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The role of disease in ecological svstems is a very important issue from both mathematical and
ecoological points of view, This paper deals with the qualitative analysis of a prev-dependent
pradator - prey system in which a disease 15 spreading among the prey species only. We have
analysed the behaviour of the system arcund each equilibrium and eblained conditions For
global stability of the system around an equilibrium by using suitable Lypunoy functions, We
have also worked oul the region of parametric space under which the svstem enters o Hopl
bifurcation and a transcritical bilurcation bul does not experience either saddle-node
bifurcations or pilchfork bifurcations arcund the disease-free equilibrium £- Finally, we
hawve given an example of a real ecological situation with experimen tal data simulations.

Kevwards: Ecoepidemiology; Local stability; Global stabality;, Saddle-node  bifurcation;
Transecritical bifurcation; Pitchferk Bifurcation; Hopl bifurcation

1. Introduction

The use of mathematical models allows us to identify key parameters that determine the
dynamics of the biological system. Prey-dependent models have a major use in theore-
tical ecology. Prey-dependent predator —prey models have been studied extensively, for
example by Murray [1] and Freedman [2], and the references therein. The classical prey-
dependent predator —prey model exhibits not only the well-known ‘paradox of
enrichment’ formulated by Hariston ¢f al. [3] and Rosenzweig [4] but also the so-
called *biological control paradox’, which was brought into discussion by Luck [5)
Again, models with a prey-dependent functional response have been facing challenges
from both biclogical and physiological researchers [6-9]. Although prey-dependent
and ratio-dependent models are extreme or limiting cases, prey-dependent models
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focusing entirely on the daily energy balance of approach have proved more fertile,
since their ‘paradoxes’ seem to be quite realistic where the premises for their existence
are found.

In developing a quantitative theory for interactions of predator and prey, mathe-
matical ecology is also an important factor, along with experimental ecology. The
importance of transmissible disease in an ecological situation has now become a major
field of study in its own right. The ecological literature has increasingly emphasized the
importance of parasites in shaping the dynamics of both plant and animal communities
[10-12]. Nowadays, it has been observed that viral, bacterial, fungal, and metazoan
parasites can mediate host vulnerability to predation [13.14] and herbivores [15,16].
Similarly epidemiological models have also received much attention after the seminal
model of Kermac-McKendric on SIRS (susceptible-infective-removal-suscepiible)
syslems.

Although studies on ecology and epidemiology are now challenging and important
issues from an ecological point of view, there are several common features between these
systems. Very few studies have been performed in this direction [17 - 25], and very little
attention has been paid so far to merge these two important areas of research.

Freedman [2] and May [26] proposed and analysed a prey-dependent predator —prey
model. We have already mentioned that the disease factor plays an important role in
predator —prey dynamics. From this viewpoint, we modify their models with an extra
factor representing the disease spreading among the prey population. The main objec-
tive of this article 1s to observe whether or not the viral disease may act as a biological
control agent in such a system. We should also emphasize that the force of infection has
an important coniribution to the dynamics of the eco-epidemiological system.

2. Basic assumptions, mathematical model, and preliminary results

A Lotka—Voltera-type predator—prey model with a Michaelis — Menten type of
functional response [2,26] is given by

dx x exy
dr =£H(1 - E’) T m+x

&_ (A
d:_" m—+x "

x(0) = xp = 0, ¥{0) =y = 0.

We shall now modify the above model with an introduction of transmissible disease in
the prey species. We make the following basic assumptions:

(1) In the absence of transmissible disease, the prey population grows according to
a logistic law with carrying capacity K (K € R.) and an intrinsic birth-rate
constant a (o= K_).

(2) In the presence of the virus, the prey population is divided into two classes,
namely susceptible prey denoted by Sir) and infected prey denoted by £1).
Therefore, at time ¢ the total population is
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{3 Resulis from Berthier er of. [27] show that a mass-action incidence assumption
is more appropriate than that of a proportional mixing one in describing the
dynamics of direct transmission. S0, here we have assumed that the mode of
disease transmission follows the simple law of mass action as in Chattopadhyay
and Arino [20].

(4) We assume that only susceptible prey are capable of reproducing and con-
tribute to the carrying capacity. We also assume that the infected prey do
not grow, recover, and reproduce. The model of Hamilton e af. [28] showed
that no infected individuals contribute in the reproduction process. The
infection rather reduces the remaining capacity due to an inability to compete
for resources.

With the above assumptions, model (1) reduces to the following set of autonomous
non-linear differential equations:

ds e 5 o 5P '?.f‘
Ay T _m|+S_j'l

dr e fP
— ey B
dr na +1

P _ (S _ Al
dr m+ 8 ma+1

7 ¥ (2]

where ¢, ¢4, 1, and « are the search rate of susceptible prey, search rate of infected
prey, predator growth rate due to predation of susceptible prey, and natural death
rate of infected prey, respectively. m; and m, are both half-saturation constants for
susceptible and infected prey populations, respectively; f5 is the death rate of the
predator population due to predation of infected prey; and y=17 +72 is the natural
death rate of prey + the natural death rate due to infection. 4 (4 € R.) is the force of
infection.
We consider ecological meaningful initial conditions:

S(0) =8 =0, H0)=1I >0, P0)=P=>0.

The purpose of the mathematical study of system (2) is to describe the qualitative
behaviour of the system around positive equilibria. We are also interested to find out
the region for which a predator population will be saved from extinction.

If J is the Jacobian matrix of system (2), we cannot determine a diagonal matrix M
such that MJ+J M =0, ie. sysiem (2) is not conservative. Again, due to the
boundedness of the functional responses, we observe that

. ds dr dr
fimys 1 p—io0.m i fimys ;1 pi—joom e fims 1 m— oo i 0.

Hence, if we assume %5(0,0,0) = 9/(0,0,0) =4£(0,0,0) = 0, then these functions are
continuous in R[S, 1, P): §=0,1>0, P > (). Indeed, straightforward computation
shows that they are Lipschitzian on R.*. Hence, solutions of equation (2) with non-
negative conditions exist and are unique.
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2.1 Eguilibria

The positive equilibria of system (2) are (1) E 0, 0, 0), (2) £(5,,0,0), (3) Ei(8,, 0, P3),
(4) E4( Sa. £, 0y and (5) Ey(Sa. 1, Pa), where 85, = K, <n="’"" Py=8{1-85/K)(m +35,),

] F1 o [ —el) 8y —imy dviged 1 .
Sy =1ld, h=H{1-83/K), L=y apett, Pd—':f'ﬁ :'J+“~ and Sy is a real

positive root of the cubic

. +3b.x" + 3. x+d. =0, (3)

where a, =alfs — [ +d), 3h, —m:r,{f«—}' + )+ am s+ d+ ARKmaf, — d) —
akifs — [+ dV+ AKeymafs, 3o =am, {_,I'-»+(.|’] — afkm(fs — fi +d) — aKoy(fs+d) +
AR mafs — vKeafy, d.o= —[akm mafs+ d) + yKe m mafs + Am 2y Kdd).

Equation (3) has at least one real positive root if and only if fi = f>+ 4, and it has
exactly one real positive root if G*+4H =0, where G=a.d. — 3a.b.c. + 2Ab.),
H=:ar, — bf. and wsing Cardan’s method, we obtain the root as % = % — b.), where

p denotes one of the three values of —' (-G + VG +4H° I‘]_ Here, we note that

L <gpomomnd = 1—:.‘:31'3,1. g = Plsay) and Py < M = t{say).

2.2 Existence conditions

.I'|R

The equilibria Eq and £, always exist. The equilibrium E; exists if . The
equilibrium E; exists when 1 > £ holds, and the existence mndntmn-a l‘ar the equiki-

brium E; are (1) G- +4H = 0,(2) o +d = fi and (3) §; > max{, ’"“'l} = M xay).
2.3 Condition for epidemic

Weobserve that§ < [{AK — 7). So, ¥ < 0,if#% < |. This may be deemed to be a thresh-
old phemmenan Let By = 4. Then the infection will spread if’ £ = 1. This threshold

phenomenon is closely related to the *basic reproductive ratio Ry of epidemic theory.
2.4 Boundedness of the system
The question of boundedness in a predator —prey system is not only interesting for
mathematical reasons but also important from an ecological point of view. We shall
now show that system (2) is uniformly bounded.
Lemma 1 Al solutions of syseem (1) which initiate in R, ¥ are bounded.
Proof We define a function

Q=8+1+P (4]
The time derivative of equation (4) along the solutions of equation (2) is

a0 _ds_ dr dp
de  dr dr de’
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For each p = 0, the following inequality holds:

dQ u S (e —f)SP  (ALi+e)tP
E+yﬂ—3{p+a(l—ﬁ)}— S e —(y—plf—(d— )P

gsbpm(l—g)}—n—pw—w>ﬂuwaﬁ{rw

Kip+ p
KELD - wi—@-wp.

|

Mow, if we take p < min(pd), then the right-hand side of the above inequality is
bounded. Then, we can find ¢ = 0 such that

do
E+pﬂ=q:r.

From the above equation we have ‘f < — k) + o, which implies that

Q1) < e #Q0) + 2 (1= e ) < max (ﬂ{m,f)_
It I

Moreover, we have lim sup Q(r) < f;‘:' = O(say) as ¢ — oo, which is independent of the
initial condition. |

2.5 Remark

It can be easily shown that
fim_ . sup 8(8) < K.
Again from the second equation of (2):

d_f= 1S — e Y 2T AKna + AKS — oy — 3
ma+ I

since () < K for all ¢, otherwise all of the three species will eventually go to extinction.
A standard comparison argument shows that

12(4K —7)

fimy o sup I{f) < ”{ — 1K) = Kalsay).

Also, from the third equation, we obtain & < (f} — d)P. Thus, lim,_..P(t) < 0 if
o = f,. Thus, the system is not permanent as K, < (. So, we can determine a region of
parametric space such that the disease dies out from the ecological system.

Now, we are in a position to perform the stability analysis of the system. The system
(2) can be written in the form X =F(X, 2), where X =(8, I, P)?, and the Jacobian
matrix of the system J = DA X, &) =(h;)3 .. where:
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2a8 (i P )
f?||=c£—i—Llj—}..f, fa = — 48, h|3=—“—*
K (m +8) m+ 8
N & " P wf
Bl DapdB e o B
(nn +1)° na+f
= fim P e Janna P = N8 3 fal _d
(m) + SIIJ ' B (n + }"j: Tom 4+ 85 o+

We denote Sy =J at E; and b,-}"l =bgat B, i=1,23j=1,2,3k=1,2,3 4 Weagain
denote determinant J, =det J, trace J, =tr J, M, =sum of the second-order principal
minor of S, and Cy=tr Ji » My —det Jp..

3. Stability analysis
3.1 Dynamics of the system about E,

Ey 15 a hyperbolic saddle point with unstable manifold orthogonal to the f — P
coordinate plane.

3.2 Dynamics of the system about E,
The behaviour of system (2) about £, s given in the following theorem.

Theorem 1
(1) The hyperbolic equilibrivm E) will be a sink i and ondy iy = o and o = do where
o =AK, de =1 K/ (m + K), it will be an wnstable saddle point when v < ¢ or
d = e, and it can never be a source.
{2y The local asymprotic stability of system (2) envures ity global stability abowr E,.

Proaf

(1) Since b "= —a <0, b!"! < 0 if and only if y > y+ and b33l < 0 if and only if
d = o, all the eigenvalues are negative, and thus the proof follows from the
Routh - Hurwitz criterion.

{(2) Let R_ﬂ=[{3’, IL,Pye R8>0, I=0, P> 0]and consider the scalar function

LB =

K
L6 =S+K1"r.rg§. (5]
The derivative of (5) along the solutions of system (2) is

dr 8
d_ll = —(K—8) 3 =<0 (see Appendix C), (6]

and % =0 when (&, I, P)=(K, 0, (). The proof follows from equation (6) and the
Lyapunov-LaSalle invariance principle [249]. O
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3.3 Dynamics of the system about E,
The stability analysis of system (2) about £ is given in the following theorem.

Theorem 2

(1) Ifmy < K, then the necessary and sufficient condition for E1 to be a sink is f| < fi*
and A < i* where fi* = ‘%[g:';:” M= _L_:rle:;ﬂ +:%}i'“| -1 -frrw'l'—‘_'f;ﬁ .

(2 When A= A% then the equilibrivm Es will be transformed into a non-hyperbolic
eguilibrivm, and the system atiaing neither o saddle-node bifurcation nor a
pitchfork bifurcation, but experiences a transcritical bifurcation.

(3 I the inequality

2amydd o "y 4cm’ myi
[Km—rfil f.( T)] % s ﬂ-—? %

holdy  true along with = (%, then the system near E, enters fmr.r a
Hopl" bifurcation  at A=Ay, where Ap=i"+0 amd ) =— ._,,;_ I

1% \;‘f{f?l I+ db P P (0, = 0).

Proaf (1) We obtain, tr o= 8 F +5,5P det o= — b P00 P Ca= My = or Jy —
det o= (B + baa?) 5 2p 1 — p P, 12 'bq.‘ . N(m- b®! < 0if and only if f; > f,* and
b2 < 0 if and only if A < i*, b3 —‘Ill—" and by is always positive, and f;* will be
positive if my < K. Thus, when /) = fi*, m < K and 4 < ¥ the Routh— Hurwitz
necessary and sufficient conditions are satisfied. Hence, the proof. For the proofs
of {2) and (3), see Appendix A. O

3.4 Dynamicsy of the system about £
The behaviour of system (2) about £y is given in the following theorem.

Theorem 3
(1) The solution of swstem (2) abowe the hyperbolic equilibrium Ey iy locally
asymptotically stable if [y > ¥, where fi* =1 Km, +a(iK — 9)[(f, — dy —
mtadd][al AK — y)(mad + 7]
(2) When f5 = f5%, Ey will be a saddle point with unstable manifold locally orthogonal
to the 851 coordinate plane, and it will never be a source.

Proaf

(1) Tt is easy to see that byl = — % <0, b Pl= — i85, b= >0 and
buPl<0 if and only if fazfi*. Again, tr Jy=hb, M+ b det
J3=—f?|:l ]-l'?:|l ]b__l‘rl and (:,—b..”[bnmb 13 — b I‘rJ‘rJ Ii-JH_‘rJ l‘rl{h 1li-J]—
So, if f5 = f3*, then the Routh—Hurwitz necessary and sufficient conditions
are satisfied. Hence, the proof.

(2) We can observe that if f> < f3*, then b3 = 0, which in turn implies that det
Jy= — b by Ph P = 0, hence the proof. O
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3.5 Dynamics of the system ahout E,
The behaviour of system (2) about E; is given in the following theorem.

Theorem 4
{1y The solwtion of system (2] abowt the positive interior equilibriion £, is locally
asymptotically stable i the following negualities hold true:

al l+m+ K) ,j,_ il
{_H.] CTRE t i iy <F

all

{ ] ) -Hi' K

(©) zK(”‘ ) < Lt

iy (ot + K™

(d) Leabme, , [‘"'““ abd “’“1 FUaY (Rf 4 f) 4 253

[#raa 401" iy 3 L I | ]

(2)  The positive interior hyperbolic equilibrivn Ey will be unstable if 00 = K2,

Proof (1) To show the asymptotic stability of the equilibriom £, we use the method of
first approximation. For rigorous caleulations and mathematical justification of this
technique, see Li ¢t al. [30] and the references therein. In this method, we use the following
Lemma given in Li ef af. [30] (P. 200). O

Lemma2 Ler A beanm = m matrix with real eneries. For A o be stable | it s necessary and
sufficient that:

(1) the second computed matrix AP iy stable;
2y (=1Y" det(4) = 1.

Therefore, in our case, we have to show (1) the second compound matrix JﬂI{Ed} (sce
Appendix B) of J, is stable and (2) des(fy) < 0.

MNow, for Ey=(54.14. Pd} and the dingonal matrix = diag(Fa.04.54). the matrix e I{Ed} 1%
similar to DR END ! =(a;)3.3, where a, =hy, s —b|-..P—* ty = bnﬁ, ay = b ;
aar = b, an = by 7!.‘::- ay = b —'l, a3 = —'1, and H“—.I’J“ The matrix Jl'J'I:Ed] is
stable if and only if DJ"HEJD" is stable. Smoe the diagonal elements of the matrix
DN E)D ™" are negative, an easy argument using Gersgorin's discs shows that it is
stable if it is diagonally dominant in rows. Set p™ = max{g,. g-. g1}, where

(1 4+m+ Sy P ca P ol o

g=da +apt+ ;=

(m + S {nr3+ﬂ:_f_mz +1
(l+m+8) b . 1 2 a8 ca P
T om+ S i I_E sl +m-.-+.f{ T_.:I_E_mg+f

all+my + 8) FAY a¥
m+ 5 m+f K

» all+m + K AK all

niy + 1 mr K
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g2 =) +daa+ A
o P fndP al
B (py + S:I: N (ma + J"jl2 e A
o P _:_S

T (e + .5']2 K

s 1 i 5 T as
_m|+.S'H = 22 =

i as i afl
—

< i
“m+85 K " m+0 K

g1 =di +an+ dan
af S 8
(ma + J':I2 {m) + S':I:
1 : finy 8§
b e s 3
ma+ 1 (m + 5
AS ” fim &
ma+f (1) + sz
AK St ; (m; + 1) St
e Bt - -
ma (my + KT iz (m + K)°

= i85+

=iS5+

|

AS +

AR+

S

MNow, when the above conditions hold true, then u* <0, which implies the diagonal
dominance and thus verifics the first condition.
Again

det J3 = btV b Wb B — baal¥b 31 B5 8 — a3y Wb, 1y 3Bl Blpg, 14l

AmyfieaS creaf i S P acafan 2acamafa s

() + S':I: (me2 + Ni(my +S:|2 {2+ .I':I2 Ki{my + .I':I2

P
(m2+ 1)

creanma fa P i Acamafal Aoy famn S
(ma+ N3y + 8 (ma+ 07 (4 S)(ma + 1)

Amfiea K epoef i K aesfimy " 2acann i K
(), + 0 malm, ) (m2 + ) Kima)?

IP
(mia + 1)

creammiafanl Aeamiafagh Ao fhn K

I'l'r.‘rrgjlzl::r.rrﬁl2 {mzf niha

= .

This verifies the second condition and completes the proof.

(2)Now. det Jy > 0if by < 0, and b2 < 0. Again, by¥ = 1§ — 228, —y = all - q,
s+ LERS

b <a— 8 < g — 3 <, if the condition given in the above theorem holds. O
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4. Experimental data simulations

In this section, we have performed the numerical simulation with the help of experi-
mental data given in Beltrami and Carroll [31] for a phytoplankion— zooplankton
system. The object of this section is to study the global structure of system (2) for the
disease-free equilibria £(5), 0, 0) and E5(5:, 0, Ps). Among these two equilibria, Es( S,
0, P} 1s very desirable, as in this case the predator population is present. Beltrami and
Carroll [31] have taken the following range of parameters values: a=9; 25 < K < 35,
d=4;0.1<7 < (.8, They did not consider the conversion factors, but we do, so we
assume ¢, =2 and ¢y =3. We have also numerically experimented with the effects of
parameter changes in the proposed model with the initial conditions 85, =25, f,=2
and P,=35, for all figures. The results are reported below. Figure | has been obtained
for the following parameter values, created using MATLABY: a=9; K=25; ¢, =2;
=27 A=015 ¢a=3; ma=20; y=8; fi =7, fr=_.5; d= 4. Figure 1 demonstrates
the global stability of system (2) about £, where susceptible prey S(¢) (upper line) is
going towards 1ts carrying capacity, and infected prey /¢ and predator P(f) are going
towards zero. This 15 a disease-free equilibrium, but here the predator population
becomes extinct along with the infected prey population.

There is an another disease-free equilibrium £,, which is most desirable, as here the
predator population is present. Figure 2 shows the global stability of the system about
equilibrium £; with the same parameter values as in figure 1, except that f; = .8 and
K=30.

Here, we also observe that, as in the previous case, the parameters values satisfy
the local stability conditions (namely m, = K, | =< fi¥ = 7.0 and 4 < i* = 1646).

In figure 2, the upper line indicates the susceptible prey S(1), the middle line the
predator population P(r), and the lowermost line infected prey I{#), which is with the
zero line.

*

o, Pit)=

S{t)=+, I{

n 0 a0 an ] 4] 0 n [TH) o 0
Tiruz irn varzehs;

Figure |. Global stability of system 2] about £, Here, o = de = 335, 7= 7o = 3750, and 8= 4688 < 1.



Downloaded by [Indian Statistical Institute] at 04:31 10 August 2011

Transmissible disease in a predator —prev system

173

Mote that similar results are obtained for other values of the parameters, not shown
here due to lack of space. By changing the parameter values, we can show that system
(2) enters a Hopf bifurcation about £, For instance, if we choose m =17, 4= 03,
ma=16, ;=35 ca=0, fi=3, and /5=2, and the other parameters remain the same as

in figure 1

Sitj=+, [it}=0, P{t}="

o, Pit)="

S{t=+, It}

. This situation is shown in figure 3.

+

Time in waeks

Figure 2. Extinction of the disease with 8, =0.5625 < |,

BN
'-: rt i *
HE : HEEREERY it
:3:I+ :** E::* *? {I »
«FrEralee Tdede i3 =t *
ii: LY M HE
bt
ok ¥ -
’i'.'?i:=!"=z=.é-é;ii’
- RS E N E TR P EEREES:
AL
i i ; ; i ; ; :
4] 1a e 30 £0 =1 B T a0 #l 102

Timz 11 wsaks

Figure 3. Hopl bifurcation situation about £,
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m
=]
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AR A T T
1

o, Pt

+. {0

i)

u] an 1m0 160 200 250 a0 5D 40 440 00
Tirne in weeks

Figure 4. Persistence of the disease with healthy prey. Here, 8, =1.8750 = |,

Finally, by increasing the value of 4, we obtain the situation in figure 4, which
represents the disease endemic situation at 4 = 035 with the other parameters remaining
the same as in figure 2. In figure 4, the upper line represents the infected prey £ 1), the
middle line indicates the susceptible prey S(¢), and the lowermost line represents the
predator population P(f).

Our numerical simulations confirm the analytical results and emphasize that the
disease transmission coeflicient 4 has an important contribution to the dynamics of the
eco-epidemiological system.

5. Discussion

Our mathematical model consists of three non-linear autonomous ordinary differential
equations for three different populations, namely susceptible prey, infected prey, and
predators. We have obtained conditions for the boundedness of the solutions and the
existence and stability of the system equilibria.

It has been observed that to spread the infection, the initial number of susceptible
prey must exceed a threshold value. This value will be determined from the ratio of the
total death rate of the infected prey and the force of infection. This threshold property
may be related to the *basic reproductive ratio £y of epidemic theory [32].

It may easily be verified that system (1) has three equilibria, namely (1) Ep(0.0),
(2) E\(K0), and (3) E¥(x*, y*), where x* = 7% =121 —%]{m +x*). Using the
Routh— Huritz criteria, it can be easily shown that £ is always unstable, £, is stable if
d > L and E£* will be stable if £ < 4F0n)

It should be noted here that E4(0, 0, 0) and £,(0, 0, 0) for system (2) are analogous to
that of £, and E, of system (1). The Dynamical behaviours of both systems about E,
(0,0, 0) and E are the same.
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However, for local stability of £, an additional condition (AK — 7 < 0) is required.
Thus, we may conclude that the d:,nam:u; of system (2) are influenced by the force of
ml‘ectmn Again, when d > - — . £ 1s stable, but Ej( K, 0, 0) is unstable if we choose
4 = 4. So, introduction of a diqea@e in the disease-free predator— prey model is enough
to destabilize the otherwise stable equnhbnum

The equilibrium Es(S2. 0, P1) is again analogous to that of E*, but the stability
analysis differs in several ways. The feasibility conditions for both the equilibria are the
same, but the stability of E, demands an additional condition & < A¥ (see Theorem
2(1)). In this case also, we can destabilize the otherwise stable equilibrium E* by taking
4 = i* Thus, the infection has a relevant influence on the ecosystem.

Again, we find that the predator —prey system considered by Jost e ol [33] and
Kuang and Beretta [35] can go to total extinction under certain parametric conditions.
It is also noted here that our system (2) is equivalent to their system for /=0. But in
our system, if the conditions (1) given in Theorem 2 are true, total extinction of the
populations is not possible. Hence, we can conclude that the introduction of infected
prey to the predator—prey system can prevent total extinction and may act as a
hiodogical control.

It 1s also nteresting to note that conditions (1) of Theorem 2 give us the stability of
the disease-free equilibrium. In this case, the predator will act as a system saver if we
can monitor three system parameters, namely, the growth rates of susceptible prey and
predators, and the disease-transmission coefficient 4.

Before ending this article, we should point out that most of the conditions obtained
throughout the paper suggest to us that the the disease-transmission coefficient 4 plays
an important role in the persistence of the populations. We hope these observations
will help experimental ecologists with their experimental setups, and, as a result might
enhance the development of theoretical ecology.
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Appendix A

Proof of Theorem 2 {2)  QOne of the cigenvalues of J; will be zero if and only if det S =
byl B =0, ie. bal® =0, since (B3, b3)*) # (0. 0). This gives 2 =.i*, and the other
two cigenvalues are given by

gl § e .
e =5 % Vo) + b8y, 2.

Since b1 < 0 and by Pl = 0, the real parts of ¢,. ¢; will be same sign as the sign of b 2.
MNow, if fi < fi* then b |E:J =0 and two eigenvalues of J2 will be positive; hence the proof
follows from Sc;lon‘m:.-‘or [35]). Again if f; = fi* then b, Pl 0. In this case, B=(0,, th, 83)",
T =0, i, 0)", where U, T are the eigenvectors Lurm\pondmg to the ngcnmim g =0of
the matrices J» and J»", respectively, and 0, = I—‘-—rJ th =— I—“—l‘) ?L— thy and i,
ir , are any two non-zero real numbers. Now, T'[F,(X;, %] =0, so the system does not
experience any saddle-node bifurcations. Again, T [DF (X, A*)U] =581, # 0 and
YT[D*F(Xs AU, U)) £ 0, where [DFi(Xa, A"]=({sxs and {;; =0, L= —5,
L13=0,00 =0, L2 =82, 023=0,03, =0, [32=0, {33=0, and D*F{( X2, A*)isa 3 x 3 x 3
tensor. Thus, by the same theorem [35] the system possesses a transcritical bifurcation.
Again, T'[D*F X5, A*)U, U)] # 0. Therefore, the system does not experience a
pitchfork bifurcation. O

Proof of Theorem 2 {3)  We know that if the Jacobian matrix DF X5, Ays) of the system has
4 simple pair of purely imaginary eigenvalues and no other cigenvalues with zero real parts,
then the implicit function theorem guarantees that for each 4 near Az there will be a unigue
equilibrium X; (where X=(5. [, P}T} near X>;. However, if the eigenvalues of DFX ;. 4)
cross the imaginary axis at 4 = g, then the dimensions of the stable and unstable manifolds
of X; will change, and the local phase portrait of system (2) will also change as 4 passes
through the bifurcation value Az In the generic case, a Hopf bifurcation occurs where a
periodic orbit is created as the stability of the equilibrium X; changes.

Thus, necessary and sufficient conditions for Hopf bifurcation to occur are that there
exists 4 A = Ay such that (a) Ci = ki dgphical ) — K3ldpe) = 0, where k)= —tr.Ja,
k2= M>: = sum of the second-order principle minor of J; and x; = —determinant J;
and {bjﬁ{ﬁe{p{ijjhﬁh‘ # 0, where u is given by the characteristic equation of Jfs as
follows:

K K+ =0

The condition &k, —K; =0 gives
(b + b2 Py P — f?lnplbﬂljl] =0,

which gives 4 = 4y (note that Ag, will be real if and only if the inequality (7) holds true).
Thus, for 4 = 4. we have

(1 + xa )+ 81) =0, (8)

which has three roots, p; = +i/%a. ju = — i/%,, and gy = —x. For all values of 4, the
roots are in general of the form:
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i (4) = g (1) + ipa(d), m(d) = pi(d) — i (d), (L) = —ri(d).

Now, we shall verify the transversality condition

4 (Re(p (1), #0.7=1.2. 9)

di A=dw
Substituting pd4) = g{4) + @p: into equation (9) and calculating the derivative, we have

() (4) — B(A)ga( 1) + O(4) = 0,D(4) g1 (A) + PN gald) + T(4) =0,

where: W(i)= i;l-[pu{f'-]'}: + 2 A A+ w22 — Il ) ?{fl} =Bl Ayl A) + 2y (Apal4):
O(4) = (g (A)) K1 (A + K2 A1 (A) +,3( ) — 1 [ A)(pa(4))7: and I(2) =21 4)gal4) € (4)
+ Ka(A ) (4).

Since O(A)T(As) + PO = —28:(b220(h, 2 — 2(6,P1] # 0), we have

_or+ve

d \
E{R&'{FJ-{A:':'L#M =L i #0,
and ps(d) = —Ki(dps) # 0.
This completes the proof. O
Appendix B

If Jis a threg-order matrix gven by

by b by
J=1| I b by
by b by

then its second computed matrix is gven (see Li et al. [30], p.212) by

by + b ha3 —h3
JB = b3 By bas hia = (B )33 (say).
—hy b hay + by

Appendix C

From dynamical system (2), it can be easily observed that § > 0% t; otherwise, if at any
time ¢, & < (}, then S(t) — 0 ast — oo, and immediately we have (1), P(N) — (0, 0) as
¢ — oo, and the system tends to Ey(0, 0, (0). Thus, the three populations go to
extinction, and the system could not attain the axial equilibrium £,( K, 0, 0). Therefore,
if the equilibrium £ (K, (), (1) exists, it is clear that § > 0% ¢. Again, in section 2.5, we
have shown that S{6) < KV ¢
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