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Abstract. This paper presents a novel histogram thresholding technigue based on the beam theory
of solid mechanics and the minimization of ambiguity in information. First, a beam theory based
histogram modification process is carted out. This beam theory based process considers a distance
measure in order o modify the shape of the histogram. The ambiguity in the overall information
ziven by the modified histogram is then minimized 1o obtain the threshold value. The ambiguity
minimization is carded out using the theories of fuzzy and rough sets, where a new definition of
rough entropy is presented. The applications of the proposed scheme in performing object and edge
extraction in images are reported and compared with those of a few existing classical and ambiguity
minimization based schemes for thresholding. Expermental resulis are given to demonstrate the
effectiveness of the proposed method in terms of both gualitative and quantitative measures.
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1. Introduction

Bi-level thresholding of the histogram of an image, due to its simplicity and ease of implementation,
has been a popular technique used in various image processing tasks such as segmentation for object
extraction and edge extraction from gradient information [4,7,23]. As the regions in an image do not
have well-defi ned boundaries, it is natural and appropriate to use techniques those can incorporate the
ambiguity in information for performing the thresholding operation. Authors in [8, 13-18, 26] have
demonstrated the use of fuzzy and rough set theores to handle the ambiguity present in images while
performing histogram thresholding. In [8, 13-17], minimization of the ambiguity in the information
given by the gray levels of the image is carried out by optimizing various fuzziness measures such as
index of fuzziness, fuzzy correlation and fuzzy geometric measures. The authors in [ 18] minimize the
roughness in order to threshold the image by optimizing an entropy measure, which they call as the
‘rough entropy of image’. Inthe above mentioned methods, the ambiguity is measured either from the
local information (e.g. co-occurrence matrix) or from the global information (e.g. image histogram).
The methods based on minimizing the ambiguity given by the global information consider only the
distribution or shape of the image histogram and search for a suitable local minimum in the histogram to
be assigned as the threshold value. In the absence of a unique minimum, as in the case of multi-modal
histograms, the performance of such methods may depend heavily on the choice of the local minimum
as the threshold value. A quite different fuzzy based approach is proposed in [26], where the authors
perform the thresholding using a fuzzy measure for similarity between gray levels.

In this paper, we propose a novel bi-level histogram thresholding technique based on the beam the-
ory of solid mechanics and information ambiguity minimization. We demonstrate its application in
segmentation and edge detection for grayscale and color images. The proposed method is suitable for
thresholding both unimodal and multi-modal histograms.

In the case of bi-level thresholding, where the elements of the histogram below a certain threshold
belong to one of the two classes and the other elements belong to the other class, one representer for
each class is always available. To give an example, for a grayscale image, the smallest and largest gray
values in the image are the two representers. In our thresholding technique, the image histogram is
considered as a simply supported beam [20,25] in the shape of its distribution (histogram beam) pivoted
on two sides at the element values of the representers, with a unitorm force, say gravity, acting upon
it. Then, the curvature due to the action of the force at each point of the histogram beam is determined
using the well-known beam theory to obtain a modifi ed histogram indicating the curvature values. This
histogram modifi cation process using the beam theory takes into account the distance of each element
under consideration from the representers, along with the shape of the image histogram. Thus, the
modifi ed histogram embodies the information available from both the shape of the image histogram and
the representers.

In case of a fatigue, the histogram beam will break at the point of maximum curvature {global opti-
mum}) [2, 25], which 15 the “weakest point” of the beam and may be considered as the suitable threshold
value. Thus the use of beam theory helps in obtaining a unique choice for threshold value irrespective
of whether a unique minimum is present in the image histogram. The point of maximum curvature is
determined by minimizing the ambiguity in the overall information obtained atter the histogram modifi -
cation process. We use the theories of fuzzy and rough sets to measure the ambiguity in the information
given by the modifi ed histogram and then minimize the various measures of fuzziness and roughness to
determine the threshold value. In these regards, a new measure of ambiguity called ‘rough enfropy of
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histogram’ is presented in this paper. The effectiveness of the proposed technique is shown in this paper
with the help of a few illustrative experimental results.

The organization of the paper is as follows. In Section 2, the well-known beam theory is given. In
Section 3, we present a few measures of ambiguity in information used in this paper including the new
rough entropy measure. The proposed technique to perform bi-level thresholding of the histogram is
explained in Section 4. Qualitative and quantitative results obtained using the proposed method are pre-
sented in Section 5 and compared with those of a few popular bi-level histogram thresholding techniques.
The paper concludes with Section 6 by providing an overview of the contributions made in the paper.

2. Beam Theory: Bending Moment and Curvature

A beam is a structure which is acted upon by forces perpendicular to its axis [20, 25]. Research activities
related to beam theory is known to have existed from the times of Leonardo da Vinci and Galileo Galilei.
Leonhard Euler and Daniel Bernoulli were the fi rst to put together a useful theory back in the year 1730,
which presented the popularly known Euler-Bernoulli beam equation [9, 20, 25]. Under the assumption

v

Figure 1. A simply supported beam in the shape of an image histogram

that the length of the beam is signifi cantly larger than its width and depth, the displacement W of the
beam in the direction (y) of the force is governed by the Euler-Bernoulli beam equation (see Figure 1),
which is expressed as

dtw

ExIx— =P, 1

rE (1)
where F is the Young's modulus of the beam and [ is the moment of inertia of the beam’s cross-section,
which are assumed to be constant in the x direction. The quantity P represents the force acting on the
beam. The stress (Se) and strain (Sa) acting on the beam due to the force [P are given by

Mo x x

;gﬁ = T and (2]

Sa = B (3)
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where Mo stands for the bending moment acting on the beam and R represents the radius of curvature.
The curvature (@) of the beam is approximately expressed as

1 W
PR =& )
Substituting (4) in (1), we get:
Exixi{rj—:f’ (5)

Furthermore, the magnitude of 7 is expressed as

d*Mo
or, AR
Pi= =z (6)
From (5) and (6), we get:
ExIxp=>Mo (7

The relation in (7) can also be arrived at by using the Hooke’s law [20),25] which is given by the following
expression:
Ex Se=5a (%)

We shall not be concerned with the value of £ as it 1s a property of the beam material. Hence, without
loss of generality, we assume E = 1 and arrive at a relation

Mao
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This relation in (9) is used in our novel histogram thresholding method (Section 4).

3. Measures of Ambiguity using Fuzzy and Rough Sets

Lofti Zadeh in the year 1965 proposed the theory of fuzzy sets, where the concept of vague boundaries
of objects (sets) is used to consider the ambiguity in information [6]. Later, in the yvear 1982, Zdzislaw
Pawlak came up with the rough set theory [ 19], which focuses on ambiguity as the limited discernibility
of objects (sets) in the domain of discourse and is a popular mathematical framework for granular com-
puting [18]. Inthis section, we explain in brief a few measures of ambiguity in images using fuzzy set
theory and present a new ambiguity measure called ‘rough entropy of histogram’ using rough set theory.

3.1. Ambiguity Measures using Fuzzy Sets

Pal et al. in the year 1983 [16], pioneered the use of the concept of minimizing fuzziness measures,
which quantity ambiguity in information, to perform image segmentation based on histogram threshold-
ing. Thereatter, various articles have been written presenting the use of ditferent measures of fuzziness
in information for histogram thresholding [8, 13-15, 17, 18, 26]. A comprehensive review of tuzzy tech-
niques of measuring uncertainty and vanous image segmentation techniques are given in [11] and [12],
respectively.

Here, we present the few measures of ambiguity in images using fuzzy sets those we have used in
this paper. It should be noted that although we explain the measures for grayscale images, they are also



very well applicable to color or multi-spectral images. Consider an image X of size M = N with L
gray levels. Each of the L gray levels can be mapped onto an interval [0, 1], which gives the membership
values denoting the degree of brightness corresponding to each gray level. Various linear and nonlinear
functions are present to carry out this kind of mapping [6]. In fuzzy theory based thresholding literature,
Zadeh’s S-function has been widely used to calculate the fuzzy membership values of each gray level
oiving its degree of brightness. The transtormation using the S-function is expressed as

F

0 Tmn = O
B

3
HJH._-':.
I_EU‘—(} hEInm‘Ef

[c—a)

#x (Tmn) = S(Tmnia, b, ) = 4 . (10)

! 1 Tmn = €

where I, denotes the value of gray level at the (m, -n,}ﬂ’ location of the image X . The cross-over point
bis given by b = (a + ¢)/2 and the bandwidth is expressed as Ab = b —a = ¢ —b. Once the membership
values jiy(r,,,) have been calculated, they are used to determine the amount of fuzziness present in the
image. Index of fuzziness is one of the popular measures which gives the average amount of ambiguity
present in an image. The expression for index of fuzziness is given by:

!’P{X} = ﬁ |i§ g [lj”*.\f{irmﬂ} — X {Imﬂ}l] ¥ ) (11}

m=12... M:n=12,... N

where p is an integer and jt x (', ) denotes the nearest two-level version of X such that

0 pxlzmn) <05

1 otherwise

ffri(xnm} = { (12}

When, the value of p = 1, the measure is called the linear index of fuzziness and when p = 2, it is
called the quadratic index of fuzziness [16]. Fuzzy entropy [16] is an another widely used measure of
ambiguity. It is given by:

MIN Z Z [ — px{Tmn ) oga(px(Tmn)) — (1 — px{Tmn})loga(l — px(Tmn }}] (13)

m i

H(X) =

ei M [ It LT Eiy e S, N

Fuzzy correlation [13], which is based on the concept of correlation between two fuzzy sets, is also
an useful tool to measure ambiguity. The expression of fuzzy correlation that is used to measure the
ambiguity in an image is given by:

4 - L 2
1— IEm Enf“.‘}jf‘iaﬁi .“Lffﬂm 1} D] +D2 %ﬂ

(14)
| Di+ D=0

C(X) = {
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where

Dy = Z Z{Eﬂ'.\' {3-'?:1?.']' = 1}! and

T i

Dy = Z Z{E“E{Inm} = 1}‘_’-

T i

The three measures of ambiguity given by equations (11), (13) and (14} are directly calculated trom the
gray values in the image and hence consider only the distribution or shape of the image histogram.

3.2. Ambiguity Measures using Rough Sets

In 20035, Pal et al. [18] introduced the use of rough set theory in modeling ambiguity in an image and
used it for image segmentation. The authors performed spatial granulation of the image to get induced
equivalence classes and introduced a rough entropy measure, which was optimized to get the threshold
value. Here we defi ne a new rough entropy measure called ‘rough entropy of histogram’ based on gray
level granulation.

3.2.1. Rough entropy of histogram

The gray level granulation of an image histogram is shown in Figure 2. The induced equivalence classes
or granules [15, 24] are obtained by partitioning the universe of the elements in an image based on their
gray values. The value of T" in the fi gure is the value of the gray level threshold under consideration and
w denotes the size of the granules. The granules are obtained such that the elements with gray value 1T
are never boundary elements of a granule. Let the symbol (07 represent the set of elements having gray
values above the threshold T, which belong to one of the two classes (say object) and B7 denote those
belonging to the other class (say background). Let ' be the universe of all the x,,,,, elements in the image
X. The sets (J¢ and B are then expressed as:

f]'T e {Inm ell: Imn = T} o
B‘T = {Iﬂm ell: Tmn = Tll' (16)

Then using the rough set theory one can obtain the lower approximations of ()¢ and By, which are given
by:

Op={2mn e U: lj-lfll‘?'-‘]u' € Or} 0
E'T = {Iﬂl?’.’ ell: l"r?'-‘”?]'-'-' < BT} i

and the upper approximations of (J and By are expressed as:

ﬁ']" = {Inm el: l';rﬂln]u.l NnOr ?E m} (19)
ET = {Iﬂm el: lIﬂH:']u.' N Br ?E m} (20}

where [;r,,m]w stands for granules of size w. As the elements with gray value 1" are never boundary
elements of a granule, the condition B, = By or Op = Ot would occur only due to the shape of the
histogram.
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Figure 2.  Granulation of an image histogram

Now the roughness of (7 and By are defi ned as:

1O7|

Ro, =1- =1 (21)
g |Or|
\Br|

Rp, =1- =1 (22)
g |Br|

where |O7|, |Or|, | By| and | Br| are the cardinalities of the sets O, O7, By and B7, respectively. We
then use these roughness measures to defi ne the ‘rough entropy of histogram’ as

IJI-{')T

. 1 R
REr = — | Roy log, (—%) + R, log, ( ff} : (23)

The value of FE7 lies between () and 1. Note that the above measure attains the minimum value of
zero only when R = R, = () and the maximum value of unity only when Ry = R, = 1. This
concept 15 consistent with the fact that maximum information {entropy ) is available when the uncertainty
1s maximum, which is the case when the roughness values are unity. Note that, this underlying concept is
different from the one considered in [18]. The plot of FEt for various values of Ho, and Rp, is given
in Figure 3.

4. The Proposed Histogram Thresholding Technique

In literature, numerous antomatic algorithms have been proposed to threshold the histogram of an image.
Most of these algorithms are based on the shape of the histogram and are designed to fi nd an appropriate
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Figure 3. Plots of the proposed rough entropy of histogram

valley in the histogram [7]. Such algorithms would perform very well when the histogram is predom-
inantly bimodal. However, in case of unimodal or multi-modal (no. of modes > 2) histograms, these
algorithms might give unsatisfactory results. The authors in [22] and [29] attempted to deal with such
problems by carrying out histogram modifi cation or by fi nding the ‘shoulder’ in the histogram instead of
the valley. A few approaches to threshold a histogram were proposed in [10, 21,27], whose performance
do not depend on the modal characteristics of the histogram. However, these classical appmoaches do not
consider the ambiguity present in the information and hence the two regions obtained after the bi-level
thresholding process might not be acceptable.

In this section, we present a novel method for bi-level thresholding of image histogram using beam
theory and ambiguity measures. Beam theory is used to carryout a histogram modifi cation process that
considers the distance of each element from the representers of the two classes along with the shape of
the histogram. As the modifi ed histogram not only contains the information available from the shape
of the image histogram but also that from the representers, it could be useful in determining a unigue
threshold value in cases where various ambiguity minimization processes applied to Image histograms
produce inconclusive results.

4.1. The proposed methodology

As shown in Figure 4, first the image histogram is subjected to the beam theory based histogram mod-
ifi cation process. Then, the ambiguity minimization in the overall information given by the modified
histogram is carried out. For the histogram modifi cation process, we consider the histogram as a simply
supported beam in the shape of its distribution pivoted on two sides at the element values of the repre-
senters and call it the histogram beam. According to [20], “A member of a structure which is acted upon
by forces perpendicular to its axis is called a beam. A beam which rests freely on two supports is called
a simply supported beam™. We consider that a uniform force, say gravity (g), acts upon the histogram
beam. Therefore, the overall force per unit length on the histogram beam, which corresponds to the



I Sen, 8. K. Pal fHistogram Thresholding using Beam Theory and Amibiguity Measires 9

Eeam theoty based Minimization of
Histomam ™ histogram ambaguity in the .
130 e e ot e IModified everall information Threshold
Histogram Walue

Figure 4. Block diagram of the proposed technigue

torce acting upon each bin of the histogram, will have a linear relationship with the height of the bins.
The bending moment (Mo;,) at each bin ([;) of the histogram (refer Figure 5) due to the force (load) is
calculated as:

Moy, = (Ra x i) — (CP, x [i — COG,)) (24)
i=0,1,...,Dandl; =i+ 1

where [J is the length of the histogram beam and R 4 is the reactive force at the pivot A due to the total
load on the histogram beam. The value of i is the distance of the bin [; from the pivot A. The total load
between the points A and [; is given by ('F;,. The symbol ("O(, stands for the center of gravity of the
beam between the points A and [;. The reactive force £, is calculated as

Ry=CP,,, [%] (25)
The center of gravity C'O(, is calculated using the expression
1
COG,, = SR E{k ~1)P,, (26)

where P, is the load at the &'" bin. As mentioned earlier, this load has a linear relationship with the
histogram value at that bin. Hence, without loss of generality, we consider 7, = H,, + T, where H,, is
the height of the k™ bin of the histogram and T is any fi nite constant value with T = ().

I A A I I 2R IR TR 2 AR A

# -

. . z B

i o

Figure 5. Load on a Histogram Beam
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MNext, using (9), we calculate the curvature value at each bin due to the action of the bending moment

given by (24) as follows
M
CURy, = I‘”‘ : (27)
1

where [}, is value of the moment of inertia at [;. This value of I;, is calculated using

1

B
I ; Z Z{q _ mp}"‘_ (28)

i = i
Za.f._. Py p=1 g={}

The symbol 1, denotes the centroid of the load I, acting at the p™ bin. Note that the centroid of the load
corresponds to the centroid of the histogram beam at p. Once the value of C'l/ F;_has been obtained, we
perform the following transformation:

ACUR, = max(CUR) — CUR;, (29)

where CUR = {CUR }, l; =1,2,...,D + 1. The ACU Ry, are the values of the modifi ed histogram.

The above process of histogram modifi cation (equations (24)-(29)) considers the information from
both the shape of the histogram and the representers. It is well known that in case of a fatigue, the
histogram beam will break at the point of maximum curvature [2, 25], which is the “weakest point” in
the beam. Hence, it is quite natural to consider the point of maximum curvature along the length of the
histogram beam as the threshold value. Interestingly, this consideration is analogous to the minimization
of the ambiguity in the information given by the values (ACU H;,) of the modified histogram. Hence,
various ambiguity minimization based histogram thresholding algorithms can be applied to the modifi ed
histogram in order to obtain a suitable threshold value that would correspond to the point (element value)
of maximum curvature.

In this paper, we use the theory of fuzzy sets and mough sets to perform the ambiguity minimization
process. In case of fuzzy set theory based ambiguity minimization, we calculate the fuzzy membership
value of each element corresponding to the modifi ed histogram using the Zadeh’s S-function given in
(10). As explained in Section 3, the membership values are then used to calculate the fuzziness in the
information using the linear index of fuzziness, fuzzy entropy and fuzzy correlation measures given in
(11), (13)and (14}, respectively. The fuzziness is measured across the modifi ed histogram by varying the
cross-over point of the S-function such that it takes all the element values. Then, the element value for
which the fuzziness is minimum is considered as the threshold value. Thus, fuzzy-optimal thresholds
based on ambiguity minimization using the above mentioned fuzziness measures are obtained.

Rough set theory based ambiguity minimization is carried out by employing the technique described
in Section 3. The upper and lower approximations of the two ambiguous classes regarding bi-level
thresholding of the modifi ed histogram are determined using equations (17)-(20). The roughness in the
information corresponding to the two classes is calculated vusing (21) and (22). Then, the rough entropy
of the information given by the modifi ed histogram is measured using (23). This entropy measure is
determined across the modifi ed histogram by varying the value of T" in (15) and (16) such that it takes
all the element values. Then, the element value for which the value of mough entropy is minimum is
considered as the rough-optimal threshold value.

Thus, a suitable threshold value is determined for a given histogram by first carrying out a beam
theory based modifi cation that considers a distance measure apart from the shape of the histogram and
then by performing ambiguity minimization.
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4.2. Consequences of the beam theory based histogram modification

Using a few typical cases, we shall now present the effect of the having a beam theory based histogram
modifi cation process, which helps in obtaining a unique threshold value, before the ambiguity minimiza-
tion is carried out to determine the threshold value.

Figure 6 shows a few typical non-bimodal histogram where the ambiguity minimization processes
produce unclear results and the inclusion of the beam theory based histogram modifi cation helps to
overcome such problems. The histogram shown in Figure 6(a)&(b) has a trimodal distribution. The
ambiguity minimization process results in two equally good thresholds, whereas the inclusion of the his-
togram modifi cation process overcomes this problem. The histogram in Figure 6(c)&:(d) is of an image
with fi ve ditferent gray level regions having uniformly-distributed texture. Although the ambiguity mini-
mization process gives a particular threshold, many other threshold values were found to have minimized
the ambiguity to a similar level. On the other hand, as expected for an unitorm distribution, the thresh-
old value determined with the histogram modifi cation process is near the middle of the dynamic range.
Figure 6(e)&:(f) displays an unimodal distribution, where the introduction of the histogram modifi cation
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Figure 6. Threshold determination in a few typical non-bimodal histograms (Tr — Threshold value)

process helps to arrive at an acceptable threshold value.
As shown in Figure 7, in case of bimodal histograms, the histogram modifi cation process does not

make much of a ditference to the selected threshold value when compared with the threshold value
obtained by carrying out the ambiguity minimization process alone.
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Figure 7. Threshold determination in a typical bimodal histogram (Tr — Threshold value)

5. Experimental Results and Comparisons

In this section, the performance of the proposed bi-level histogram thresholding technique is compared
with those of a few existing ambiguity minimization based thresholding algorithms and a few popular
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classical techniques. The methods are applied to carry out object extraction using global histogram
and edge extraction using gradient histogram. The gradient values are obtained by applying the Canny
operator [3, 3] to the gray level or color images. The techniques considered for comparison with that of
the proposed one are (i) thresholding using index (linear) of fuzziness [16], (i) thresholding using fuzzy
entropy [16], (i) thresholding based on fuzzy correlation [15], {iv) rough entropy based thresholding
(refer Section 3), (v) fuzzy gray level similarity based thresholding [26], (vi) Otsu’s method [10], (vii)

(a) Geometry image (b} ldeal objects (c) Histogram (d) Modified Histogram

(e} Objects obtained by (i) (£} Objects obtained by (ii) (g} Objects obtained by (i} (h) Objects obtained by (iv)

(i) Objects obtained by (v) (j} Objects obtained by (vi) (k) Objects obtained by (vii}

(m} Objects obtained by (ix)  (n) Objects obtained by (x) (o) Objects obtained by (xi})  (p) Objects obtained by (xii)

Figure 8. Qualitative results obtamed vsing various thresholding technigques to perform object extraction on the
synthetically generated *Geometry” image

Pun’s method [21], (viii) Tsai’s method [27]. The proposed technique is implemented using four different
measures of ambiguity and may be referred to as (ix) beam theory & index of fuzziness, (x) beam theory
& fuzzy entropy, (xi) beam theory & fuzzy correlation, and (xii) beam theory & rough entropy based
methods. These methods will henceforth be referred using their corresponding numbers in the paper.
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Both quantitative and qualitative results are presented. We shall refer to the proposed algorithms {ix}
ixi1) as a single proposed method because these four algonthms are based on a single concept of beam
theory based histogram modifi cation followed by ambiguity minimization. As suggested in [[4], during
the ambiguity minimization process, the bandwidth of S-function (Ab) and the size of granules (w) are
varied over a range in order to choose the most consistent threshold value. It is to be noted that in
the proposed method, it is assumed that no prior information about the classes 1s available and hence
the smallest and the largest element values in the histogram are considered as the representers. The
quantitative results are presented for a synthetically generated image which we refer to as the ‘Geometry’
image. A remote sensing image called the ‘Montreal’ image, a medical image called the “Angiography’
image and two color images called the ‘Fluorescent cells’ image & ‘Nisyros island” image are also used
in this section.

Figures 8 and 9 give the qualitative results of the various techniques in extracting the objects from
the background and edges tfrom the gradient values when applied on the synthetically generated ‘Ge-
ometry” image. Figures 8(b) and 9b) show the ideal object and edge extraction results, respectively.
Figures 8(c)é(d) and 9c)&id) give the histogram and modifi ed histogram under consideration for ob-
ject and edge extraction, respectively.

From Figure 8, it is evident that the proposed technique performs better object extraction compared
to the others. The result obtained using (v) 1s nearest to the proposed one. But, it's performance is
dependent on a required prior information in the form of seed points. The knowledge of suitable seed
points is essential for the implementation of the algorithm [26]. Our technique does not require any such

(a) Geometry image (b} ldeal edges (¢} Gradient histogram (d} Modified grad. histogram

(e} Edges obtained by (i} (f) Edges obtained by (ii} (g} Edges obtained by (iii} (h) Edges obtained by (iv)

(i) Edges obtained by (v} (j) Edges obtained by (vi} (k) Edges obtained by (vii) (I} Edges obtained by (viii}
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(m} Edges obtained by {ix} (n} Edges obtained by (x) (o) Edges obtained by (xi) (p) Edges obtained by (xii)

Figure 9. Qualitative results obtained using various thresholding technigues o perform edge extraction on the
gradient of synthetically generated “Geometry” image

prior information. However, if the seed points are available, they can be used as the representers (pivots)
instead of the smallest and the largest element values. One can depict from Figure 9 that the proposed
technique outperforms all the others in determining a threshold value from the gradient histogram to
extract the edges. The thinning of the edges is done by applying the non-maximal suppression algorithm
|3] after applying the threshold determined from the gradient histogram.

Techniques:— | o | ab | i ) | ® | o |
Object extraction (MSE) | 15217 | 15242 [ 15250 | 15242 | 12437 | 14920
Object extraction (MSSIM) | 0711 | 0711 | 0711 | 0711 | 0742 | 0712
Edge extraction (FOM) | 0.197 | 0477 | 0.197 | 0506 | 0516 | 0.569

Techniques: — | i) | i) | (ix) (x| ) | i) |
Object extraction (MSE) | 5865.5 | 13373 | 11003 | 11003 | 11003 | 11003
Object extraction (MSSIM) | 0278 | 0.728 | 0792 | 0792 | 0792 | 0792
Edge extraction (FOM) 0.159 | 0526 | 0572 | 0572 | 0572 | 0572

Table 1. Quanttative results obltamed wsing various bi-level thresholding technigues on the synthetically gener-
ated “Geometry ™ image

Table I gives the quantitative results of the various thresholding techniques. The mean square error
iMSE) and the mean structural similarity measures (MSSIM) [28] between the ideal and the actual object
extraction results are given. The MSE gives the the amount of non-similarity between pixels of the two
images at identical locations, whereas the MSS5IM gives the similarity in the structures present in both
the images. The MSSIM measure may be considered as the more meaningful measure of similarity as
it 15 closer to the human visual perception [28]. A lower value of MSE and a higher value of MS5IM
indicates better performance. A fi gure of merit (FOM) measure defi ned by Abdou et al. [1] to evaluate
edge extraction performance is used in this paper. The FOM measures the similarity in the location of
the edges in the two images and hence can be readily used to evaluate the edge extraction performance
of the thresholding methods. A higher value of FOM indicates better performance. It is evident from the
table that the proposed thresholding technique gives consistently good quantitative results for different
kinds of histograms such as gray level multi-modal histogram and gradient unimodal histogram.
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(a) Montreal image (b} Histogram (¢} Maodifi ed histogram (d} Objects by (i) (e} Objects by (ii)
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() Objects by (iii) (g} Ohjects by {iv) (h} Objects by (v} (i} Objects by (vi} (j) Objects by (vii}

(k) Ohjects by (viii) (1} Objects by (ix) (m) Objects by {x) (n) Objects by (xi) (o) Ohjects by (xii)

Figure 10 Qualitative results obtamed using vanous thresholding technigues w perform object extracunon on the
‘Montreal’ remole sensing image

Figures 10 and 11 show the qualitative results of the various thresholding techniques using the *Mon-
treal” image, which is a remote sensing image. This image, which shows the land and river regions in
the city of Montreal, has been obtained from the website of Natural Resources Canada. It is seen from
Figure 10} that all the methods except {v) and the proposed one put the river and land in the same seg-
ment. In the segmentation carried out by (v), a larger part of the land is assigned to the region of the
river compared to that of the proposed method and hence the proposed technique may be considered as
better than the others. As seen in Figure 11, methods (1)-(v) eliminate a lot of correct edges along with
the false edges. On the other hand, methods (vi)-(viii) leave behind signifi cant amount of false edges.
Compared to these methods the proposed one gives visibly better results loosing a very few correct edges
and retaining a few false edges.

Figures 12 and 13 show the qualitative results of the various thresholding techniques using the ‘An-
giography’ image, which is a medical image. It is evident from the results given in Figure 12 that only
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(a) Montreal image (b} Gradient histogram  (c) Modified grad. hist. (d) Edges by (i} (e) Edges by (i}
(f) Edges by (iii) (g} Edges by {iv) (h} Edges by (v} (i) Edges by (vi} (j) Edges by (vii}

(k) Edges by {viii) (1} Edges by (ix) (m} Edges by (x) (n} Edges by (xi) (o) Edges by (xii)

Figure 11, Qualitative results obtained vsing vanous thresholding technigues o perform edge extraction on the
gradient of ‘Montreal” remole sensing image

the proposed method is able to extract out all the blood vessels from the background. On the other hand,
all the other techniques except method (vii) fail in extracting out the thinner blood vessels. When the
proposed method is applied to threshold the gradient histogram of the ‘Anglography’ image, it succeeds
in accurately extracting the edges. However, methods (vi) and (viii) also perform equally well. Hence,
in this case, the proposed method is equally good or better than the other techniques.

Table 2 enlists the threshold values obtained by using the various algorithms for object extraction
(obj.) and edge extraction {edg.) purposes in the ‘Geometry’, ‘Montreal’ and ‘Angiography’ Images.
MNote that the values given in the form of an array for the method (v) are the seed element values, which
are essential for the implementation of the method. We normalize the element values of all kinds of
images to the dynamic range [0, 255].

Figure 14 presents the use of the proposed methodology of beam theory based modifi cation followed
by rough-optimal threshold determination {method (xi1)) in color images. The two color images consid-
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(a) Angiography image (b} Histogram (c) Maodifi ed histogram  (d) Objects by (i) () Ohbjects by (ii)

() Objects by (iii) (g} Ohjects by {iv) (h} Objects by (v} (i} Objects by (vi} (j) Objects by (vii}

(k) Objects by (viii) (1} Objects by (ix) (m} Cbjects by (x) (n) Objects by (xi) (o) Objects by (xii)

Figure 12.  Qualitative results obtained using varous thresholding technigues o perform object extraction on the
‘Angiography’ medical image

ered are the ‘Fluorescent cells” image obtained from the website of University of Camerino, ltaly and the
‘Misyros island’ image, a remote sensing image obtained from the website of National Aeronautics and
Space Administration, USA.

Figure 14(b)&(e) are the results of thresholding each component of the color images using the method
ixi1), adding the three thresholded images to produce an image having more than two segmented regions
and then using the average of the three threshold values on the added image to obtain the fi nal two seg-
ments. Note that typical ways of handling the three color components while performing object extraction
in a color image 15 given in [4]. Figures 14(c)&it) are the results obtained by thresholding the color gra-
dient of the images calculated using the color Canny operator [5]. Here, the non-maximal suppression
algorithm has not been applied unlike the previously shown qualitative edge extraction results.
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(a) Angiography image (b) Gradient histogram  (c) Modified grad. hist. (d} Edges by (i} (e) Edges by (ii}
(f) Edges by (iii) (g} Edges by {iv) (h} Edges by (v} (i) Edges by (vi} (j) Edges by (vii}

(k) Edges by { viii) (1} Edges by (ix) (m} Edges by (x) (n} Edges by (xi}) (0} Edges by (xii}
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Figure 13 ualitative results obtained using vanouws thresholding techniques o perform edge extraction on the
gradient of ‘Angiography’ medical image

6. Conclusion

The issue of bi-level thresholding in images taking into account their inherent ambiguity has been consid-
ered in this paper. It has been found that the existing ambiguity minimization based global thresholding
techniques do not give satistactory results consistently when used on various images with different his-
tograms. In this paper, an analogy has been drawn between the concept of the beam theory in solid
mechanics and the global histogram thresholding process. The histogram has been considered as a sim-
ply supported beam and then the beam theory has been used to perform a histogram modifi cation process
by calculating the curvature values corresponding to each element of the histogram. Then, various ambi-
ouity minimization based techniques have been applied to the modifi ed histogram in order to determine
the threshold value. It has been found that such an histogram modifi cation process considers a distance
measure along with the shape of the histogram and thus helps the ambiguity minimization processes to
oive consistently acceptable results. With regards to the ambiguity minimization process, a new rough
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Techniques: — (i) (1) (1) (1v)
Images obj. edg. obj. edo. obj. edg. obj. edo.
Geometry 135 175 137 a0 138 175 137 8l
Montreal 89 151 89 163 89 151 Y] 147
Angiography 40 98 31 97 A4 99 40 93
Techniques:— (v (vi) (vii) (viil)
Images obyj. | edg. obj. | edg. | obl. | edg. | ob). | edg
Geometry 85 [50 246] 131 [25 231] 115 73 33 5 95 79
Montreal 174 [45 246] 140 [100 236] 104 46 100 26 117 54
Anglography 33 [10 110] 128 [50 236] 6 50 123 5 75 58

Techniques:— (1x) (%) (x1) (xi1)
Images obj. | edg. | obj. I edg. | obj. | edg. | obj. | edg.
Geometry T 71 T0 71 70 71 T0 71
Montreal 147 67 147 68 147 67 148 69
Angiography 122 67 123 67 122 67 123 67

Table 2. Threshold values obtained using various techniques for object and edge extraction purposes

entropy measure of histogram has been given, which is based on the rough set theory.
Qualitative and quantitative performance of the proposed method have been studied and compared
to those of a few existing ambiguity minimization based thresholding techniques and a few classical

techniques. Images those have ditferent histogram shapes and are used for different applications have
been considered in this paper in order to show the results. It has been found that the proposed technigque

consistently performs as good as or better than the others.
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