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Algebraic Immunity for Cryptographically Significant
Boolean Functions: Analysis and Construction

Claude Carlet, Deepak Kumar Dalai, Kishan Chand Gupta, and Subhamoy Maitra

Abstraci— Recently, algebraic attacks have received a lot of
attention in the cryptographic literature. It has been ohserved
that a Boolean function f used as a cryptographic primitive, and
interpreted as a multivariate polynomial over £3, should not have
low degree multiples obtained by multiplication with low degree
nonzero functions. In this paper, we show that a Boolean function
having low nonlinearity is (also) weak against algebraic attacks,
and we extend this result to higher order nonlinearities. Next, we
present enumeration results on linearly independent annihilators.
We also study certain classes of highly nonlinear resilient Eoolean
functions for their algebraic immunity. We identify that functions
having low-degree subfunctions are weak in terms of algebraic
immunity, and we analyze some existing constructions from this
viewpoint. Further, we present a construction method to generate
Boolean functions on # variables with highest possible algebraic
immunity [3] (this construction, first presented at the 2005
Workshop on Fast Software Encryption (FSE 2005), has been the
first one producing such functions). These functions are obtained
through a doubly indexed recursive relation. We calculate their
Hamming weights and deduce their nonlinearities; we show that
they have very high algebraic degrees. We express them as the
sums of two functions which can be obtained from simple sym-
metric functions by a transformation which can be implemented
with an algorithm whose complexity is linear in the number of
variables. We deduce a very fast way of computing the output to
these functions, given their input.

Index Terms—Algebraic attacks, annihilators, Boolean func-
tions, nonlinearity, stream ciphers, Walsh spectrum.

[. INTRODUCTION

very well studied model of stream cipher 15 the nonlinear
Aumhinur model, where the outputs to several linear feed-
back shift registers (LFSRs) are combined using a nonlinear
Boolean function o prodoce the key stream. This model has
undergone a lot of cryptanalysis and to resist those attacks, dif-
ferent design criteria have been proposed for both the LFSRs
and the combining Boolean function. The main criteria on the
combining function are balancedness, a high algebraie degree, a
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high nonlineanty, and correlation immunity. Another model 15
the filter generator, in which the content of some of the flip-flops
i a single (longer) LESR consutute the input 1o a nonlinear
Boolean function which produces the keystream. This model is
theoretically equivalent o the combiner model, but the atacks
do not work guite similady on each system. The main cnteria
on the filtering function are balancedness, a high algebraic de-
eree, and 8 high nonlinearity. There are a large number of papers
studying all of these eriterda and one may refer to [12], [34],[43],
[14], [530], and the references in these papers for more details.

Very recently, anew attack that uses cleverly overdefined sys-
tems of multivariate nonlinear equations 1o recover the secret
key has gamed a lot of attention (the wea of using such systems
comes from Shannon [435], but the improvement in the efficiency
of the method 1s recent). 1 is known as algebrae attack [3], [4].
[22}-[25], [35]. [ 38]. Given a Boolean function f on re varables,
different kinds of scenarios related 1o low-degree multiples of
have been studied i [24], [38]. The core of the analysis 15 1o
find minimum {or low) degree annihilatorsof (orof 1 | [}, Le,
to find minimum (or low) degree nonzero functions g such that
F#p=TNor{1 e g=%Tomount the algebraic attack,
one needs only low-degree annihilators [24], [38] of /.1 + [
(at least one and, better, as many linearly independent ones as
possible ).

In this paper, we study the immunity of Boolean functions
against algebrane attacks, called the algebraie immunity. We
show some relationships between the algebrae immunity and
the nonlinearity of a Boolean function by proving that a Boolean
function with low nonlinearity must have low algebraic immu-
nity. This result relates the algebraic immunity to the Walsh
spectrum of a Boolean function. We also present enumeration
results on the number of annihilators.

We study the algebraie immunity of those functions satsfying
the critena recalled above, We present expenmental resulls on
highly nonlinear resihient (that is, balanced and correlation im-
muné) functions which are rmotation symmeic [32], [47]. [48],
[33]. [37]. The expenments have been done using Algorithm 1
[38] on functuons of seven, eight, and nine variables and their
complements. The results found are encouraging, which shows
that there exist highly nonlinear resilient functions that are also
good i terms of their algebraic immunity (see also [20]).

So far, little attempt has been made to provide construction
of Boolean functions that can resist algebraic atacks. One at-
templ in this direction 15 W0 analyzee some exisling construc-
tion methods that can provide Boolean functions with some
other cryplographic properties Lo see how good they are in terms
of algebraic immunity [5]-[7], [16]. We swudy different con-
struction methods of resilient functions: primary construc fions,
which produce functons directly, and secondary constructions,
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which give new functions from previously designed ones. We
have expenmentally studied some functions which are of Maio-
rana-McFarand type [11], e which can be seen as concatena-
tions of affine functions. We also show that, if a Boolean func-
tion has low-degree subfunctions, then it is not good in terms
of alzebraie immunity. This completes the analysis on Mao-
rana—-McFarland type functions presented in [38].

Analyzing existing construction methods o see how good
they are in terms of algebraic immunity is only an ad hoc at-
tempt, as these existing construction methods are not meant for
getting good algebraie immunity. In this paper, we provide a
construction method where the algebraic immunity is the main
concern. We introduce the (primary) construction of a 2k-vari-
able Boolean function with algebraic immunity provably equal
to e (that is, optimal). This constructon, initally presented at
the 2005 Workshop on Fast Software Encryption (FSE 2005)
and presented there as a secondary one, has been ongimally the
first one producing functions with optimum algebraic immunity.
The construction 15 iterative in nature (a function with two more
vardables is constructed at each step). This function can then
be used in a secondary construction, to obtain a balanced func-
tion with highest possible algebrue immunity or with a reason-
ably high algebraic immunity, nonlinearity, and (if necessary)
resiliency order. We show that the function has very high alge-
braic degree. We also give an algonthm permiting o deduce the
function from two symmetric functions, which allows 10 have a
very fast way (whose complexity is linear in the number of vari-
ables) of computing the output to the function, given ils input.
This was necessary so that the function can be efficiently used.
Indeed, o make the complexity of algebrane attacks greater than
215 (e, more complex than exhaustive search) a strict min-
imum seems an algebraic immunity of ®—see Section 11, Re-
mark 1—which implies at least 15 varnables for the function
isell, plus the number of variables necessary for applying a
secondary construction ensuring balancedness and good non-
linearity, and if necessary good resiliency; the efficiency of the
stredam cipher 15 then a real challenge.

Other fast computable funcuons exist with optimal algebraic
tmmunity (they have been given onginally in [29] and a hitle
later in [10], with further examples). They are symmetric and
present therefore a risk il attacks vsing this peculianty can be
found in the future. Our functions do not have this drawback.

As this current effort has been an ongoing work for some
tme, a lotof 1ssues have been rised in this area in the meantime.
One should first note that by algebraic immunity we mean the re-
sistance agamst standard algebrie attacks, done in a particular
way, Le., using linearization. One does nol need linearization
if algorithms using Grishner bases can be properly exploited.
However, algebraic immunity is still a relevant notion, since
cryplosystems must at least resist the attacks by linearieation,
and since the complexity of the atacks by Gritbner bases (which
are faster than the attacks by linearization) is difficult w eval-
uate. Further, it should be noted that based on some recent works
related to Fast algebraie attacks [2], [25]. [9], one should concen-
trate more carefully on the design parameters of Boolean func-
tions for proper resistance. This is the reason why, in one of the
recent papers [29], the term of “annihilator immunity™ is used
instead of “algebraic immunity.” However, even in the case of

fast algebraic attacks, the algebraic immunity plays an impor-
tant roke, as shown in [1].

lI. PRELIMINARIES
A Boolean function on v vanables may be viewed as a
mapping from £3 into £5, the finite field with two elements,
We denote by 4, the set of all w-variable Boolean functions.
One of the standard representations of & Boolean function
_]"|:.1':1 R A :| 15 by the output column of 18 fruth table, e, a
binary string of length 2%

F=[F0.0 ), FUL0. 0, FI T
Fole dsrsObees ofl [wlase b

The set of - € I for which [l = 1 irespectively, [l = )
is called the on-set (respectively, offset), denoted by | ¢ (respec-
tively, (1 ). We say that a Boolean function [ is balanced if the
truth table contains an equal number of 175 and (s,

The Hamming weight of a binary string & is the number of
ones in the string. This number is denoted by w15, The Ham-
ming distance between two staongs, &y and S s denoted by
[ 57, 5y and is the number of places where 5° and 5. differ.
Note that 5. 521 = wi{&] 5l (by abuse of notation, we
also use + o denote the addition in . Le., the XOR).

Any Boolean function has a unique representation as a mul-
tivariate polynomial over Fi. called the algebraic normal form
[ANF)

Sl o) oty — Z g,
Laiialn
[ Z Qi | | ooge, w D Ly
Tl i
where the coefficients an, G, .. .. ti.z v belong to (0,1},

The algebraic degree dog(f)is the number of variables in the
highest order tenm with nonzero coefficient. A Boolean function
is affine if there exists no term of degree strictly greater than
in the ANF and the set of all affine functions is denoted by 4.
An affine function with constant term equal o zero is called a
linear functon.

It 15 known that a Boolean function should have high alge-
braic degree w be cryplographically secure [31]. Further, it has
beenidentfied recently that it should not have a low-degree mul-
tiple. More precisely, it s shown [ 24] that, given any n-vari-
able Boolean functon §, it is always possible 1o get a Boolean
function g with degree at most _fj_ such that [~ g has degree at
most [5]. Here the functions are considered to be multivariate
polynomials over Iy and [+ i is the polynomial multiplication
over 1% Thus, while choosing a function [, the cryplosystem
designer should be careful that it should not happen that the de-
gree of [ - g falls much below [%] with a nonzero function g
whose degree is also much below [1]. In fact, as observed in
[24], [38], it is enough to check that f and f + | do not admit
nonzero annihilators of such low degrees.

Definition I: Given | © H,, define

AN(FY {g€Buiwg 0}



Any function g C AN £ is called an annihilator of §.

To check that a function has good algebraic immunity, it 1s
necessary and sufficient to check that [ and [ 4 1 do not admit
nonzero annihilators of low degrees. Indeed, if [ or [ 1 has
an annihilator g of low degree o, then f + g either is null or
equals g and therefore has degree at most oJ; conversely, if we
have + 5 = h where 4 £ 1 and where 5 and & have degrees
at most ¢, then either g I, and then g is an annihilator of
I 1 Lorg = & and we have then [ %4 = [+ i by muliplying
both terms of the equality f + 5 = & by £, which proves that
g+ M = U and shows that ¢ — I is a nonzero annihilator
of § of degree at most .

Definition 2: Given { = [4,, we define its algebraic immu-
nity as the minimum degree of all nonzero annihilators of [ or
{1, and we denote it by AT 007

Note that AT, {F1 = clogl £, since f= (|

| + f must have an annihilator at a degree < 5

ATa e,

| f1=1.As for
[24], we have

Remark 1: Let an n-varable function [, with algebraic im-
munity | 5| be usedasa ILIlerh function on a linear automaton
(e.g. an LI-"&R}I with vre 2> 2N states, where & is the length of the
key (otherwise, it 1s known that the system 1s not robust). Then
the complexity of an algebraic attack using one annihilator of

degree [§] is roughly
) (m] ; 5 Jr.-g:-'iT:Aq (m)+ ( s Ay 2B
i | = - == EEl ol
L [ -0 =l
12% (which 1s wsoal) and

(see [24]). Let us choose & =
ri = 256, then the complexaty of the algebrmie attack 1s greater
than the complexity of an exhaustive search, that is 217, for
o= 1hC I the attacker knows several hinearly independent
annihilators of degree T, then the number of variables must
be enhanced.

Remark 2; There are some recent works [2], [23]. [9]. [1].
based on which one may need to consider the situations fur-
ther to annihilators. Consider, for instance, the situation when
Frhi =1, and A is a lowest degree annihilator of f. Let the
degree of I be oy, . Then generally we expect that the cryplanal-
ysis will be pedormed considering the annihilator £ and its de-
gree 18 an important parameter in the complexaty of the attack.
Consider that one has designed a scheme considering this sce-
narwy. However, it may very well happen that f+ 5 = H, whene
deg{ T dewilhy, but degly) < deeif) and in such an event
one may get a beter attack (with lower complexily) vsing g.
This has been exploited n [26] to present an attack on SFINKS
[&].

In this work, we are concentrating on algebrane mmmunily as
defined in Definition 2. One should note that algebraic immunity
(as in Definition 2) is not a property that can resist all kinds of
algebrawe attacks, but cleardy this s a necessary one. Our studies
in this paper are based in the scope of this definition and we leave
it as open problem o see how these analyses can be extended
keeping n mind the properties emerged o resist fast algebrae
attacks.

ENTi

The nonlinearity of an n-variable function [ is its distance
from the set of all w-vanable affine functions, 1.e.,

ali {1 = n.ffl’f ail.

'I

Boolean functions used in cryptographic systems must have
high nonlmeanty to withstand linear and correlation attacks
[31]. [12].

It 15 known that there are highly nonlinear Boolean functions
of low degrees; as example, there exist quadratic bent func-
tons that have degree 2 and maximum possible nonlincanty
2¢ 1 — 2% 1 when e is even. Such functions f, as they are
by themselves of low algebraic degree, will have low values of
algebraic immunity A7 ,0 /7. On the other hand, we may have
Boolean functions of low nonlinearity with high algebraic de-
gree. Interesungly, if we replace the algebraic degree by the al-
gebrane immunity, the sitwation changes. In this paper, we show
that, if & function has low nonlinearity, then it must have a low
value of AT .0 [ This implies that if one chooses a function
with good value of AL, f). this will automatically provide a
nonlinearity which s not low,. However, 1t does not assure that
the nonlmeanty i very high (see Section 111, Henee, the alge-
braic mmmunity properly takes care of two fundamental prop-
erties of a Boolean function, algebraic degree and nonlinearity,
but itdoes this incompletely in the case of nonlinearity. We will
recall also that this property stays unchanged with respect o
linear transformation unlike correlation immunity or propaga-
Lion characlerisics.

Many propertiesof Boolean functions can be described by the
Walsh transform. Let = = (- i, ) Vand w = S TR )
both belonging o I} .md T =T 4o i, Let S
be a Boolean function on # variables. Then the Walsh transform
of [l«] is an ineger valued function over 13 which is defined
a8

Wiiw) = Z [,

Ry R

A Boolean function f is balanced if and only if W00 0,
The nonlinearity of [ is given by

| _
, Indx TR

AR g

nlf) =2

Correlation-immune functions and resilient functions are two
important classes of Boolean functions. A function is v-re-
silient (respectively, rth-order correlation immune) if and only
if'its Walsh transform satistfies W o) = 0, for 1) < wrtfow) <7
(respectively, 1 = wi{w) = )

Following the notation as in [42], [43], [48] we use
'Z;w._,ur.._ . 7)o denote w-variable, sn-resilient function with
degree o and nonlinearity . Further, by i, e o, o] we denote
unbalanced n-vanable, sn-th order correlation mmune function
with degree o and nonlinearity o.

II. ALGEBRAIC IMMUNITY AND WALSH SPECTRUM

Toward proving the results relating algebraie immunity and
the nonlinearities of a Boolean function, we first present the
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following result, where we relate the algebraic degree with the
weight of the function.

Theowm I: Let f € B, and AT [ [] = o Then

I n—id=1

3 () emin< T (7).

i il
Hence, for every r-variable function f, we have

ATaifi—1 w—AT i)

Z (’:) < wet{ f] = Z (Tj

=1 =

Progf: Lel g be a function of degree at most o, Let the ANF
of i equal

kg

fq Zu-_:;r; [

=1

1y
+ E i Y, g o

Note that y is an annihilator of f if and only if f{x)] = 1
implies 4{r) = M. Hence, g belongs to AN ) if and only if
the coefficients in its ANF satisfy the system of homogeneous
lingar equations which translates this fact. In this system, we
have 37 , ("] number of variables (the a’s for the monomials
up to degree ) and w1 ] many equations. If the number
of wvariables 1§ greater than the number of equations, then
we will get nontrivial solutions. Thus, the fact that f has no
annihilator g of degree o implies that the number of equations
15 greater than or equal o the number of vanables, that is,
wrifl =500 g’;:l Similarly, when considering | — f, we get
wiil+ =30, lz 1. This gives, wii 1 = 2" — EL._-_. 59,
e, wrif) < l:::ffq (7). The last double mnequality is
obtained by choosing « = AT, (1 — 1. O

-1
“F

[2

Theorem 1 gives an alternative proof of AT, (7 =
which was given in [24]. Indeed, when applied 10 d =

—

it keads to a contradicion, since we have

¥ . st

Note that the converse of Theorem 1 is not always true. For
example, the affine functions are balanced, but cleady they have
linear annihilators.

[

Applying Theorem 1 with 4 = [47 — 1, we get the following.

Corollary 1: AT, = [§] imples

1 f 15 balanced when 1 1s odd;

2 B Ul (7] 2 w3 = 57 (7] when v is even.

Now we connect algebraie immunity with nonlinearity. We
first need a simple lemma, which has 11s own iterest.

Lemma 1: For any f £ T3, and any [ € A, we have

ATy f1 -1 S AT, + 0 £ AL + 1 (1)

More generally, for any ¥ C H, and for any & 2 H., whose
algebraie degree equals v, we have

AL fl—v = AT (f+ 81 < AL+

Proof: For any g such that [+ g 0, we have (' + k] +
M | 13+ g1 = 0.For any g suchthat {1 | 15 5 = 0, we have
h—=F R i+ 1w gy = 0 This gives the inequalities on
the dght. Applying themto [ + fand [ — linstead of [ gives
then the inegualities on the lefl

Note that these relations are stll vahd (changing » nto the
global number of variables) if /' and 1 (respectively, i) are de-
fined on different (maybe intersecting) sets of variables. Note
also that, il these sets of variables are disjoint, then, denotmg by
e the global number of variables, we have

AT 1 = ATl 0= AT 11

and
AT = AT =R < AL — v

since 1L 15 then possible o obtain an annmihilator of degree
A F 4+ 8 (respectively, A2 (f + A of For f4 1 by
restricting to Fibox JU} an annihilator of the same degree of
11 Direspectively, | &)

Siegenthaler [46] proposed to add to a given function [ a
linear function on disjoint variables for increasing the resiliency
order of f; clearly, this secondary construction does not permit
achieving good algebraie immunity.

Theorem 2: 1f wli 1 = EL-; [, then AT/ < o +
|. More generally, if the Hamming distance .| 1 between f
and the set of Boolean functions of algebraic degrees at most v
(the so-called Reed-Muller code of order +, B {r, n ) satisfies
il = ZE’I:& {7 ). then AT [ F1 < d 4 v Inother words

AT iF T
(?1)
e

2.
=i

Proof: Let v be a function of degree at most » such that

LT T IR O S R PR | W7 EL“ (2,:' then

AT 1R = d, according to Theorem 1. Lemma 1 shows

then that A 7 F1 <0 of 4 . The last inequality is obtained by

choosing = AT, | f1—+— 1. |

wlol J =

During the review process of this paper, a bound on the {first-
order) nonlinearity has been obtained in [36]:

ey

This bound mproves upon the comresponding bound of The-
orem 2. It has been further generalized in [18] toa bound on the
higher order nonlincanty, which improves in some cases upon
the corresponding bound of Theorem 2.

Theorem 2 and the result of [36] give a new reason why one
should not use functions [ with low nonlinearity, since in that
case AT, [ f) would be low. However, they do not assure that if
S has high algebraic immunity (for instance, an optimum ong
AT, 001 = [5]) then its nonlinearity will be high. Indeed,

ArL i f1=-2

wiifl =2 3

=0



the n,hull nl' ["]ﬁl tmphes then that ¥ has nonlmeanty at least

S J that is,

if v 15 odd and

PR o= | w1
= (30) (7))

if 7 is even. According to Stiding’s formula, these values are
upprmimululy equal to 2777 — .2._ for add n and to 2477 —
2

e

vf. for even v, They are very I‘.lrl‘mm the maximum possible
nunllnuﬂnly - _ gif2-1

A, Count of Annthilators

In the proof of Theorem 1, we get wt{ f') many homogeneous
linear equations whose variables are the coefficients in the ANF
of 4. Let us denote the coefficient matrix of this system of equa-
tions by M 4. Then A4, ; has wr! #1 many rows and 37 od)
many columns. The rank + g of 3¢ 5 satisfies

if
i T
rya o s wli E ( )
T L i
]

=l

1y ey g = l::r i {“1\:', then there is no nonzero annihilator
of degree = d.
2) Wrp g Ef i T] then thrLtln: nonzero annhilators of
degree < A There will be »77_, {’:I — vy many linearly
independent annihilators having degree < o,
1t is clear [24] that a larger number of independent annihilators
helps better in eryplanalysis. Thus, when considering a Boolean
funcuon, one should check the number of independent annihi-
lators at the lowest possible degree.

Definition 3: Given [ & I, we denote by f LDA 0[] the
number of independent annihilators of [ of degree AI.;I:_,I',.

Theorem 3:
1) Take f <t with A2 7 f1=0. Then ¢ 1. 1. -1,; s
2) Take balanced [ ¢ B, with AT, =

ELOALF 2 L (V\)

. 1even. Then

3) Take j £ 3, such that AT, () =, n odd. Then
#H#LDA M= (400
Progf: The proof of item 1y is as follows: if two annthila-
tors of degree o have the same degree « part in their algebraic
normal forms, then they must be equal since their sum being
then an annihilator of degree strictly smaller than 4, it must be
null. We deduce that LD A, is upper-bounded by the di-
mension of the quotient RM{d, 7} /R d 1, n), that s, {7
Now we prove item 2). Here, whi 7 2" =1
J has an annihilator of degree §. The corresponding coefficient
matnx ;1-'?'_,-_3-.;-. has 2"~ many mows and

. The fu nlen

04

many columns. Thus, rank of 17 ;5 1satmost 27 ', The number
of independent solutions 15 lower bounded by

| n | i
21-;—]_ | e ( 3 )) 2.1.»—1 . , (“ ) .

Now we prove item 3). Here wli [ 2", according Lo
Corollary 1 By hypothesis, there 15 no nonzero annihilator up
to degree = — . The coefficient matrix Me o sa T e gl
square mdlrlx, since

As it has no nontrivial solution, its rank r equals 2*~ ! The func-
tion ¥ has an annihilator of degree '-'f—ff-l—. In this case, the corme-
sponding coefficient matrix A7, .
PR -,’.."1'] many columns. Thus, the rank of A
that of A,

solutions u.]u.ils

- () () 3

In Section IV, we study certain constructions of cryplograph-
ically significant Boolean functions in terms of algebraic immu-
niLy.

has 2*~! many rows and

il equals

.i.e., equals 2"~ The number of mdeLndLnl

IV, STUDYING FUNCTIONS FOR THEIR ALGEBRAIC IMMUNITY

A stanstical analysis has shown in [38] that any randomly
chosen balanced function on large number of variables has no
bad algebraic immunity with very high probability. This result
has the same flavor as the fact that most of the Boolean functions
have high algebraic degrees and high nonlineariies in general
(see [39]). That 1s, if one chooses a Boolean function randomly,
the probability that these three chameenstics will not be bad
15 high. Heunsbe arguments exposed in [20] suggest even that
almost all Boolean functions have in fact algebraic immunily
at least | %], This has been later confirmed in [51]. However,
when considering a specific construction technigue, the number
of functions constructed by that method 1s muoch lower than the
total space of Boolean functions and generally such statistical
analysis does not work.

A. Experimental Results on Rotation Symmetric Boolean
Functions

If we intend o construct (. e, d, .'r.:l functons with best
possible parameters along with the best possible algebrae
immunity, we can first consider a subset of Boolean functions,
which is sufficiently particular so that the study will be simpli-
fied (mathematically andfor algorithmically) and sufficiently
nonpeculiar so that it will be possible to find such functions (as
it can be with random ones). The mtation symmetne Boolean
functions (RSBFs) received a lot of attention recently for this
reason [32], [47]. [48].[33]. [37]. These functions are invanant
under circular ranslation of indices in the input variables. We
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present experimental results related o the algebrmie immunity
of the RSBFs which are available in [47], [48], [33], [37].

Experiment 1: Here we test the algebraic immunity for
(7,2, 1,57 RSBFs. It is given in [47] that there are 36 such
functions with fiM = 0. Out of them, 24 functions contain
linear terms. For these functions, AT, 11 equals 3, which
is one less than the highest possible value [4] = 4. Out of
them 12 functions have JLIXA 11 4 and the remaining
12 have £L1A,{ 1 = 1. The 12 funclions having no linear
term have algebric immunity 42,0 f1 = 4, which is the
highest possible value. According to Theorem 3 (item 3) (we
have also checked this by expedment), for these functions

PR
o

H#LDAS (- R
Experimeni 2: Here we examine the (5. 1.6, 1167 RSBFs
with £l = [ the number of which is 10272 as recalled in

[48]. Out of them, 6976 attain highest algebrae immunity, 1.e.,
1 and we find that for these functions F# L2434, [ [1 = 33, The-
orem 3 (item 2) asserts that the value should be greater than or

ey

L
equal 1o —#

e = Ha. This gives an example, where the bound 1s
tight. For the remaining 272 — GU76
algebraic immunity is 3. Out of them, 1536 many functions |
have only one annihilator of degree 3 (but no degree 3 annihi-
lator for 1 4 '), 1504 many functions [ have no annihilator of
degree 3 (but one degree 3 annihilator for 1 | ), and 256 many
functions f have one annihilator of degree 3 and also one de-
eree 3 annihilator for 1 4+ . According to Theorem 3 (item 1),
#FLALL < {:1 = Ni. So for these functions, the bound is

not sharp.

3296 functions, the

Experiment 3: In the preceding two experiments, we exam-
ined the functions which are balanced. Now we consider the
[9,35, 5, 244 RSBFs which are not balanced. We consider the
8406 funcuons with fiH] = U, see [33], [37]. According to
Corollary 1 (item 1), the algebrue immunity of these functions
will be stoetly less than 5. Here, afler experiment, we get the al-
gebraic immunity of all 8406 functions as 1. According o The-
orem 3 (item 1), #LDAu(f1 = (") 126, In the table at the
bottom of the page, we present the number of functions satis-
fying a patticular AL A F)and #0000 — 1L

Swdying the resilient functions on seven and eight varables
and unbalanced correlation immune functions on nine vanables
for this rotation-symmetric class of Boolean functions, it is ev-
ident that there exist functions which are good in terms of alge-
braic immunity.

B. Analysis of Some Construction Methods

Very few primary constructions of Boolean functions

the introduction are known (see [19]). A general principle of
construction exists: concatenating low-degree funcltions as in
the Malorana-McFardand construction. But this principle has
some limits with respect o the usual criteria (see [14]) and 1t
has drawbacks with respect o the algebre immunily as we
show now.

1) The Maiorana—MceFarland Construction: The onginal
Maiorana—McFarland class of bent functions is as follows (see
ez, [13]). Consider w-vaniable Boolean funul_jt)ns of the form
Flayl = r- =iyl — giy). where &,y £ Fy', 7 isa permu-
tation on I-".fl and 4 is any Boolean function on % variables.
Function § can be seen as concatenation of 2% distinet (up to
complementation) affine functions on % variables.

A similar type of concatenation technigue has also been used
for construction of resilient functions [11] (see also [44], [42]).
Concatenating £-variable affine functions (with repetition al-
lowed) nondegenerate on at least v 4 | variables generates an
ne-resilient function [ on vi-vardables. For such a function [, it
15 casy o find an anmibilator of degree o & | 1 as desenbed
in [38]. In fact, it is shown in [20] that, unless g heavy condi-
tion is satisfied (which is very improbable unless & is almost
equal to ), it is easy to find an annihilator of degree n — k. It
has been commented in [ 38, Example 1 and the following para-
graph]| that ) is generally greater than § (this seems true for the
Maiorana—McFarland type of functions presented in [41], [ 14];
but this has not been checked for some large classes of Mawo-
rana—McFarland type of functions described in [42], [17]) and
hence it is possible o get a nonzero annihilator y of degree less
than §. However, it should be noted that in construction of re-
silient functions, there are technigues that use concatenation of
L-variable affine functions where & =2 5. In such a case, the an-
nihilators described above will have degree greater than 3 and
will not be of practical use as there are other annihilators of de-
gree < 5 which are not of the form given in [ 38, Theorem 2.

2) Seconda ry Constructions:

« We first study a construction of functions proposed
by Swkegenthaler [46]. Given ¥ £ fi,, we denote by
LOCGA M the set of non null f £ &, with lowest
possible degree such that (= [y =0or {1 fis /L =00

Proposition 1: Let £, g betwo Boolean functions on the vari-

ables oy, aa. .0 g with AL O oy and AT {g) ols. Let
=0l —wap ) w1y § Hapr Then
1) Iy & oy then AT, (k) = minfad s 4+ 1L
20 If o) il A then o = AT, (0 < d + L, and
AT ihy = dif and only if there exists 19 C Hy
of algebraic degree dsuchthat { f= f;  Dop+g Dlor

M+ e =001 =gt =g =0} and de! f) — gy ) =

achieving at high kevels the cryptographic enteria recalled in d— 1.
LI A L 15 1% 20 21
FLDA 1 — il 2 4 il 7
# RUNT 175 Tl 14 12 21




Proof: Let {1 < LIGEALF) and ) © LAMSA g I
F=f Wthen{l 4w g d=fi=l U1+ F1=FH 0
then i1 — b= 0 < {1+ &0 = AL Also.if g = gy =1, then
Ay kg =fe=land i Hglegr =00then o, =gy =01 —R1=00.
Thus,

AT 00 = mind AT N AT g+ 1. (2)

Letp = {1 4i,—_ 'y —woqrpz © DG4, (R Let us first
consider the case with i+ p = 0 which implies

[| B P 1:|j" ¥ A, g = R

MNand p+ po = 0. Similady, for the case with
0, 1e,

Sof+p =
il + k)&

=) = (L4 Sl —wuqiil + gl =pp = 0

we have [1— Jep) = and (1 + ) + 52 = U, Now there can
be three cases in both scenarios.
a) o s zero and po is nonzero. So dew!p: = ds which gives
depdpd = s + 1.
by pois zero and pr is nonzero. Sodegloy ) = A which gives
degie? = d + L.
) Both gy, gy are nonzero. S0 degdp i = o and degipa =
thy, which gives deg(pl =] oy ds 1 when oy /o
So for o) #F da we get

ATy (0 = min{ AT N AT L) 0 L (3

Equations (2) and (3) give the prool of item 1),
Now we prove item 2), Consider
i |: |.+.'!'_.-_.+'| :|_]r'| o R __f'|—:|'5_...+'| [ f] +in = LD A 1 |:_.i||":
Clearly, p has degree at least d, since f+ has degree at least 4.
So,d = AT i) = d — 1
If 4%, 1[4 = d, then the highest degree terms of f; and
g1 must be same which gives degl 1 — g1 = d — 1. Note that

wehave {F= f) = hgeq =0} ar i1 flx fy =10,
(L= )= 0} Conversely, if there exists . g € T2,
of algebraic degree o such that {f+ [, = (g #q = 0} or
I+ fisfi=0il—giegpm =0}and degifr—gm ] < d— 1,
then cleady AL, (R o O

We cannot say that the construction of Proposition 1, first in-
troduced by Siegenthaler [46] for oblaining resilient functions,
15 good or 15 bad in tenms of algebraie immunity, since

— a good construction is supposed to gain 1 (respectively, &)

for the algebme immunity when we add 2 (respectively,
2k varables, here we add only one;

— the construction 15 very general smee every function can

be obtained from it

The next corollary 1s a direct consequence of Proposition |
and of the upper bound 47 on the algebraic immunity of +i-vari-
able functions.,

Corollary 2: Let

= ':1 + blr'.-z+l.:'.-'r + wnp1u © -H.-%+l

EINN

"

where n is even and A7, (k] = § | 1 (i.e, has maximum
possible value). Then AT [ ] AT i
imum) and there do not exist |, g < B, of degree % such that
[f=f =hand g= g, =0 or {1451+ fH =Nand | 1Hg1=5, =N}
and such that all 3 degree monomials of §, and j are the same.
We now observe that two functions on an odd number n of vari-

E (1.2., 15 max-

ables and with optimum algebraie mmmunity always have some
relationships.

Corellary 3: Let .4 < 8, where n is odd and AT,/ =
VI 2L (the maximum possible value). Then there must
exist {1,y £ I, of degree ’—H such that 1/ + i = () and
geqm =0tor {1 | fi+fr=>0and{l | g1+ g =10} and
such that all 21 degree monomials of f; and 4, are same.

FProaf: Let

B [ I+ T .I_f + Iny L L= B'rl.—'l &

TL

According to Proposition 1, AT, 1[h) equals 51 since it
cannot be greater than 5=, O

w [n [49], Tarannikov has proposed an important consbruction
of resilient functions. A similar Kind of construction has been
derived in [40] (and has been later generalized in [15]). It has
been shown in [27] that if we denote by Hy the function from
which we start in this construction and by S, the function ob-
tained after ¢ steps ( this function has 3 more variables than Ify ),
then AT, (H.1 < AT, e H0 < AT, (Hy) + 14+ 2. Later, it
has been proved in [7] that the we-vanable functions constructed
by Tarannikov's method [49], [40] attain £ %) algebraic im-
muniLy.

» We also like to present some observations on {9, 1, 7, 2407
functions constructed in [42, Theorem 10ib)]. The operation
s "l 4 Lt sy is defined in [42],
where r°, ¥ are bitwise complements of @, . respectively,
and where - is the Kronecker product, whose definition is:
frdesr 4 Dy e s = Lagw; i g 1. Obviously, when applied
Lo strngs corresponding to the wruth tables of Boolean functons,
this operation § comesponds 1o the so-called divect sum, that is,
the addition of Boolean functions with disjoint sets of variables
(if the definitions of the functions use same symbols 1o desig-

on strings «fy

nate some variables, then these symbols muost be duplicated so
that the functions become defined on different vanables). Now
we present the construction of a {2p 4 1,1, 2p — 1,270 — 2
function as given in [42] for @ = 1

Construction 1: [42, Theorem 1OCb)] Let A, A, As, A be
the i-vanable linear functions nondegenerate on two variables
(1e., the functions or) + wa, e + wa, ) 4w, ) + a4+ gl
Let g; be the d-varable function »; — »_, fori = 1.2. 3. Let
Fey, Fea be bent functions on (29 — 4% variables, let Jig, oy, Iy be
bent functions of i 2p 6] variables and feg, A7 be two strings of
lengths 225 4 | and 2% =% — | which are prepared by properly
adding and removing 1 bit from the truth table of Yy — 6)-vari-
able bent functions, respectively. Let £ be a concatenation of the
following sequence of functions. fo SAq, baBha, NS, IS,
RSy, hgSAg, Ap¥Ay Thisisa (2¢ | 1,1.2p  1,2%% 27}
function.

Example 1 we  choose:  fiy

For p 4,



i1z

by = 0T, Ay = 0T, A, = MO0, Sy = (011, In this
case, we find a (% 1,7, 2400 function f; with A5, f 3.
If one replaces the funcuon fip = OOINIOIO0TI0110 by
fig = NOENNDIOAO0N LI, then we geta 59, 1.7, 2407 function
Jrowith ATl f2) L

We observed that changing the order of affine functions can
change the algebraic immunity without any change in order of
resiliency, nonlineanty, and algebrue degree. The change in the
last four bits in fy implies that the concatenation of Ay, | + Ay,
14+ A0, A will be replaced by 1—As, Aa, Ao, 14 A0 We observed
that this increases the algebraic immunity from 3 to .

C. Functions With Low-Degree Subfunctions

In this subsection, we discuss why a Boolean function with
low-degree subfunction is not good in terms of algebraic immu-
nity. This extension of aresult presented in [38], and its comple-
ments, are simple, but they have some importance for the design
of pseudomndom generators.

Proposition 2 Let f e D, Let g= D, _ . be a subfunction of

frr. ..o o after fixing » many distinet inputs z; .. .., 710 2
1415 - 0o b IF the algebraic degree of g is o, then AT (1<
oh—r.

Progi: Let o, .....x; be the
thiyroooniti, € Fa Thus, g is a function on the varables
faeomad b {m .o m o Obviously, {1 | a, | oo 0.
i L4, 4, 0 L4y is an annihilator of f. The algebraic degree
of (14—, Voo {4, +a W14 glis oo O

fixed al values

The Maorana-MeFardand construction can be seen as con-
catenation of 27 affine functions on n — r variables 1o construct
an re-variable function. Cleady, we have affine subfunctions of
the constructed function in this case, and hence deglnl = | fol-
lowving the notation of Proposition 2. Thus, as already recalled
at Section IV-B1, there will be annihilators of degree 1 | .
Note that if » 15 small, then one can get annihilators at low de-
gree [ 38, Theorem 2, Example 1] This works for any function,
which needs not be of Malomana-MceFardand type only. For in-
stance, let us consider a 20-vanable function, with a subfunc-
tion of degree 2 on 17-varables, e, we fix three inputs. In that
case, the 20-variable funcion will have an annihilator of degree
d—4 =45

Proposition 3: The {2p + 1i-varable function presented in
Construction 1 has a subfunction of degree at most p — | when
| (.

FProgf: Consider the sublunction when s, = 0. The
subfunction (call it ) in concatenation form is A 54, Bl
Since Fe_, lo are bent functions on 2p — 1 varables, they can
have algebraie degree at most 3 — 2. Further, Ay, Ay are 3-van-
able linear functions. The algebrae nommal form of g 1s (1 +
wzedhy 1 ALY epelhez | As). Sothe degree of 4 is smaller or
equalto | — (-2 =p— L O

Thearwm 4: For a function § £ 2, (n odd) generated out of
Construction 1, AT, 7 = | *].

FProof: Herewe = 2p | 1. Wetake o C H, | 1e, e =7
according 1o Proposition 2. Further from Proposition 3

e sl
deglagl =8 — T :
Thus, AL, ifi < 24 — 1 - 1= %] [

Now we answer why the algebrme immunity of these two
functions in Example 1 are different. The reason is that, in the
first case, the functions fip, feooare same with the ANF o0, +
wair. . Thus, the subfunction g (Le., %Ak, koS Aa)is adegree-2
function. So the maximum algebrmke immunity, according 1o
Proposition 2, can be 2 4+ | = 3. In the second case, f; is dif-
ferent from iy and the algebraic degree of g (el ey Sh . hadAe)
becomes 3 and it achieves the value 3 + | = 4. Thus, Proposi-
ton 2 helps in answering this queston. I s important o note
that this technigue can be employed o study the upper bound of
algebrae immunity for vanouws constructions by analyzing ther
subfunctions and in particular, directly for the construe ions pro-
posed in [42], [14].

It should be noted that the converse of Proposition 2 15 nol
always true. That is, a function having low-degree annihilator
does not need 1o have some low-degree subfunction by fixing
a few vadables. As example, one may refer to the 3-varable
function
F=wp lag Laamy [agda (0 s | #00g | Oadg e s
This function has algebraic immunity 2 and the only annihilator
of degree 2 is

Tl ay | omw | oanwg | sy | [.]re. Iy | ralws.
If one verifies all possible subfunctions of | after fixing 1 and 2
variables, it is not possible 1o get subfunctions of degree | and
(), respectively.

MNote that the observation we made for Mawrana-McFar-
land’s functions does not seem o apply o those Boolean
functions that can be seen as concatenations of indicators of
flats [17].

V. CONSTRUCTION T0 GET OPTIMAL ALGEBRAIC IMMUNITY

We have recalled in Section IV-B that very few primary
constructions of Boolean functions achieving at high levels
the wsuoal eryplographic cnteria are known, and we have seen
that these constructions do not seem Lo be able o achieve good
algebrae mmmunity. In this section, we present a construclion
to design a Boolean function of 2% variables with algebraic
immunity f. The construction is iteralive in nature. At each
step, two variables are added and the algebmic immunity 15
mcreased by 1. The constructed function 15 not balanced, but
the bias with respect to balancedness tends to zero when I tends
to infinity. The constructed function has not a high nonlinearity
either. The bias with respect o optimum nonlinearity 1s shightly
better than the minimum observed in Section 11 after Theorem
2. This primary construction can be (must be) combined with
secondary constructions to lead to functions satisfying all of
the necessary cryplographic critena. Since we will be able 1o



give a very elficient way of computing its output (with a linear
complexity in the number of varables), 1its mtodoction inoa
secondary construction 15 efficient even if its number of van-
ables 1s large. Last bul not least argument, it 15 the first known
provably efficient way of obtaning functuons with optimal
algebrawe mmmunity (the next one appeared in [29]). We show
that the functuon has very high algebraie degree.

Construction 2: We denote by 5, € Doy the function de-
fined by the recursion

Gongr = dopllPa ||do P (4)
where  denotes the concatenation, (in Lerms ul‘ulhchmiu normal
form, we have then gy gz = dag + Tzpprtze—2 vz + @'3«_1:;¢in~
and where o}, is defined itself by a doubly indexed recursion

e g L | b L i L s
Why =y e Phalldh;allvd, s (3)

L., in terms of alzebrae nomal fom

T T ) ':lf'z:—li + q-';f‘._,li .?_J

o S oon—1 a1
+.'|':2_.|_'|.!.3_|. |:,':."'"2__|—'_-' + r,-)z_l,_

'y =1
g ey + [ira =
g hai_2 2r=1

g) . forg=04i=10

with base siep n_:';g dy for j o= 00gh § od 2 ford = (L

To understand the recursion in the Construction 2, we present
an example up 1o some depth.

¢y duoulldiallea s iy
: {';.J%.'c 2 :‘:“?re all#, ||"" PR T

I | —h”rj-'J.—l.:- g g
This goes on until we reach the null level for at least one of
the two indices.
Below we present the construction idea as ruth table concate-
nation.
Step 1: o = (001
Step 2: . haghachalIL11)
Step 3t gy = yingehg 01100 1N
Step 4:
g = gptiydacd, aa 110011010101
A NUTOOTTOT R T 0T Q0T 10 1.

To prove that gy, has algebraic immunity &, we need inter-
mediate results. In the proofs, we will use the fact that, for any
{ = B, and any subset Voof {01,117
an annthilator of [ 15 an annihilator of the restriction of [ o
V. For technical reasons, dunng our proofs, we will encounter

, the restriction o 77 oof

certain situations when the degree of a function 1s negative. As
such funcuons cannot exist, we will replace those functions by
function [k

Lemma 2: Assume that the function ¢ia; < Ifa; has been gen-
erated by Construction 2 for 1} < § = d: and lhul AT apldip) = -i
for 0 < < kI forsome 0 <4 <0 loand § 2 0, there exist g £
ANigdvand b £ .-'L-"'r"-ff;liéjl T such that dl,hl g S —2—y
then g = h.

FProof: We prove Lemma 2 by induction on £

For the base step s = Q. degiy b0 2 2 implies
that such a function cannot exist, L.e., g+ isidentically 11, which
mives p =

J=

EINE]

Now we prove the indoctive step. Assume that, for § < £, the
induction assumption holds (for every | = 1) We will show
it for & = ¥ (and for every j E 0). Suppose that there exist
g AN{GL and b e AN, D) with degi{g +5) < F—2— ;.
By construction, if j 2 (0 then we have

e =mzf‘ ”"}ﬂ‘r—n” i .r'—|'-||r"]£r.‘_ 1)
_.:-I :.::rl'z:} J”{.?‘;-ﬁl I:Illr_;J:';?;l 1,||rJ-,_,.z .

and if 7 = 0 then

Ml il il -]
War = g Clape 1) g ']”“.w;:r e

Let us denote

=ty [leafea |y,
h = iz ”'i'.’r-l ”'i'.'? ||?.'I1 :

Since dewig — D) = F— 2 — 4 from the ANFol g+ k =

T I T B PO R TS PR O B B P IR o I S T

.-'-2!-_|-|.--_.l¢|__|'.-'| + - — i we deduce the following.
o depiv bt S E-2 4=l -2 1015 =

then 1 = AN 'i‘jm.:l i e .'\"[r.";;[ﬂ_“ 1 implies that
1 s, according o the induction assumption, If § (),
then we have .- C A '\"I;L‘u.'.f_pj,und therefore () |

ad e ANGhore o with deglyy — ] < £ -2 ‘Suppuu:

lhtll o+ oy # UL then we would have dee(v) — oyt =
£ dsinee ATge_{ogey =€ Loby h}pulhi_sls a
contradiction. Hence v 4+ v, Dhewsy w50

o desivg | '-JU] E (6 1) 2 jandws © AN(gg, )
1ig © AN r. 1‘.:'! imply that vs = g, according to the
induction ussumpiiun.

o deglegFos) < F - 11 —2—jand wy £ AN I'r.-')r_il.ﬁ

v

e e A e

l]J‘
Voimply that vy = vr, according o the

).:
mnduction tlssumplum
o el e i 1=l 1vand vy £ AN

1y
P NP
1y S A"'-'rl,f" .-' 1H tmply that 175, according o the
induction assumplion.

Hence, we get g = . O

Lemma 3: Assume that the function @y, & iy, has been gen-
erated by Construction 2 for 0 = 4 < & and that AT5; (e = 4
for() < ¢ = Fr. If, for some (v <0 & < f and j = (), there ex-
15s g £ AN N AN, " such that dewig) = & — 4, then
g =1L

FProof: We prove Lemma 3 by induction on & — 1.

For the base step (Le., i — o =), we have from construction
i T = %, | 1(thiscan easily be checked by induction). Hence,
ge AN{E ™ AN(#), + 1}, and g = 0.

Now we prove the inductive step. Assume that the induction
assumption holds for £ 3 = £, F 2 {1, and let us prove it
fori —j =F— L Solety & AN R

e e
AT AN, ] where

P— =841
If 7 = Al we have
e =iy lldde lléde llegd o).
ci 1 i 1 il I !
ql'l';-;- q:lél:i—l.l”fl'élt ”f‘z 1—_I|| i =1



ill4

Let us denote

7= |l v|m, we have

ae AN (ol L, .) F AN ( i )
g, oy © AN (n_lj AN (r'z'tl_,\)
and
v € AN (@8 ) an (edp? ).
1) Since degi ) < 45, wehave degley ] < i+7 =11+

(1 1.8mnceii 1) (j11}=i 4§ 2<«¢ wehave
#. [, according to the induction assumption. 50 the ANF
of gisv_+wajo (o +val +wsplvy +usitaa_peglv, +
w4+ o Then deglen 4w, deglin — wl degley +
e — wg] < i+ § — L, which implies deg) ), deglagl,
deglind 241§ 1.

2) We have then dewing) << i+ j — ] it — 11— 4 and
dogival T4+ i—1=0—114+7 Since i+ -1 — 7=
#—§— | = fowe have v =y = 0, according o the
induction assumplon.

3) Since = 1y = v, =, the ANFof gis (1 |2y | 2 |
Ly i Sogdeglim ) S a4 i -2 =i—4+ij— 10
Here iy — 1) — iy — 11 = ¥ — 1. So, we can not use the
induction assumption directly. Now we break @y agam into
four parts as

- .
r-":'ir_.~—1 i ‘]‘rzn— n” ‘]m_ﬂ””_, x_g|” 1ri—u)
s oy |

IrIJ'J'I;J. 1:.:‘r"-1r.1 ”“"m )1” E )1”{"‘;4\- Y

=1t 1:1;'”7-'1.:1”1'-1 A-

Using similar arguments as m ilems 1) and 2}, we have
i = g o= Mg o= (L S0, tln_g_l;.'x-.'.lh-f. sladi=eade
Doing the similar process f times, we will get some func-
tiona © AN oy ITIAN ::;.613.‘1._ o 4= Alevery step of this
‘,uhinduu u'un the degree decreases by 2, and we have then

o) <04 1§ 2§ =4 4. Breaking v for the last time into
four ptlrlstmd using that v & AN {dg; o0 AN [ur'}'z:_?. f L
we have

|"I}':-|'§ i

—dni 5 villder L~,||m2h. i 1|||<°:1u~'—;—|-

I'r>‘!|'.'— I= ""'1—J—t]”"‘]3 x—l—'ll” Ea—g—17 ””-’l:l—,l—'l
e

Using similar arguments as m ilems 1) and 2}, we have
= = = Sosdele) i — g -2 And ' £
AN - \\' T i i . . '-":

,_’I A ['.f_Jg,_‘.__.l._l.l ] I[I]p.llL:H that, if w f i, ll'u_n.d:.g_.{lj.‘_l .}
i — i — L, a contradiction. Hence, 1 0 which imphes
g =10,

If j = 0 then the proof is similar to the last step i iem 3)
above. O

Nowy we present the main resull.

Theprem 5 The algebrae immunity of the I'um_'liun ifay Oh-
tained in Construction 2 equals &, for every It =
FProof: We prove Theorem 5 by mduuum on & There is
nothing W check for & = (0. In the indoctive step, we assume the
hypothesis true until & and we have o prove that any nonzero
function gay o such that geg ey 2 = 0 has degree at least
I+ 1 (proving that any nonzero function gap—u such that
gze_zidizerz + 11 = 0 has degree at least & — 1 is similar).
Suppose that such a function guy o with degree al most &
exists. Then, gap—a can be decomposed as

' " )
gtz fanllge g fan

where g o). iy, AN (g0 The

algebrae nommal form of geg 40 15 then

AN ':_‘-:_-':l - 1, and .'Ir-z.'; =

Gangalsp. o T akez) = grn + wanotlyay 4 g
| e it o)
+-T'2.'-'.

St F e+ g+ R

LRI

If gui—u has degree at most &, then (g + g ) and [gue +
ghe | have degrees at most & — 1. Because both functions lie in
AN gioe ) and AT (o) = & we deduce that oy | gh, =1
and gar + gy, b owhich give, gor. g5, ga . Therefore,
doe oz = gae | oaeg ke 2idee Ray)

deglgan] =
and

degigog | feel =k L

According o Lemma 2, we have g fiay.. According o
Lemma 3, we have then gy = by = N that gives, g = (O
This completes the proof. |

Remark 3: Let f; & O be some {-variable function and let
Tiowe = 1o | by, bethe direct sum of §;oand ey, Then we
have the following results.

1wl frpze) = 25licngd + 2% 0 2ndide wmli 1) =

Hali f

2) I fy s v-resilient, then iy 2. is also v-resilient.

3 degify owed = mas{degi £, degloag i}

4y wt! frpan ] — wr! fi
wlighzs Viwdd il
ALy (fiowid ™ &4 1, for nonzero function fy (see [30]
for detailed proof).

In particular, if’ §, 15 a nonconstant |-variable function, we geta

vkl g 00 (i

]
—

balanced function with optimum algebrie immunity.
Obviously, this is not the only secondary construction which

can be used with gy,

A. Properties of the Constructed Functions

1) Hamming Weight and Nonlinearitv of siar.: We shall see
that gz, is not balanced (it does not oulput as many 15 as {1°s),



but that 1ts bras with respect to balancedness tends 1o zero when
f: tends Lo infinity.

FProposition 4; The Hamming weight of '.-"’35.-

wt ["TI’;.‘:J = o e b5 | dhu(n] = 1]
equals 2341 - for k> Land i = (). Then

E o Yh—1 ;
W an ] = gk IS ( L j 1

Proof: Lelusdenole g, —wr o
L [c'ag*.} = u:gk. According to Relations (4) and (5), we can
write: wy = ol

and vy = wt{ gy =

W ok +-J!.l;,..i y. forany & 2= | (G)
w-é,., = ""z;-l 5 2?1.{',..{ s+ u.';t] -
forany & =1, v =1 (T)
and
arh =i [l 2] for any i = b (%)

=1 _ i’:"u'—l

Let us prove by induction on & that «:4 L, =2 i ], for

any & » 1. This is tue for & = 1 and for any 4 = . lndl_uj we
have
$5 = ryry = 0001

gt 1= Uifmod 2 fry 4 i — 15
+ e[ 2] Gy — w4+ 8+ 1 mod 2] a e
=N W |:.'. |_}

el 2, fTorany i = 1.

So,uwg =1 =3! — [:1,1 andwh =2 =2 — [ljl';,l for # = 1,

We assume now that the imduction assumpton 15 true until
i — 1 and we prove it for k. Note that we have 225! e
22.'»- 3 + 22-‘.- 2 and 22# d Hepeiis 22.‘.' | +2. 22.'-,- 3 i 22# !.l_ We
have also

-1y, (2 ;;j e — :;j
P i -1 k
since
23 R

qr

(.".'.—I)—i_( I )

2k 3 (26 3 ; (26 13

‘—LJP -4 —idk-2 e

Bl — 2 Oy T B S
and

21N 2 2 2 2
k44 _(ﬁn+i—l +(ﬁ:+;:
Sh— 3 ) _ 2k — 3 (25:—:5
=ik S - :
e G, b il EILY

So, (6) and (7) and the induction assumption imply that

: 201

The wui;_.hl 22""'_' - ."2*—"] vof gy s therefore equivalent to
k=

1. which 15 asymptotically balanced.
(_nwLn the ru_Lnl result of [36], we can exactly calculate the
nonlineanty.

ills

Thearem 6: ni{gay] = rh l(?' 1)

Proaf: Consider the (4 + 1 --variable function a1 +
gl |__r.{:J_. S 13'33#‘]. This function 1s at a distance

-2 1)) - (3)

from the linear funcion g4 . Thus, ol e g +oud < gLk _
I;' 1. Since wap_) — vz is of full algebraic immunity & 4 1
[30], following [36, Corollary 1], one gets né{zg, 1 + s =
9k _ [‘“’J:I'Ihus

- 2.
a1+ Gues = 25°% — ( - ) : (9)

It s well known and easily checked that, for every 2h-variable

function [, we have sdiwan— — f1 0 $adi 11 This compleles

the proof. (|

Note that rdi dag ) = A 1 |::,“ 11],n'hithis strctly greater
2k

than the lower bound 2%~ — |;-'ﬂ"] as presented in [36, Corol-
lary 2]. However, th m}nllnL.J.nly of the function gy, 15 nul Very

1

i,
good. The ratio - et where sl = oLy
15 the maximum possible nonlineanity of Boolean functons,

gu L

and s therefore not sufficient for use of

equals Sy =
the function without using a secondary construcion Lo enhance

the nonlinearity.

2) Algebraic Degree of da: When the weight of the func-
Loty 15 odd, then clearly its algebraie degree s 25, We shall
subsequently prove that, when the weight i1s even, the algebrae
degree 1s also very high, Note that, denoting respectively b Lay
and ri,, the 2-variable Iunlem equal to the factors of H

in the ANFs of g, and u,, .(4) and (5) straightforwardly Impl}-

1 il

that g v = ey | r‘2 d“d*z. — r‘z_1 y o M,y Bul il seems
difficult 1o find directly the exact expression of rar. satisfying
these constraints (with the initialization <5, = op; for 37 = 0,

ch = i [moidl 27 for i = 1. We shall observe that, changing the
mnitialization m the recursive defimtion of ey, and using only
(5) in the recursion leads to an affine function ¢z, Considering
then the difference between gy, and ey, will permil 1o oblain a
recurrence relation on egp which will not mvolve the o5,
fact, in the next proof, we shall be able o partially develop this
method directly on gy, which will give more imformabon; we
will deduce then our result on ey through a simple reduction.

s, In

Fmpmr'n'rm 5r Letong be the 2-variable function equal to the
factor of H T in the ANF of i, . Then we have
i [lng.jl__.l.?l| [l 2] 1 4 wra )
+ ¥

I <lng, 1A

i

iy 0y —eaf (1N

where sl is some bit depending on &.

Proaf: .L.i:l f,lﬂ__i; be recursively defined by (5), with the ini-
talization ¢, = <[mod 2], for any positive or negative & We
: i Firy—- - —iry,—1 ey Ui | mesd 2] (this can
be easily checked by induction). The I'unLliun ré_f ::.'.i;fz_l- + g{.._?-
satisfies (5) and we have v, o for
3:2 0, )

The function +4; is the addition of what we collect with (3) (or
its translation in terms of ANF) for all the paths startting from

have iy,

Ofor s = (0w >_| ay —



ille

the point of coordinates (£, 27} and arrving for the first time
to a point of coordinates [0, 21} {where 21 can be any integer
between Uand 2(y — 1), and constituted of the concatenation of
elementary paths going from a point of coordinates (=, 24 o a
point of coordinates (s — e, — 2 e = =14, 1}
We deduce that

gl
H I-'I-:-..-:n!+

ff?zz T ‘_{-LI.:_]

>

LR e'.—{—l (1 B

where 1/ s D 4+ 11 L = iy -+, and

.I,'T = I:‘l-J.I';I\;-

T s -

e = E0e— LW
This implies, for & = 3

feae |y | e | cst)

> 1

= = [ - .I],n_|_.-:
R T WA
Tl d—ei 12D

where the ext’s are constants. The number

> |
E—1=1,
rEd—-1.1} :

cp e ' L
el B I B |

=

equals 1 for I = & — 2 it equals O for I = & — 3; and for
O &4, equals the number of paths from the point of
coordinates (#, 2} where 4 ) I — 2 1o the point of
coordinates [, 2y ) where ¢ = 2; § = { 4+ 2 which do not cut the
axis of equation ¢ = N (indeed, the two last elementary paths are
necessarily [2, 20+ 40 — {120+ 2 and (1, 20— 27 — [0, 2100
Note that vy s noll of &8s odd. We assume now that & s
even. Then oy equals the number 1}f.1|| paths between thsL w.u
points (the points 72, 28& — 17 and {2, 20 + 13), that is, Ll« .-__._J ;
minus the number of paths cutting the axis @ 11. This last
number equals the number of paths from the poimntof coordinates
i 2 whered = 25§ = k— 2 1o the point of coordinates {7, 2§}
where (f = =Y; ¢ = 142} {replacing the lower part of each path
cutting the axis by its mimor image with respect 1o this axis ). We

= ]
= L i = ;_,_1 2

. T R & S .
Hence, since I",__- 4} is even for & — 1 even greater than 4 and

have then

equals | fork -7
2] equals 1 if and only if & — ! is a power of 2
denoting & — { by 2*

>

Tt ellog, k)

4. and according to Lucas’ theorem, vy| mod
2. We deduce,

e?é,u 5 = Wargor; o g — eat

This completes the proof.

For small indices, this gives
£ =k
Moo= — M — s+ oen et = 0 4oy oo +oest
Mg A — e — iy e oasd nalk
cp =g oy s el =aae 4a e 4 oesd
Cpg =g | e | o | esb=xp | e | oosd
M =g ew e — est = 2 4 e st
P R T I ol ST ot ¥ 0 ull ELF A 1T
g =) — s —clg +oeir ooy o ool
=wra | Xy | x| sl
Me =] — 0 — Mg+ g ey — o — st

= oy — sl

ffag =] — e —ope s e — o — cal
=) w2 osl
g = — = tay s el — ooy — AT

o=y — st

The coefficient 4y, of a5y pa 10 ey satisfies the relation g =
>:'1't':'--':'.:|~'-:-c: cps P2 2y and g 0, 1 8
by induction that vz, = 1, Le., dmg has degree 2% if and only
if & is a power of 2 (but we knew this already thanks 1o Lucas’
theorem and to Proposition 4). Similarly, the coefficient of i)
(or, of xa)in oy equals O if and only if & 1 is a power of 2
Hence, ¢y has most often degree exactly 2k — 1. We deduce
the following.

It can be shown

Proposition 6: For & 2= 1 the degree of ey is as follows,
1y dewiahgg ) = 2 ifand only if & is a power of 2.
2) If neither & nor & + 1 is a power of 2, then dewideg ) =
28 .
3) Ik + 1isapowerof 2, then 25— < depl g = 2h— 1.
Proof: From the preceding discussion, items 1) and 2) are
proved. Foritem 3), if & — | is a power of 2, then L'Jrrgitffzjjj <
4 — 1. Since

' L £ . [ Il
oy = op_z 4 wano_iwan [dor—z 4 gy

we have degldo ) = dew{da o0 So. for item 3), degigog ) =

2% 3. i

3) The Structure of ¢y and an Efficient Way of Computing
ity Chirput: Here we study the structure of g, . We observe that
the function gy, can be written as the sum of two functions
and 4, which can be obtained from symmetric functions by
the same transformation easy to implement. Let 5, and r.n"’;k_
be the sequences of Boolean functions satisfying (4) and (5) for
every & = 2, and initialized as |'{}||{hi-'h:{."?'lg =apra ey w1
(that is, r;';' = #yir1,#y], the indicator of {0,01]) and &% =1
ford = [, o" A= r1+.u—1'—l
qbﬂ; equals the sum of -:‘1’,," and f‘*” p» Since the sum of ¢, and

ooy equals o5 For &
recurrence relations. Note that, smLL i

mnd _’ fors = . The Ium_uun

land r = [:I and satisfics th SHITIC
5 equals & and &7 = 0,
forevery i = 1. the restriction of & 2. Lo the set of words whose
two first coordinates are not both null is constantly equal to zero.
We shall see that the restnction of qn’fi'ﬂ. o the set of words whose
twao first coordinates are both null—IMet us denote this function



by ' 2* o—is related to the Boolean function on £ - 2 equal
to the indicator of the set of vectors whose Hamming weights

equal & — 1 and & — 2.

Proposition 7: Let ', be the 2k-variable Boolean function
recursively defined by IhL following relations:

5 ] |

= oy g Vo allea

is the reverse of

+ forany & = ,”‘a...; :l”’l' 2:
where the truth ltlhIL of _;;_
truth table of -_,c' 2!-,-—2 (hence, 2&__2[.].'1 ...... Pan wl =

u + 1) in enms of ANF

the

L . .
e 2 Tl DU T
. i (s

b _|.f‘zn 1+|_|h T+ |',.- T n.+._‘.J.-_l,|, 1

: .ope . 'I-I .
+-'f'2-’==,“f'-' 'M R R TR L PR

* forany & > 1 and any ¢ >
¥ Y. it
o=l e =l
Wan T W ghoa ¥ -;—z”'w- - z” R R

in terms of ANF
X A feef e
oy L — + | ||:.!2} +1 PR TP + TLur—
FEE |
+irag “r z.!;_i o i T T z.!;-:i

=1 and :» ", = lHorany ¢ = 1.

Tth, forany & > 0 and any + = {1, 2", equals the indicator
of the set of vectors of .F-@”" whose Hamming weights equal & — <
and & —+ — 1.

FProof: We show this by induction on & IUis true for d: = 1.
Let us prove that, if it is true for some & = 0, then it is true for
Ll L

—ifd = Lavector e, oo reg 4o ) whose Hamming weight

equals & — 1 — ¢ or & — ¢ either equals b, where

15 & vector of length 25 whose Hamming weight equals

btl—i h—{i—-liork—i L—[i—1}—1, orequals

wlfior e, where o has Hamming weight & sork + 1,

or equals ¢ 1, where = has Hamming weight & —i — | =

E—idi41) ur.i‘.,—.:—') = —Ir+l|—l ThlsLurrLspt}nds

to the relation H:+> =i ,1 ||x,_. s sl
—ifi =D avector iy, ....x sl nhuu, Htlmmmg weighl

equals & + 1 or k LIthtFLL]LJ..ll.H [ 4 100, where 1 is the
all-one vector of length 2% and o has Hamming weight
e—k+11 k—Tlor2l—F &, orequals 0 orell,

where & has Hamming weight & or & — 1, or equals 11,

where » has Hamming weight & — | or & — 2. This come-

sponds to the relation ;"’gl.ul 0 = -'f:":i,,||;-’;k e ;p'é_;, O

Remark 4: Note that the ANF of .f-.*-’lz"k 15 easy Lo oblain, smee
A . 2% : i
ey 18 symmetric: forevery T Z 11..... 2k}, th‘ coefficient
of the monomial [],.;; in the ANF of &'y 18 f P |“I|f| ]
med 2], and Luocas’ theorem gives then its effective value.
More importantly, the output 1o ;,-_"’;M 15 quile easy Lo compule,

with less than 2k additions with carres.

Let us see what transformation on the truth tables of the func-
I

tions permits, from the valoe of

1] ' .
17, o (ie., of the restriction of $7,, to the set of those words

whose two first coordinates are both null—we know that, for

'k-—2~ o obtain the value of

EINN

u & g
the other vectors, r,-‘a".-_.;__ takes null valve). The only difference

it M :
between 1_.':":;, and ', is in the relations

el #il Pt i
Wap_ =W zr ||f- L 2.‘.—”"#' 4
and
L il
wog v = Fap ¥ oaelle z-.||H5' D

When uuluuluu'ng recursively the value of the function (p"g;__ at
CPyy we airive 1o a situation where ;"’E;, st
b FL:".-LFhL‘d v.th, reading & = fibiras gy ) from its right-
most posiion o its leftmost positon, the number of bmes we
encountered iy I, minus the number of umes we
encountered xe, = oy ) = 0 eqguals 1, for the first time.
We then have to complement all of the remaining coordinales
of w and apply recursively the same transformation o these re-
maining coordinates.

For mstance, for ;. OOO100, we start with a null difference
(between the numbers of 11 and of (1, we read ), so the dif-
ference 15 — |, and we have o complement 000 mto |19 after
reading the two rightmost bits of this last vector, the difference
rermains nuII and after ruding the two leftmost bits, 1t s 1. 50
we have /50001007 " LLLOMY. Let us give a few other

a vector [y,

Tuiy

examples: .
STO0T 00 = & Grionnn
S LOUUU) = " {011 L00)
OO0 = 25 100010
and

SULBOUULY = w L 0100011,

The inverse of this tansformation is easy to deduce: we
apply a similar principle, but cach time we have apphed a
complementation according W the count on the previous pairs
of bits, we complement according 1o the count of previous pairs
of bits of the mput vector. This gives the following algorithm,

the transformation from (o, ... Tupd W0 (1, Yur 1 such
that #'(wy. v e ng ) = '::Il;m_. coetime
Algorithm 1: lopul » = (.. .ol Oulpul 3 =
A I TPy
» [nitialiee 9 by 1
woound =5 ¢ 02k —1;
¢ while ¢ = 0 do
—il 2, = 2y = | then connt = cound 4 1
—else il w; w— 1l then
wocord = conaed — 1
w i ceriend ;= 1 then replace {yy, . .- 1 1)
by (i + Looooqe 1+ 1) and apply coienet =0
—i i—

The output to this algonthm 1s the transformation (inverse

of the above discussed transformation) from L".'rj T ,;Eg;_.} 4]

e such that 5oy, g = '] g 1 S0,
o compute ¥ (1, ... Ty ), st we run .-*-'\Ihunlhm 1 to get the

transformation (wy, .. --yen. Then UJl ..... #ay ] compules
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the value for o[z, ..., 2 ). Hence, we have here a very fast
way of computing the output w 44"y, , and therefore o ;.

Let us see now that the situation with ¢, is similar. By defi-
nition, for any & and any ¢, &%, is the concatenation of functions
equal o wy —aogand oy 4+ w2 + 10 Henee, 1tis the direct sum of
a1 | re and of the function “r""”;;.-_r wherne 'i-.-'l'”‘;;: is the 2h-var-
able function such that ?_-'!”g*. equals

el el sl sul
Bouk— |".” Uk —d |".” Uk—d |".” Uk—d

g i
i s o Fall b
forevery &k = 1, «",, equals

sl

sar—1 x 3
k Uk—d |’.” Uk—d

Wk — |".5;'H;A-—-3 |".5;'H

for every & = 1and every i = Land 1%, #+ L [mod 2.

Proposition 8: Let "5, be the 2l:-variable Boolean function
recursively defined by the following relations:
o forany & > |

b el

Ll I st : . :
T | P TS

oy = " allE
* forany ki > Land any & = 1

e =1

it LA
@y =5 g allE s

.,.-"-""+1 |
oAk

o
L

o 5 L o 2 :

Then, for any & = and any © = 1, ", equals the indicator
of the set of vectors of £7'% whose Hamming weights belong to
one of the two sels

I S ) P 8
ie k= =k =4l 2]

1 miwd 2}

Progf: Letus show thisby induction. This is ruefor k = 1L
If it as true for some & 2 0 then itis toe for & |
if s = |, avector {1y, ... Tup4) whose Hamming weight
belongs Lo
isdb ok li—di=1 | i=ik+1)—i— 1wl 2}
e [T+ 1) — 4, 2R =ik + 10 — 4 o 2]

either equals #M0, where 2 is a vector of length 24 whose
Hamming weight belongs to this same set, that 1s, 1o
fiesdh.  h—l-11—=1}]i=f=0i= 13— 1 mml 2}
WHie == 10 2k F=k = — 1) ml 2}

or equals 10 or 01, where the Hamming weight of o«
belongs Lo

il h—i=1 |ij=k—+i—1mmd 2}
Aok A2k gz k dmad 2]
or equals @ | 1, where the Hamming weight of 1 belongs 1o
e il s B8 0 23715 50 1A “Toind2)
Hielhk—Gi4+ 2k i === mnd 23

This comesponds o the relation

i Gl S prie

o —re] Lo -n'l'”. -
ok TR U 21‘.-||H'- PR T O

—if¢ = O.avector (). ... e 2] whose Hamming weight
belongs o

diedn o+ =1 | J= k411 — L wed 4}
e ik 4+ 100028 4 =ik + 1% mod 2
either equals [r
belongs 1o

lie 0 2kY |7 =kmod 2]
A0, k=1 =k =1 mod 2}

100, where the Hamming weight of &

or equals w1} or w01, where the Hamming weight of
belongs o

o 1} =& 1 mod2}
L e {h o 2k | 7 = kel 2]

or equals » 11, where the Hamming weight of « belongs o
lie 0. k=2} 7=4Fk—2wmnd 2}
Lijedkh—1,. ... 28} 5=k — L wod 2}

This corresponds o the relation

«l Lt ”_._ﬁ.'."-' ”___:.-'.r'..' et
2Ry 2RI 2 v 2R

Function +:"5;, can be obtained from " 5, by the same algo-
rithm as the one giving 4y, from 'y,

We  npow  present  the  final  algorithhm o compute
gl m%::. To compute this we need a preprocessing
slep o establish two symmetric functions " and & on
2k 2% variables. As the two functions are symmetric, the
following prepmocessing step calculates the short truth tables
(corresponding o each mput weight) of those two functions.
Here we vse the notation for the outpul to a symmetric funcion
4 at inputs of weight ¢ as = .

Preprocessing:

o for(i =00 26 =204 —)

—2" = @"fi] = W

sl T=9"k 1]=1

o forii i h—di—+4)

—if i = & — 2 mod 20 then "] =1

o for(i =k =10 2 —24i— =)

—if =k — L wod 2 then 270 =
Now the following algorithm caleulates {x).

Algorithm 2: Inpul: r = {ry,... 1y IR

T T SR BN YR N

+ Apply Algonrthm | onthe 26 2 bits vector i

o o— whiyl

« Output: (14 (g % wa )T + Gy — wad + 27 .

So, following Algorithm 2, the outpul 10 d=g can be very ef-
ficiently computed. Precisely, the number of elementary oper-
ations which have o be performed for caleulating the output
Lo graye is less than 124, since, for each of the functions o,

and 550 10 equals the number of complementatons and addi-

tions (with carries) to apply Algorithm 1, that is, at most 1%,



plus the number of additions with carries to calculate the output
to a 2k — Z-variable symmetric functon, plus, in the case of
4y, the addition (without carry) of a 2-vanable affine func-
ton. This means that we can use dyy 1n a stream cipher, with
the same efficiency as when we used a function defined by a
lookup table or by an ANE with log, (124} variables (in prac-
tice, we shall have o choose ¢y, with fewer variables and to
use it in a secondary construction, to obtain a balanced—and if
necessary resithient—Ifunction with a good nonlinearity ). For in-
stance, if Jog,{ 1251 equals 5, then 28 equals 41; i log, [125)
equals 9, then 2% equals 36, and if log, (124 equals 10, then
2i equals 172, Recall that, before the existence of algebraic at-
tacks, Boolean functoons used i stream cipbers had usoally at
most len variables, for reasons of efficiency (unless they were
peculiar as in the case of LILI-128, but their peculiarities have

been responsible of their weaknesses with respect 1o algebraic
attacks).
Thanks o the observatons above, 1L may be possible o de-

I

duce the ANF's of o, , o, from those of =5, 25, . Butthe fact
that we could obtain a fast way of computing the outpul 10y
15 more pracucally inerestng than oblaining its ANFE.

B. Different Initializations in Construction 2

A drawback of the function goy, 15 that it is unbalanced. This
happens since Gy = 154 18 unbalanced. Il one starts the con-
struction with gy as affine function, then the function ¢y, will
always be balanced as ¢ s =wp—xz+ i+ mod 2ford = 0,
J = I Now we present some ohservations in this regard.

1) Take ¢ = wy + wa.

Case 1: r.’lzg = | me il i1 even and r,-‘JE = i
il & 15 odd for 4 = (0. These are presented in the
following table.

Case 2: Also inbrackets, we present the results when o5 =
wy +azifiisoddand 4% = 14+ 0) + e ifiis
even for i = [,

| At

function degree nonlinearity resiliency  AY
o L{1% 0{1¥] L a
e 2010 1014 1il) 2i1]
e TEY 20040} T 1)
[ Bi0) LETRLY 1(1) 103)
W G ATZi11%) 1i1] fi)

Here, for the first case, iy, is always 1-resilient,
optimal algebraie immunity 1% achieved and non-
linearity s shightly lesser than what we have ob-
served for Construction 2. However, in the second
case, gop has poor nonlinearity and lower AL
2) Then we have attempted - = 7 and g% = x| | 2 when
15 even (respectively, odd) and q:ﬂ". |+ + w0 when tis
odd (respectively, even). We found algebrue immunity 1s

EINEY

optimal but poor nonlinearity. The results are same for both
the cases so we do not wrte them separately in brackets.

function

degree  nonlinearity  resiliency AT
iy L 0l 0 1
Dy 3 2 il 2
o 4 2 il it
3 T aH 0 1
S i 20 il 7

3) Take ¢ = wy amd u’:ﬂ =)+t 1 We lind that the

ANF of thay 15 of the form Gay = 2 | we P, where # s

a function on 2k — 2 many variables. So, Al will be < 4,

since T1 -+ {1 — w2 is annihilator of @y forany & = 1.

So it seems that just by changing the imitializations in Construc-

tion 2, it may not be possible o get dramatically better results.

One may need 1o attempt for completely different kinds of con-
struction o achieve betler paramelers.

V1. CONCLUSION

In this paper, the algebrk immunity property of a Boolean
function was studied in great details. We first identified a funda-
mental relationship between the Walsh spectrum and algebraice
immunity of & Boolean function, keading to a lower bound on
the nonlinearity (during the review process of our paper, an im-
provement of this bound has been found by Lobanov [ 36]); this
question of knowing whether these two criteria were opposile
or not was challenging and this shows that they are not. More-
over, we showed similar relationship with the higher order non-
linearities. We followed with cenain enumeration results of in-
dependent annibilators, which have some interest from compu-
tational viewpoint. Then we have studied some existing con-
structions in terms of their algebraic immunity, both theoreti-
cally and experimentally; this was necessary for practical design
of cryptographic functions. Next, we presented a construction
of Boolean functions with maximum possible algebrae immu-
nity and studied the cryptographic properties of the constrc-
tion. The constructed functions have high degrees butl are not
balanced and have insufficient nonlinearity. However, they can
be vsed m secondary constructions setthing these drawbacks. We
gave an algorithm to compute their outputs, which makes them
as easy to caleulate as all the other known (infinite classes of)
functions with best possible algebraic immunity. All of these
other functions are symmetric and present therefore a risk if at-
tacks wsing this peculiarity can be found in the future. We be-
lieve this makes the functions studied here more interesting for
a use in stream ciphers.

The field is still open in many aspects. To be specific, get-
Ling 4 primary constructon with oplimum properties in lerms
of algebrie mmmunity and several other crypltogrphic proper-
ties (halancedness, nonlinearity ), and avolding dangerous pecu-
liarities, looks extremely challenging at this point of time, since
it may provide a more efficient design of cryplographic func-
tions meeting all the necessary criteria for being used in stream
ciphers (however, the question of a fast implementation of the
functions will have w be also addressed). In this consideration,
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the method of construction presented in this paper opens a com-
pletely new way of designing cryplographic functions having
provably optimum algebraic immunity and which can be very
efficiently implemented.
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