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An IRS-1D multispectral image is used to measure the
extent to which central Himalayan forests are degraded.
The study area covers most of the eastern hall of
Uttaranchal state in the Indian Himalayas., Accuracy
assessment was performed on a sample taken I'rom an
Ikonos 1-meter resolution image. We estimate that 61%
(48=73%) of the forested area has less than 40%
crown cover, with numbers in brackets denoting the
W% confidence interval. The calculation of confi-
dence intervals is a novel feature of the study that is
important in view of the faci that satellite image inter-
pretation is never free of error. The resulis show that
the Forest Survey of India’s widely cited ligures consi-
derably understate the extent of degradation.

Keywords: Confidence mtervals, deforestation, degra-
dation, Himalayas, satellite image.

OVER the past few decades there has been a great deal of
concern about ecological degradation and deforestation in
the Himalayas. The main aim of this paper i to provide
estimates of the area of forest degraded in two Himalayan
distrcts with 90% confidence intervals by using satellite
imagery. Since all interpretation of satellite images is
subject to error, it 15 important to provide not just point
estimates, but also confidence intervals around those es-
timates. To the best of our knowledge, this has not been
done for estimates of forest degradation in the Himalayas
or elsewhere.

Degradation is measured in erms of crown cover. An
IRS-1D multispectral LISS-II1 satellite image from May
1998 that covers an area of 20,000 square km i the Indian
centrul Himalayas northwest of Nepal, 15 analysed. We
present a vegetation map and estimates of the percentage
of the area under forest or scrub, and the percentage of the
forested area that is degraded. These figures are presented
along with 90% confidence intervals, denved from erown
cover counts done on a sample from an Ikonos 1-m reso-
lution panchromatic image from April 2000,

The Forest Survey of India’s biennial State of Forest
Reports', based on interpretations of IRS imagery, have
been the main source of district-wise data on the state of
forests in India. However, their estimates are presented
without confidence limits or error matrices, and no infor-

mation aboutl the interpretation method s given. This study
finds that a greater proportion of the forest area in two
districts of Uttaranchal is degraded than the Forest Survey
of India estimates would suggest.

Description of the area

The study area lies in the Komaun and Garhwal regions
in the state of Uttaranchal, and includes a small area in
western Nepal. It lies between 79°E; 30.5°N and 80.75°E;
29°N, and mnges from 300 to over T m in altitude.
Terraced agriculture is found up to a height of about
1800 m on the gentler slopes.

Four principal forest formations are identified in ref. 2.
The lower elevations from the plains at 300 m up to about
1O m contain Submontane Seasonal Broadleal forest
with sal (Shorea robusta) as the dominant species. The
submontane zone has litle human settlement. From 1000 1o
1B m there are chir pine (Pinns roxburghiit) forests.
From 1500 to 3000 m, overlapping the range of the pines, is
a broadleaf forest consisting mainly of oaks, banj (Quer-
cuy lencotrichophora) and other Quercus species. Finally,
there are the Mid-montane Needle-leal Evergreen Forests
from 1700 to 3000 m and higher, consisting of deodar
(Cedirus deodara), firs, spruces and other species. Singh
and Singh also dentify some less common formations not
described here. In some areas, grasslands oceur naturally.
While these forests intergrade into each other and there
are mixed stands, there 1s, nevertheless, a strong tendency
towards exclusive stands, particularly for the first three
types of forest described above.

Forest degradation has resulted from a number of human
uses. Overgrazing, lopping for firewood and fodder, resin
tapping in the presence of fire, and commercial felling
have all contributed to degradation’. Degradation reduces
crown cover and can proceed to the point when only scrub
15 left. Since, except for small areas of juniper above the
treeline, scrub does not oceur naturally in the un:uz, we
treat seruboas degraded forest.

The degradation of the forests has been a major blow Lo
rural residents of the area who have suffered from the lack
of firewood (the main source of energy for cooking and
heating), fodder and grazing, and the adverse effects on
springs which are the man water sources for villages on
the slopes. Degradation may also affect areas in the plains
since it may merease the unoff durning the monsoon, leading
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Figure 1.

to increased flooding during the monsoon months and re-
duced water supplies at other times of the year. Finally,
of course, forests play arole in carbon fixation.

Methods

The aim was to obtain estimates of the area under forest or
scrub and the percentage of the forest area degraded, to-
gether with confidence intervals for these estimares. A
two-stage classification process was applied to the IRS
image. In the first stage, traiming sifes acquired during two
years of fieldwork in 1997-99 were used o separate ping
from broadleal forests and forests from other classes.
This was done using a supervised maximum likelihood
classification into 11 classes which were subsequently
concatenated. In the second stage, gquantitaive estimates of
canopy cover from the Tkonos imagery were used to sepa-
rate the two forest types into dense and degraded classes.
The lkonos data were used o obtain sample ermor matn-
ces for the classifications. These were used o compute
producers’ accuracies, that is the probabilities of classifying
pixels from a given true class in the various classes. Point
estimates of the true class proportions were obtained by
inverting the producer’s accuracy matnx and multiplying
it by the vector of class proportions from the classified
map. Confidence bounds for these point estimates wen

i)

FOC of TRS-11 LISS T 9850, Bands 2, 3, 4 with areas of interest.

obtained by bootstrapping the sample error matrices and
associated estimated true class proportions. The details
are discussed below.

Classification and accuracy assessment

An IRS-1D LISS-IIT scene of 31 May 1998 (Path 98, Row
500 was used (Figure 1), We obtained an almost cloud-free
image on a date that was close o the summer solstce. This
wis done so as o get an image with a sun elevation that
wis as high as possible (74%) in order to minimize the
shadowing that occurs in steep mountain terrain at a lati-
tude of 30°N.

The LISS-IIT sensor on an Indian Remote Sensing sat-
ellite collects reflectance in four spectral bands with
wavelengths (00L.52-0.59 pum (band 2, green), 0.62-00L68 1m
(band 3, red), (.77-0L86 pm (band 4, near infrared), and
1.55-1.70 pm (band 5, near infrared). (Band 1 is a pan-
chromatic band that we did not wse. For further detals,
see ref. 4. The spatial resolution (pixel size) of bands 2, 3,
and 4 is about 23.5 % 23.5 m, as compared to the Landsat
Thematic Mapper™s 28.5 = 285 m. When the spanal distn-
bution of land types 1s highly fmgmented, as is the case in
mountainous subtropical |1'i[|l’.l5-l_'1'ip1_‘55, a melatively small
pixel size 15 desimble to reduce the likehbood of mixed
pixels, that s, pixels with more than one land cover class
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in them. Band 5 has a pixel size of about 705 m, resampled
to the same resolution as bands 2, 3 and 4.

As mentioned above, the vegetation map was generaled
in two stages. Dunng several visits o the ficld from October
1997 o September 1999, potential training sites wene
identified by visual inspection. These sites were chosen in
contiguous patches of vegetation that were at least 100 m
across and which could be accurately located on a 1: 25000
Survey of India topographic map. Ground features, compass,
altimeter, and a GPS was used to locate the training site
on g map. Each site was marked as a polygon leaving a
30-m buffer of the same vegetation around the polygon to
eliminate errors in the signatures ansing from edge effects
and registration emor. After eliminating sites that were in
shadow or had positional errors, 169 sites, cach consisting
of one of eight classes. were selected for training. These
were (1) dense broad-leaved forest, (2) open broad-leaved
forest, (3) broad-leaved scrub (4) dense pine forest, (5)
open pine forest, (6) grassland, (7) agneulture, and (8) bare
land. The broad-leaved forest with a basically closed
canopy wis classified as dense. Conifers, mamly pine, were
classified as dense if it was not possible to see the ground
when the forest was looked at from the outside, and if the
trees were close enough to leave no gaps between them.
Signatures for the classes (9) water bodies, (10) snow,
and (11) cloud, were taken directly from the image. Since
the registration ermor from attempting o georeference the
whole IRS image was high, those parts of the satellite
image containing  the training sites were georeferenced
with rool mean square registration errors ranging from
0.45 o 1.03 pixels.

The image was classified wsing the method of maximum
likelihood assuming that the four bands were jointly nor-
mally distributed with different parameters for each class,
and with each elass given a prior probability of being
equally likely. The entire procedure was mmplemented
with Erdas Imagine 8.4 software. Classes (1)-(3) of those
mentioned above, were merged to form a class called broad-
leaved forest (BL), (4) and (5) were merged to form Pine
forest, (6) and (7) were merged into a category called
Grasses, and the others were merged to form a category
called Other.

After this study was underway, [konos 1-m resolution
imagery became available. This offered an opportunity to
mmprove the measurement of forest degradation since aerial
photographs of this region are not in the public domain
and were not available o vs. An image from 24 April
2000, covering a transect 30 km in length from north o
south and 2.5 km wide was procured from among the few
images available for the area (Figure 1), This was intended
to span the altitudinal zones corresponding o different
vegelation types in the region. The Ikonos image was reg-
istered o the IRS image with a ool mean square error of
0.7 IRS pixels.

After a field visit to prepare a key for visual interpreta-
tion, a random sample of 1024 points was taken from the
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transect. 75 % 75 m windows around these points were visu-
ally interpreted to correspond with the classes deseribed
above. The purpose of the 75x 75 m windows (roughly
cquivalent to 3% 3 IRS pixels) was to ensure that the roe
class of an IRS pixel at a point was correctly determined.
A smaller window might have led to true classes being
mncorrectly determined due o registration error. An addi-
tional sample of 256 points was randomly tiken from arcas
rich in vegetation types under-represented in the original
sample. These areas were determined visually from the
Ikonos image, so that the additional points were selected
on the basis of the meference or true class, and nor the
map class.

Six hundred and eight points for which the entire 75 %
75 m window fell in a single class, were retained for
analysis. If the 75 % 75 m window contained more than
one class, then we could not confidently assign the true
class of the IRS pixel containing the random point, since
registration error might lead o a shift in the location of
the IRS pixel on the Ikonos image. A producer error matrix
for this sample, P = [pg]. where py is the percentage of points
in class & that were classified by the maximum likelibood
procedure as class 7, 18 presented in Table 1. Here the true
class &k refers to the 75% 75 m window about the point,
while the map class j refers to the class of the IRS pixel
containing the point. This emor matrix presents only three
classes, bmad-leaved forest, pine forest, and grassland
and agriculture. The Other class 15 not presented since its
confusion with forest classes is negligible. Table 1 shows
that separation of the three vegetation types 15 good, with
over 80% producer accuracy being achieved for all three.
It was found that the first stage classification done above,
while differentiating quite well between different forest
types and grasslands and agriculture, performed poorly in
distinguishing between dense and open classes in the
same Lype of forest. We resorted to the second stage pro-
cedure desenbed below Lo sepamle dense and open classes.

A 10-m grid was laid on the Ikonos image and a 7= 7
segment of this gnd centred on each random point in the
forest classes was used to measure crown cover. The pro-
portion of the 49 squares in cach segment of the grid that
were covered by tree crowns was the measure of crown
cover. OF the 608 points, 553 points for which reliable
crown cover counts were possible were retained.

Table 1. Sample producer emor matrix of vegetation types {percent-
ages of sites ineach true class mapped into different classes)

BL (true) Pine {true) Cirasses (true)
BL {mapped) B3 (i 1]
Fine {mapped) 5 94 I
Grasses {mapped) 12 i B
Total sites 244 219 145

BL, Boad-leaved forest or scrub; Grasses, Grassland and agricul e,
Percentages are rounded to whole numbers.
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Crown cover was used as the indicator of degradation.
Any cutoff level for classifying an area as dense or open,
is, of course, arbitrary. Two cutoffs were used: 40 and 80%.
Eighty per cent was thought to be appropriate since an
undisturbed broad-leaved forest in this region would have
a closed canopy’. The 40% cutoff was used for comparison
with the data generated by the Forest Survey of India,
which uses a 40% cutoff.

The data were topographically normalized by using the
ratios of band 5 to bands 2. 3 and 4. Classification into
dense and degraded classes for both cutoffs for both
broad-leaved and pine types was done wsing the maxi-
mum likelihood classifier applied o the three band ratios
and aspect. Aspect is defined as a continuous variable
taking all values from 0O for south-facing pixels to 1 for
north-facing pixels. The aspect variable was created in
ArcMap 8 software using freely downloadable elevation
data with a 90 m resolution from the SRTM (Shuttle
Radar Topography Mission). (We are grateful o a referee for
sugpesting the use of aspect data for improving the classi-
fication accuracy which resulted in narrower confidence
intervals.) The prior probabilities were chosen to roughly
maximize the sum of classification accuracies of dense
and degraded types while not allowing any of them to fall
below 50% in the assessment sample. The resulting the-
matic map is presented in Figure 2.

A sample error matrix for the 40% cutoff is given in
Table 2. Notice that there is still considerable misclassifi-
cation of open or degraded categories as dense and vice

versa, even after the use of the second-stage procedure.
The fact that the different forest types are classified with
a fairly high degree of accuracy, but separation of degraded
from dense forest is subject to considerable error is only
to be expected. There is not much difference between for-
ests with crown cover slightly less than 40% and slightly
more than 40%. There 1s no natural sharp distmguishing
feature and so considerable misclassification is unavoidable
in the latter case. For the purpose of estimating areas in
the various classes, however, this need not matter as long as
the producer error matrices are estimated with sufficient
accuracy. For this purpose, classification accuracy mat-
ters only insofar as it helps o reduce the varance in the
estimate of the inverse of the producer error matrix. What
is imporant is that a large enough sample of points be
taken from each true class. Sample sizes for the different
classes in our study were Fairly large, ranging from 70 to
145, We elaborate on these points below.

Point estimates of degradation

The producer error matrix is defined by P = [pg]. where
P 15 the probability that a pixel that is truly in class &
gets classified in class j. From the vegetation map, the
shares of land s = (5, .... 55) under five classes (densce
and degraded broad-leaved and pine forests, and grass-
land and agriculture) in the IRS image were oblained.
The other classes either represented tiny fractions of the

N N & N0
| T N |

CLASSIFIED IMAGE OF IRS-1D LISS |Il 98/50

[ e
Bl s s s L
| B E .
[ tssinme b st

Figure 2. Classified image of IRS- 10 LISS T 9850
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Table 2. Sample producer error matrix for degradation {percentages of sites in each true class mapped
into different classes)

BL = 40% cc

BL = 401 e

67 (58-75) 18
BL < 4% cc i3 50{42-58)
Pine = 40% cc i} i
Pine < 40% cc 4] 10
Cirasses [i] 22
Total sites 93 125

BL < 4% cc

Pine = 40% cc Pine < 4% cc (irasses
i} ] ]
1 11 110
T4 (0E-E1) ) 0
25 67 (50-748) 1
il 1 89 (493
120 70 145

BL., Broad-leaved forest or scrub; Grasses, Grassland and agriculture; co, Crivrn cover.
Columns ane reference or true classes, rows are map clisses. Percentages are rounded to whole numbers,
To avoid clutter, 905 confidence intervals are given in brackets for the diagonal elements only.

area like bare land, or (like snow) had negligible confusion
with other classes, and so were excluded from the error
matrix, Now,

5= Ps*,

where 5% 15 the unknown vector of true shares of land in each
class. Therefore, the vector of true shares of land in each
class is given by

; 1
sF=P s

Let P= [f{.,,.i, where f{.,,. 15 the proportion of sample pixels
really in class & that were classified as class . Replacing
P by P yields the following estimate, due to ref. (6), of the
true shares of land in each class:

- il I
st=P"g,

§* is a consistent (roughly speaking, unbiased in large
sumples) estimate of 5% iF P 1s a consistent estimate of P
P is a consistent (in fact, unbiased) estimate of P, pro-
vided the misc lassification probabilities in the Ikonos image
area from which the sample was drawn are the same as
the misclassification probabilities for the area as a whole,
and for the subregions of interest. This s our assumption.
Since the vegetation types are the same and the Tkonos
image covers a transect of the arca, this assumption is
thought to be reasonable, although, of course, it 1s unlikely
to be wholly accurate. The more namowly cach class is
defined, the more likely it is that the assumption will
hold. On the other hand, expanding the number of classes
raises the cost of getting a sample of a given size for each
class, and also raises the probability of infeasible est-
males (class shares that are less than zero or greater than one).
With these considerations in mind we chose to use five
classes. "

The consistency of P does not require a simple random
sample. It is sufficient that each subsample from a given
true class be random. This 15 important sinee we would
not have been able to obtain enough points in the rarer
classes with a simple random sample.
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MNote that it 1s certainly not true that the actual shares of
land in cach class are the same for the sampled area and
the arcas of interest. This s why it 15 nol possible 1o use
the alternative adjustment procedures for estimating 5%
proposed by Tenenbein’ and Card®. Those methods rely
on consistent estimates of wser accuricies g, that is, the
probability that a pixel mapped as class § was really from
class k. To get consistent estimates of user accuracies, the
sample must be taken from an area with mepresentative
true class shares. This can be difficult for the following
TEHSOns.

Reference data wsually come from either field observa-
tions or high-resolution imagery. Field samples are expensive.
A randomly chosen point may prove to lie on the boundary
of different true classes when visited in the field. This is
especially likely to be the case in tropical or subtropical
montane areas with high variability in landuse”. Using
such a point is likely o result in the confusion of regisira-
tion error with classification error. Dropping such points
raises the cost of getting a sample of given size. High-
resolution images (as mm our study) are often available
only for portions of the area of interest, and, therefore,
are not representative of the shares of land nse classes in
the area of interest. Finally, if there is more than one arca
of interest, as in our study, methods utilizing the vser emor
matrix would require a sample from cach of these areas,
thus multiplying the cost of the study.

The drawback of the method used here, which uses the
producer error matrix, 1% that it requires a matrix inver-
sion. This means that 5% could have elements that are less
than zero or greater than one. This problem is unlikely 1o
oceur if the diagonal elements of P (the probabilities that
classes are correctly classified) are sufficiently close to |
(ref. 9), and if the class proportions are not too unequal™.
Matrnces with diagonal elements oo close to zero are ill-
conditioned, meaning that small changes in the elements
of such a matrix can lead to large changes in ils inverse.
Since it is P! that is used in the calculation of the true
class proportions, if it 15 ill-conditioned, then the estimated
true class proportions will have a large variance. A simulation
study'' found that if the producer accuracies (that is, the
diagonal elements) were at least 0.7, then this problem
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Table 3,

Comparisons of degradation with FSI estimates

Whole image

This study
Per cent of area under forest {or scrub) 75 ({7 1-89)
Per cent of forest area with = 4% cc 6l (48-73)

Almora dist Pithoragarh dist
This study F51 This study FSI
T2 {68-T7) 48 T1i67-75) ]
TH (68-86) 19 3B @510 k1l

ce, Crown cover. W% confidence imtervals for our study are given in brackets. All figures rounded to whole numbers,

did not occur. This s why oblaining a classification accuracy
of 70% in each class 15 desirable but higher accuracies
are not necessary, provided the assessment sample size in
each class is large enough.

Some of the diagonal elements in the error matnx
Table 2 are less than 70%, resulting in considerable vanation
in the inverse matrix. This gives wide confidence intervals
as seen in Table 3. However, as we shall see below, we can
stll conclude that degradation has been overestimated by
the Forest Survey of India. Thus, despite the low classi-
fication accuracies in some classes, we can still reach useful
conclusions because the confidence intervals inform us
about the limits of the likely emors.

Confidence bounds for the degradation estimares

We now come o the main contribution of this paper: com-
puting confidence intervals for our estimated proportions
of the areas in the different classes. §* is a useful estimate
only if we know how much ermor it s hikely to contain.
The 90% confidence intervals on the elements of §* were
computed as follows., One thousand random ‘bootstrap’
samples with replacement were drawn from the sample of
553 points vsed for accuracy assessment above, each being
of the same size as the original. (See ref. 12 for a discus-
sion of bootstrap methods in the context of estimating er-
ror rates in classification problems.) Each bootstrap sample
15 thus a mndom draw from the original sample and re-
sults in a different distribution of band ratios in cach true
class. Then 5* was calculated for each bootstrap sample
by re-calculating P! and multiplying it by the onginal
map proportions vector 5. The 5th and 95th percentiles of
the frequency distribution of ¥* thus generated give us the
90% confidence intervals on §%.

The most straightforward way to namow the confidence
mtervals and increase the precision of the estimates s o
use a larger sample for those classes for which the sample
stze 15 small. This will reduce the sampling variability bet-
ween bootstrap samples and thus narrow the confidence
intervals on the error matrix, and therefore, on the propor-
tions of the area in different classes. An increased sample
stze may also improve classification by allowing better
estimates of the parameters although this effect s likely
to be small except when starting from a very small sam-
ple size. Of course, increasing the sample size is costly in

i3]

terms of mereased field visits, or acquisition, geo-registration,
and visual interpretation of high-resolution images.

Results

Refernng to Table 3, we see that 72% (68-77%) (through-
out the paper the ranges refer to the 90% confidence in-
terval) of the old Almom distnet, subsequently split into
Almora and Bageshwar, was under forest or serub in 1998,
The Forest Survey of India (FSI) estimated the area under
forest or scrub to be much lower: only 48%. As men-
tioned in the introduction, the FST estimates are presented
without any information on the interpretation methods
used and without confidence bounds. In fact, the FS51 es-
timated the area under scrub in Almora district o be only
about 1% of the total area, an unbelievably low number.
This probably accounts for much of the wide discrepancy
between their estimates and ours. OF the forest (including
scrub) arca, we find that T8% (68-86%) was degraded, i.c.
had a crown cover of less than 40%. The FSI estimates
the forest degraded to be just 19%. Again, a good part of
the discrepancy is probably due to their misclassification
of serub and other degraded forests as non-forest.

A caveal that needs to be made at onee i that our IRS
image does not cover the whole of both distnets (Figure 1).
Nevertheless, this cannot account for such huge diserepan-
cies. The part of Almora districl not in our image s very
small. The part of Pithomgarh left out 1s larger, but most
of this is under permanent snow.

The FSI's underestimation of the forest and scrub area
and related underestimation of the proportion of forested
area that is degraded is repeated in the Pithoragarh district
(subsequently split into Pithoragarh and Champawat). We
estimate the forest or scrub area in the Pithoragarh district
to be T1% (67-75%) while the FSI figure is only 36%.
Again, ther figure for the per cent of the total area of the
district under scrub is rather low: just 4%. We find that
8% (45=-T70%) of the forested area has a crown cover below
40% while the FSI estimate is 31%.

While there is one other large-scale study that uses vis-
pal interpretation of 1972 Landsat MSS data and aerial
photographs for ground truths', it is unfortunately not directly
comparable with ours, since they used different erown
cover cutofls and made no attempt to distinguish between
scrub and grasslands. There are also 4 number of studies
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of much smaller areas n the region . They are all based
on aerial photographs from the early 1970s and they gen-
erally found smaller proportions of forest with high
crown cover than we do. Tiwari and Singh" also included a
time-change analysis using recent IRS imagery and found
a decline in the extent of forests with high crown cover.

Conclusion

The results presented here suggest that the extent of forest
loss in the Central Himalayas has been considerably under-
stated in the widely cited estimates by the Forest Survey
of India, partly because the extent of forest land that has
been degraded has not been adequately counted. This paper
has demonstrated a method for finding confidence inter-
vals for the estimated areas under different classes. While
the estimated confidence intervals for the proportion of the
area forested in the two distnets studied are closer, those
for the proportion of forest with less than 40% crown cover
are wider, a natural consequence of the fact that crown
cover 1 a continuous variable. Despite the wide confidence
intervals for degradation, the official figures lie below the
lower limits of our confidence intervals in both districts.
This illustrates the importance of giving confidence intervals
for estimates of areas. Larger assessment samples, while
more expensive, would narrow the confidence intervals,
thus improving the precision of the estimates.
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