems [10], an interplay was established between PT osymmetry and supersymmelry in
a certain class of non-Hermmitan models [12-14]. In the present letter, we shall show that
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the spontancowus breakdown of PT symmetry 15 accompanied by the explicit breakdown of
paendo-supersvmmetry, and establish the significant role played by a set of pammeters a
(in the non-Hermitian potential) in this respect. We shall make a detailed study with the help
of a couple of exactly solvable examples, and also study the nature of the wavelunctions.

2. Theory

To begin with let us briefly recall some bare facts about PT symmetry. A non-Hermitian
Hamiltonian H{x; a), given by (a denoting a set of paramelers)
&
H(x;a) = —— + V(x;a) (1)
dx-
15 said to be PT symmetric if
(PT)H(x:a) = H(x:a)(PT) (2)
where the space inversion operator 7 oand the time reversal operator T are defined by their
action on the position, momentum and identity operators, respectively, as
PxrP = —x, PpP=TpT = —p, TE.1T = —i.l (33
We note that for unbroken PT symmetry, the Hamiltonian Hx; a) and the wavefunctions
Yrix; @) are both mvariant under the PT transformations [6, 7]
HY—x;a)= Hix;a), W —x:a) = 2frix;a). ()
On the other hand a non-Henmitian Hamiltonian A s saud to be gp-pseodo-Hermmitian (thus
possessing real or complex conjugate pairs of energies), if [8]
H=H =y 'H'y (3)
where 1 15 a linear, Hermitian, mvertible operator.
Let a non-Hermitian Hamiltonmn H(x; a)

3

d_
Hiyjx;a) = ——+ Vi{x:a) (6}
dx-
be defined in such a way that the potential Vi (x; @) has an even real part Vi(x; a) and an odd
mmaginary part Vo{x; al:
Vilr:a)y= Vilrsa)+iV_oix: a)., Vi(dr) = £ Viix). (7Y
Evidently, H(x; a) is PT symmetric,
PTH (x:a) = Hi(x;a)PT (8)

and for such a Hamiltonian, g may be represented by the parity operator T, e, Hi(x;a) is
P-pscudo-Hermitian.
MNow the Hamiltonian in (1) can always be factorized using the following ansatz [ 15]:

i1

H = BA+E, (%
where A and B are defined by
A= i + Wixsa)
dx (10)

B = —i + Wix:a)
fiky
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Wix:a) being given i terms of the ground state cigenfunction yﬂ-’[',”{.r: a)of Hi:

vy (x:a)
Wi(x;a) = ————. (11)
vy " (x: a)
This allows H; to be ientitied with the well-known form
d? 1 ; i) "
H.:—F+W — W+ E, (12)

0. ;
where Ej 'is the ground state encrgy of M.
One can then construct another Hamiltonian Ha, isospecral to Hy, by

Hy=AB+E" (13)

which, in terms of Wix: a), reduces 1o
a

d- a ' [y
Hg:——,+W'+H"’ +E“'. (14}'
dx-

Evidently, if 1.£rf'|':' 15 an eigenfunction of H) with energy eigenvalue Efl':', then 1,.!-':;” = .—’11,5132':'
is an eigenfunction of Hx with the same eigenvalue ELY except for the ground state, which is
annihilated by A.

HAy," = (AB) Ay, = A(BAYW, = A(Hiy,") = EM(Ay"). (15

N

Thus,
1
] 2 2 ]
E)\=E?, ¥ = —AY,,. (16)
[gth _ g
W Ta+l 1]
Thus A and B play the role of intertwining operators for the partmer Hamiltonians Hy and A
AH = H: A, H\B = EBH (171

A(B) converts an eigenfunction of Hy (H2) into an eigenfuncion of & ( H), with the same
encrgy. Additionally, A(B) destroys (creates) an extra node in the eigenfunction.

For conventional Hermitian quantum systems, Wi, a) s the superpotential and B = A
However, for non-Hermitian systems o general, B = A', as Wix:a) is a complex function.
In analogy with conventional quantum mechanics, and considering the n-pscudo-Hermiticity
of the Hamiltonian, Wix; a) may be termed as the psendo-superpotential.

Let us now construct 4 matrix Hamiltonn M, of the form

(s u) s
”—(u H) R

If we consider the following matnx representation for i [8]

L
n_({} i;r_) 9

where e (-) 15 a4 Hermitian linear automorphism of B (H)), it follows from (3), that the
mmtertwining operators A and B must be related through

B=A"=nq'Aln (200)
Hence, the pseudo-superpotential Wix: a) must obey the relationship
W(x; a) = n, W*(x;a)n_ (21)

which, for the PT symmetric Hamiltonian H(x; a) considered here (with 54 = £F),
reduces to

(PTYW(x;a)(PT)"' = —W(x:a). (22)
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Writing Wix: a)in the form

Wix: a) = Weir;a) +iWeix:a) (23)
the conditon (22) mplies

PWeix:a)P~' = —We(x;a), PWiix; a)P~' = Wi(x:a). (24)

Thus the matrix Hamiltonian W constructed above represents the pseudo-supersymmelric
Hamiltonian, formed by the pseudo-supersymmetne partners By and H,,

Hy 0 AAF 0
= = —— o 25
it (u H.) ( 0 AH%) =)

The pseudo-super-Hamiltonian M ois part of a closed algebra containing both bosonie and
fermionic operators, with commutation and anticommutation relations.  Such a guantum
system is generated by pseudo-supercharges O and (F, which change bosonic degrees of
freedom into fermionic ones and vice versa:

{0 A . (0 0\ i,
Q‘(n u)‘ Q _(A= ﬂ)_” Q. (26)

The following commutation and anticommutation relations then describe the closed pseudo-
superalgebra

H={0.0°}. @'=0%=0, [0.HMI=IC"HI=0. (7))
Let the dependence of the potential V(x: a ) on the set of parameters a be such that spontaneous
breakdown of PT symmelry occurs at some cntical value of @, say a,.. and real energies change
to complex conjugate pairs. In terms of the pseodo-superpotential, the condition (22) or (24)
holds only for unbroken PT symmetry. In such a situation, the relationship (20} breaks
down: B # A% Conseguently, the isospectrality of the parmers is lost as A and A fail
to intertwine the non-Hemmitian Hamilonians denoted by By and Hy. Thouogh one can stll
wrile > = AB formally, the anticommutator of the pseodo-supercharges fails to give the
pseudo-super-Hamiltonian

(0. @1 # M. (28)
In analogy with the spontanecous breakdown of supersymmetry in conventional guantum
mechanics (with vanishing zero energy ground state), this may be viewed as the explicit
breakdown of pseudo-supersymmetry i non-Hermitian P7T symmetric quantum systems.
Thus the pseudo-supersymmetric algebra defined in (27) holds only for unbroken PT
symmetry, when the pseudo-superpotential defined in (11 above obeys (24), and the encrgies
are real. However, at the point of spontaneous breakdown of PT symmetry (a = a,.), when
the energies of the system switch from real w0 complex conjugate pairs, both conditions (20)
and (24) are violated, and the pseudo-supersymmetry of the systwem is explicitly broken.

We consolidate our observations with a couple of exactly solvable examples.

3. Explicit examples

4. PT symmetric Scarf If potential
The non-Hermitian PT symmetric Scard 11 model may be described by the Hamiltonian
d? 1
H.Lr:l.n,n}:—F—u. .\!_‘Eh".r—i(l'|+ﬂ+ 1) sech v tanh x, vy =0 (29}
X<
where 1y and @ are real. The energy levels and the comesponding eigenfunctions are given
by [6]
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2 1
E'”{u,:ﬂ}:—|n+;—;{:.'+.rﬂ}l| i n=0,172 ... {;{IJ.‘+qr|—1}l (300

ey

1 —isinhx\™ ¢ 1+isinha\ ™ a1 5,
1£rr”{r:u|,ﬂ}=1"~",..‘,( — r) ( o r) BT G sinh ) (31)

v gy 2 5

1 ; 1 : e the

where 5 = v 2y +a+ 5.1 = 4/—a, Ay = =1 +If:;,j.{,‘, = —;+45 and g (= £1) is the

quasiparity, giving rise 1o doublet solutions, which is a chamcteristic feature of this class of
PT symmetric models. Normalization requirement restricts the signs allowed in A, and e

It follows from (29) and (31) that the Hamiltonian & (x; vy, a) s always imvanant under

the PT transformation irrespective of the value of @, while the wave functions gﬂ-;ur:'{_r; v, al

are PT invanant only when
—(2ni+i) €ag. (32)
The pseudo-superpotential corresponding to the Hamiltonian in (29) above, may be given by

Wixia) = (4, + p htanh x — (A, —p,)sechx

/ | i ! 1
(—1 - \’izu, +id+ 3 +q-"—n) tanh v — — (1"','21_', +id+ 3 —qﬁ.-"—n) sechox.

I | —

2

(33)

Obviously, (24) 1s satistied for real &, and g, which, in tum, is related to (32), and hence
to unbroken PT symmetry, Le. real encrgies. At the same tme whenever @ crosses a cntical
value a.. e, @ lies beyond the region specified in (32), and encrgies switch to complex
conjugate pairs, two simultaneous phenomena are observed:

(1) the condition (24) is violated, thus mducing spontaneous breakdown of PT symmetry
i Hj(x:v,a)

(i) the violation of {20 leading to the explicit breakdown of pseudo-supersymmetry.

If one keeps vy fixed, then from (305 one can show that though

lim E,(a) = E}(a=10) (34)
==

the right-hand mit, viz., lim, g E;"‘rf'{n}, does not exist, A similar situation occurs at
a=—(2w +1/2).

It would be interesting w0 study the nature and behaviour of the partner Hamiltonian
Halx; vy a), from (140,

(1) For a lying in the range as given in (32),
d? I 3 s+

Hg{.r:l'hﬂ}l:—m— _E+ 3

— s+ qr}} sech® x — i
® I_IF{:."’ —r"}l—l:.'—qrr}}such.rta.nh.r_ (35)

Evidently, as the condition {24) is obeyed in this case, the partner Hamiltonian s (v a) s
also PT symmetric. It has real energies, isospectral to H) (1 vy, @), with the possible exception
of the ground state. Thus Hy(x: v, a) and Ha(x: vy, a) form the pseado-supersymmetric
partners of the super-Hamillonian ., obeying the pseodo-supersymmetric algebra given
i {27).

{11} For values of @ outside the rmange given in(32), PT symmetry 15 spontancously broken
in the Scart II Hamiltonian & (xv; vy, a). Leta = (), 50 that 1 = 1w, It can be seen that the
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partner Hamiltonian Hy(x: vy, a) 15 no longer PT symmetne:

d? 3 sSf—at-25 : .
A —=+ ——— —igo f Sech™ x — |

Hi(x:vi.a) = — 2 5

1
* I;{.\'! +a’— i+ iqa} sech v tanh v, (36)

Thus the spontancous breakdown of PT symmetry m the Scarf 11 Hamilonian H(x; vy, a)
15 manifested as explicit PT symmetry breaking in the partner Hamiltonian Ha{x; vy, a), the
two no longer being isospectral to each other. Though one can still wnte B> = A B formally,
the pseudo-supersymmetry is explicitly broken. Thus the spontancous breakdown of PT
symmetry is accompanied by the explicit breakdown of pseudo-supersymmetry.

The wavetunctions, too, behave quite strangely at these points of spectral discontinuities.
So long as PT symmetry is unbroken, the wavefunctions are normalizable in the sense of
CPT norm [11, 16]:

(Wl )77 = f dx YT (X)W () = B WP (x) = f dyClx, Vvm(y)  (37)

where O 15 the charge operator. The interesting point to be observed here is that, at the point
of spontancous breakdown of PT symmetry, though the wavefunctions remain well behaved,
ther O T norm vanishes:

[ (CPTfru (x))ifrn (x) dx — 0. (38)

This can be shown by straightforward caleulanons [17]. Thus, unlike the Hermitian models
[9] where the effect of spectral discontinuities forces the eigenfunction o be non-square
mlegrable, in the present case the eigenfunctions, though exhibiting proper behaviour at £a¢,
become self-orthogonal [3].

32, PT symmetric oscillator

We next consider another non-Hermitian model, P symmetrized in a different way; vie., the
well-known PT symmetric oscillator, given by the Hamiltonian
2 1
‘03 L
Hixia)=——+(x —1)" + ———
dx- (x — i)~
where € 15 4 real number. The energy eigenvalues and the comesponding eigenfunctions are
given by [18]

(39)

E,',,I‘r:'{ﬂ]l =dn+2— Eq\.-"'E n==01.2.... (40)
Waglxia) = Ny T ¢ i) "IVERI L0 (3 — ie)?) i41)

where the quasiparity g{= =£1) again gives doublet solutions. Proceeding in a similar manner,
the pseudo-superpotental, Wix: a), and the partner, Ha(x; a), turn out to be

—q+fa+3

Wirva)=({x—1e) — P

42)

d? a—2q.a+3

Hg{.r:ﬂ}z—‘_m+{.r—u}l'+ i) (43)
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Thus, it is easy w0 observe that the eritical value of @ here isa, = 0. So long as

az0 (44)

W

the condition (24} is satisfied, PT symmetry 15 unbroken in the T oscillator, and the parner
Hy(x; @) Hamiltonian (in (43)) s also PT symmetric, both sharing same real energies, without
possibly the ground state. Consequently, pseodo-supersymmetry is unbroken. On the other
hand, fora = 0. PT symmetry is spontaneously broken i the onginal Hamiltoman, giving
complex conjugate energies. The conditions (20) and (24) are violated, leading to the explicit
breakdown of pscudo-supersymmetry. Furthermmore, though

lim E.)(a) = E,,;)0) (45)

the lefi-hand lLmit, vz, lLim,_ - E:IL]{H}I, does not exist. Additionally, though the
wavefunctions remain well behaved at oo, their CPT norm goes o zero. Thus i this
maodel too, the point of discontinuity of the spectrum 15 associated with the simultaneous

breakdown of PT symmetry and pseudo-supers ymmetry.

4. Conclusions

In the present letter we have established the relaton between the spontancous breakdown of
PT symmelry and the explicit breakdown of psewsdo-supersymmelry, at some crtical value
a, of aset of parameters @ in the Hamilwonian H (x; a). In parocular, we have shown that in a
class of non-Hemmitan, but PT symmetric Hamiltomans B (x; a), the changing of energies
from real to complex conjugate values 15 a direet consequence of the simultaneous breakdown
of these two symmetries. The anticommutator of the pseudo-supercharges 0 and OF fails to
give the pseudo-super-Hamiltonian 7, as the Hamiltonian H: = A A7 is no longer isospectral
to its partner H; = AA. In fact, PT symmetry is explicitly broken in the partner Ha{x; a).
Furthermore, though the wave functions remain well behaved, they become self-orthogonal
beyond a., as their CPT nomm goes to zero. All the above observations hold in both the
explicit examples considered here.
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