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Abstract—Soft computing is gradually opening up several possi-
bilities in bioinformatics, especially by generating low-cost, low-
precision (approximate), good solutions. In this paper, we sur-
vey the role of different soft computing paradigms, like fuzzy
sets (FSs), artificial neural networks (ANNs), evolutionary com-
putation, rough sets (RSes), and support vector machines (SVMs),
in this direction. The major pattern-recognition and data-mining
tasks considered here are clustering, classification, feature selec-
tion, and rule generation. Genomic sequence, protein structure,
gene expression microarrays, and gene regulatory networks are
some of the application areas described. Since the work entails pro-
cessing huge amounts of incomplete or ambiguous biological data,
we can utilize the learning ability of neural networks for adapt-
ing, uncertainty handling capacity of FSs and RSes for modeling
ambiguity, searching potential of genetic algorithms for efficiently
traversing large search spaces, and the generalization capability of
SVMs for minimizing errors.

Index Terms—Artificial neural networks (ANNs), biological data
mining, fuzzy sets (FSs), gene expression microarray, genetic algo-
rithms (GAs), proteins, rough sets (RSes), support vector machines
(SVMs).

I. INTRODUCTION

B IOINFORMATICS [1], [2] can be defined as the applica-
tion of computer technology to the management of bi-

ological information, encompassing a study of the inherent
genetic information, underlying molecular structure, resulting
biochemical functions, and the exhibited phenotypic properties.
One needs to analyze and interpret the vast amount of data
that are available, involving the decoding of around 24 000–
30 000 human genes. Biological data mining is an emerging
field of research and development, posing challenges and pro-
viding possibilities in this direction [3].

Proteins constitute an important ingredient of living beings
and are made up of a sequence of amino acids. The determination
of an optimal three-dimensional (3-D) conformation constitutes
protein folding. It is a highly complex process, providing enor-
mous information on the presence of active sites and possible
drug interaction. To establish how a newly formed polypeptide
sequence of amino acids finds its way to its correct fold out of
the countless alternatives is one of the greatest challenges in
modern structural biology.

Proteins in different organisms that are related to one another
by evolution from a common ancestor are called homologs. This
relationship can be recognized by multiple sequence compar-
isons. A similar primary structure leads to a similar 3-D struc-
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ture, resulting in a similar functionality of the proteins. Since the
traditional dynamic programming method for local alignment is
too slow, the basic local alignment search tool (BLAST) [4] is
often found to be more efficient. BLAST is a heuristic method
to find the highest locally optimal alignments between a query
sequence and a database. BLAST improves the overall speed of
search while retaining good sensitivity, by breaking the query
and database sequences into fragments (words) and initially
seeking matches between these fragments. Although BLAST
does not permit the presence of gaps in between, its extension
Gapped BLAST [5] allows insertions and deletions to be intro-
duced into alignments. Another efficient extension to BLAST is
position-specific iterative BLAST (Psi-BLAST) [5], which in-
cludes gaps while searching for distant homologies by building
a profile (general characteristics).

Typically, these algorithms compare an unseen protein se-
quence with existing identified sequences, and return the highest
match. However, as the size of the protein sequence databases
is very large, it is very time-consuming to perform exhaustive
comparison therein. Therefore, one categorizes these sequences
into evolutionarily related protein superfamilies that are func-
tionally as well as structurally relevant to each other. This allows
molecular analysis to be done within a particular superfamily,
instead of handling the entire sequence database. Phylogenetic
analysis of sequences, in terms of their taxonomic relationships,
is yet another important area of research.

Unlike a genome, which provides only static sequence infor-
mation, microarray experiments produce gene expression pat-
terns that offer dynamic information about cell function. This
information is useful while investigating complex interactions
within the cell. Gene expression data being typically high di-
mensional, it requires appropriate data-mining strategies like
feature selection and clustering for further analysis.

Biological networks relate genes, gene products, or their
groups (like protein complexes or protein families) to each
other in the form of a graph, where nodes and edges corre-
spond to molecules and their existing interrelationships, respec-
tively. Metabolic networks depict a set of chemical reactions,
mostly catalyzed by enzymes, and are extremely important for
gene expression profiling. This is because the link between the
gene regulatory control and the primary causative factors of dis-
eases (like altered protein activities or biochemical composition
of cells) is often crucial for application in drug development,
medicine, nutrition, and other therapeutic activities. Clustering
of gene expression patterns is also being used to generate gene
regulatory networks [6].

In addition to the combinatorial approach, there also exists
scope for soft computing, especially for generating low-cost,
low-precision (approximate), good solutions. Soft computing is
a consortium of methodologies that works synergistically and
provides flexible information-processing capability for handling
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real-life ambiguous situations [7]. The main constituents of soft
computing, at this juncture, include fuzzy logic, neural net-
works, genetic algorithms (GAs), rough sets (RSes), and sup-
port vector machines (SVMs). Since the work entails processing
huge amounts of incomplete or ambiguous data, the learning
ability of neural networks, uncertainty handling capacity of FSs
and RSes, and the searching potential of GAs can be utilized for
this purpose [8]. SVMs have been recently categorized as an-
other component of soft computing [9], mainly due to their learn-
ing and generalization capabilities in a data-rich environment.

In this paper, we provide a survey on the role of soft comput-
ing in modeling various aspects of bioinformatics involving ge-
nomic sequence, protein structure, gene expression microarray,
and gene regulatory networks. Major tasks of pattern recogni-
tion and data mining, like clustering, classification, feature se-
lection, and rule generation, are considered. While classification
pertains to supervised learning, in the presence of known tar-
gets, clustering corresponds to unsupervised self-organization
into homologous partitions. Feature selection techniques aim at
reducing the number of irrelevant and redundant variables in
the dataset. Rule generation enables efficient representation of
mined knowledge in human-understandable form.

The rest of the paper is organized as follows. Section II in-
troduces the basics from biology and soft computing that are
relevant to our subsequent discussion. The major problems of
bioinformatics, covered in Sections III–VI, deal with primary
genomic sequence, protein structure, microarray, and gene reg-
ulatory networks, respectively. The different techniques of soft
computing considered include FSs, artificial neural networks
(ANNs), GAs, evolutionary programming, RSes, SVMs, and
various hybridizations like neuro-fuzzy (NF) models. The cat-
egorization is made on the basis of the domain and functions
modeled. Finally, Section VII concludes the paper.

II. PRELIMINARIES

Proteins are built up by polypeptide chains of amino acids,
which consist of deoxyribonucleic acid (DNA) as the build-
ing block. In this section, we provide a basic understanding of
the protein structure, folding, DNA microarray data, biological
networks, and soft computing that are relevant to this article.

A. DNA

The nucleus of a cell contains chromosomes that are made
up of the double helical DNA molecules. DNA consists of two
strands, each being a string of four nitrogenous bases, viz.,
adenine (A), cytosine (C), guanine (G), and thymine (T ).
DNA in the human genome is arranged into 24 distinct chromo-
somes. Each chromosome contains many genes, the basic phys-
ical and functional units of heredity. However, genes comprise
only about 2% of the human genome; the remainder consists
of noncoding regions, whose functions may include providing
chromosomal structural integrity and regulating where, when,
and in what quantity proteins are made.

DNA is transcribed to produce messenger (m)-RNA, which
is then translated to produce protein. The m-RNA is single-
stranded and has a ribose sugar molecule. There exist “Pro-

moter” and “Termination” sites in a gene, responsible for the
initiation and termination of transcription. Translation consists
of mapping from triplets (codons) of four bases to the 20 amino
acids building block of proteins. Enzymes and hormones are
also proteins.

B. Proteins

An amino acid is an organic molecule consisting of an amine
(NH) and a carboxylic (CO) acid group (backbone), together
with a side-chain (hydrogen atom and residue R) that differen-
tiates between them. Proteins are polypeptides, formed within
cells as a linear chain of amino acids. Chemical properties that
distinguish the 20 different amino acids cause the protein chains
to fold up into specific 3-D structures that define their particular
functions in the cell.

Given the primary structure of a protein, in terms of a linear
sequence of amino acids, folding attempts to predict its stable
3-D structure. However, considering all interactions governed by
the laws of physics and chemistry to predict 3-D positions of dif-
ferent atoms in the protein molecule, a reasonably fast computer
would need one day to simulate 1 ns of folding. Protein folding
is a thermodynamically determined problem. It is also a reaction
involving other interacting amino acids and water molecules.

The two-dimensional (2-D) secondary structure can involve
an α-helix (with the CO group of the ith residue hydrogen (H)-
bonded to the NH group of the (i + 4)th one) or a β-sheet (cor-
rugated or hairpin structure) formed by the H-bonds between the
amino acids. The parts of the protein that are not characterized by
any regular H-bonding patterns are called random coils or turns.

The tertiary structure refers to the 3-D conformation of the
protein. The objective is to determine the minimum energy state
for a polypeptide chain folding. The process of protein folding
involves minimization of an energy function, which is expressed
in terms of several variables like bond lengths, bond angles, and
torsional angles. The major factors affecting folding include:
1) hydrogen bonding; 2) hydrophobic effect; 3) electrostatic
interactions; 4) Van der Waals’ forces; and 5) conformational
entropy. One common scheme of classification categorizes ter-
tiary structures into five groups, viz., all α (mainly α-helix sec-
ondary structure), all β (mainly β-sheet secondary structure),
α + β (segment of α-helices followed by segment of β-sheets),
α/β (alternating or mixed α-helix and β-sheet segments), and
the remaining irregular secondary structural arrangements.

Protein binding sites exhibit highly selective recognition of
small organic molecules, utilizing features like complex 3-D
lock (active sites) into which only specific keys (drug molecules
or enzymes) will dock. Any solution to the docking problem
requires a powerful search technique to explore the conforma-
tion space available to the protein and ligand, along with a good
understanding of the process of molecular recognition to devise
scoring functions for reliably predicting binding modes.

C. Microarrays

Reverse-transcribed m-RNA or cDNA microarrays (gene ar-
rays or gene chips) [2] usually consist of thin glass or nylon
substrates containing specific DNA gene samples spotted in
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an array by a robotic printing device. This measures the rel-
ative m-RNA abundance between two samples, which are la-
beled with different fluorescent dyes, viz., red and green. The
m-RNA binds (hybridizes) with cDNA1 probes on the array.
The relative abundance of a spot or gene is measured as the log-
arithmic ratio between the intensities of the dyes, and constitutes
the gene expression data.

Gene expression levels can be determined for samples taken:
1) at multiple time instants of a biological process (different
phases of cell division) or 2) under various conditions (e.g., tu-
mor samples with different histopathological diagnosis). Each
gene corresponds to a high-dimensional vector of its expression
profile. The data contain a high level of noise due to experi-
mental procedures. Moreover, the expression values of single
genes demonstrate large biological variance within tissue sam-
ples from the same class.

A major cause of coexpression of genes is their sharing of
the regulation mechanism (coregulation) at the sequence level.
Clustering of coexpressed genes, into biologically meaningful
groups, helps in inferring the biological role of an unknown gene
that is coexpressed with a known gene(s). Cluster validation is
essential, from both the biological and statistical perspectives,
in order to biologically validate and objectively compare the
results generated by different clustering algorithms.

D. Biological Networks

Processes that generate mass, energy, information transfer,
and cell-fate specification, in a cell or microorganism, are seam-
lessly integrated through a complex network of cellular con-
stituents and reactions. Such a metabolic network consists of
nodes, i.e., substrates (genes or proteins), that are interconnected
through links, i.e., metabolic reactions in which enzymes pro-
vide the catalytic scaffolds. The degree of interconnectivity of
the network may be characterized by its diameter, which is the
shortest biochemical pathway averaged over all pairs of sub-
strates. The topology of a network reflects a long evolutionary
process molded for a robust response toward internal defects
and environmental fluctuations. Despite significant variation of
individual constituents and pathways, metabolic networks have
the same topological scaling properties and exhibit striking sim-
ilarities to the inherent organization of complex, robust nonbio-
logical systems [10].

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [11] provides a public standardized annotation of
genes.2 It is a knowledge base for systematic analysis of gene
functions in terms of the networks of genes and molecules. The
data objects in KEGG are represented as graphs, and various
computational methods are developed to detect graph features
that can be related to biological functions. For example, it can:
1) reconstruct biochemical pathways from the complete genome
sequence; 2) predict gene regulatory networks from gene ex-
pression profiles, obtained by microarray experiments; and 3)

1Single-stranded DNA that is complementary to m-RNA or DNA that has
been synthesized from messenger RNA by the enzyme reverse transcriptase.

2http://www.genome.ad.jp/kegg/

determine colinearity of genes between two genomes, for iden-
tification of clusters of orthologous genes (which are function-
ally related/physically coupled/evolutionarily correlated across
organisms). The genome is a graph of genes that are one-
dimensionally connected, while the pathway is a graph of gene
products.

E. Soft Computing

The principal notion in soft computing is that precision and
certainty carry a cost, and that computation, reasoning, and
decision-making should exploit (wherever possible) the toler-
ance for imprecision, uncertainty, approximate reasoning, and
partial truth for obtaining low-cost solutions.

A fuzzy set A in a space of points R = {r} is a class of
events with a continuum of grades of membership, and it is
characterized by a membership function µA (r) that associates
with each element in R a real number in the interval [0, 1] with
the value of µA (r) at r representing the grade of membership
of r in A. FSs provide a natural framework for the process in
dealing with uncertainty or imprecise data.

ANNs [12] are signal-processing systems that try to emulate
the behavior of biological nervous systems by providing a math-
ematical model of combination of numerous neurons connected
in a network. The learning capability and robustness of ANNs,
typically in data-rich environments, come in handy when discov-
ering regularities from large datasets. This can be unsupervised
as in clustering, or supervised as in classification. The connec-
tion weights and topology of a trained ANN are often analyzed
to generate a mine of meaningful (comprehensible) informa-
tion about the learned problem in the form of rules. There exist
different ANN-based learning and rule-mining strategies, with
applications to the biological domain [8]. Some of the major
ANN models include perceptron, multilayer perceptron (MLP),
radial basis function (RBF) network, Kohonen’s self-organizing
map (SOM), and adaptive resonance theory (ART).

There has been research in the judicious integration of ANN
and FSs, by augmenting each other in order to build more intel-
ligent information systems. The NF computing paradigm [13]
often results in better recognition performance than that obtained
by individual technologies. This incorporates both the generic
and application-specific merits of ANNs and fuzzy logic into
hybridization.

The theory of RSes [14] is a major mathematical tool for
managing uncertainty that arises from granularity in the domain
of discourse—that is, from the indiscernibility between objects
in a set. The intention is to approximate a rough (imprecise)
concept in the domain of discourse by a pair of exact concepts,
called the lower and upper approximations. The lower approx-
imation is the set of objects definitely belonging to the vague
concept, whereas the upper approximation is the set of objects
possibly belonging to the same.

GAs [15] are adaptive and robust computational search pro-
cedures, modeled on the mechanics of natural genetic sys-
tems. They operate on string representation of possible solu-
tions in terms of individuals or chromosomes containing the
features. The components of a GA consist of: 1) a population
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of individuals; 2) encoding or decoding mechanism of the in-
dividuals; 3) objective function and an associated fitness eval-
uation criterion; 4) selection procedure; 5) genetic operators
like recombination or crossover, and mutation; 6) probabilities
to perform the genetic operations; 7) replacement technique;
and 8) termination conditions. Unlike GAs, evolutionary algo-
rithms [16] rely only on mutation and do not perform crossover.

Another evolutionary strategy, often used in bioinformatics, is
genetic programming (GP). This invokes exertion of evolution-
ary pressure on a program to make it evolve, thereby discovering
optimal computer programs resulting in innovative solutions to
problems [17]. The principle of operation is similar to GAs, with
the focus shifting to evolving programs rather than candidate so-
lutions. GP solutions are computer programs represented as tree
structures that are probabilistically selected according to their
fitness in solving the candidate problem. These are then modi-
fied with genetic operators (crossover and mutation) to generate
new solutions.

SVMs are a general class of learning architectures, inspired
by statistical learning theory, that perform structural risk mini-
mization on a nested set structure of separating hyperplanes [18].
Given a training data, the SVM learning algorithm generates the
optimal separating hyperplane (between positive and negative
examples) in terms of generalization error. As a by-product of
learning, it obtains a set of support vectors (SVs) that character-
izes a given classification task or compresses a labeled dataset.

In the following sections, we highlight the role of different
soft computing paradigms [8], [19]–[22] like FSs, ANNs, GAs,
RSes, SVMs, and their hybridizations (including NF), in differ-
ent areas of bioinformatics.

III. PRIMARY GENOMIC SEQUENCE

Eukaryotic3 genes are typically organized as exons (coding
regions) and introns (noncoding regions). Hence, the main task
of gene identification, from the primary genomic sequence, in-
volves coding region recognition and splice junction4 detec-
tion. Sequence data are typically dynamic and order-dependent.
A protein sequence motif is a signature or consensus pattern
that is embedded within sequences of the same protein fam-
ily. Identification of the motif leads to classification of an un-
known sequence into a protein family for further biological
analysis. Available protein motif databases include PROSITE5

and PFAM.
Sequence motif discovery algorithms can follow: 1) string

alignment; 2) exhaustive enumeration; and 3) heuristic meth-
ods. String alignment algorithms detect sequence motifs by
minimizing a cost function that is related to the edit distance
between the sequences. Multiple alignment of sequences is an
NP-hard problem, with its computational complexity increas-
ing exponentially with sequence size. Local search algorithms
may lead to local optima instead of the best motif. Exhaustive

3Organisms (except viruses, bacteria, and algae) having well-developed sub-
cellular compartments, including a discrete nucleus.

4Splice junctions are positions at which, after primary transcription of the
DNA into RNA, the introns of a gene are excised to form edited m-RNA.

5http://www.expasy.ch/sprot/sprot-top.html

TABLE I
APPLICATION OF SOFT COMPUTING TO PRIMARY GENOMIC SEQUENCES

enumeration algorithms, though guaranteed to find the optimal
motif, are computationally too expensive. Here lies the utility
of using soft computing techniques for arriving at faster conver-
gence. An overview of their applications in modeling different
functions, related to primary genomic sequences, is provided in
Table I.

A. FSs

Imprecise knowledge of a nucleic acid or a protein sequence
of length N has been modeled by a fuzzy biopolymer [54].
This is a fuzzy subset of kN elements, with k = 4 bases for
nucleic acids and k = 20 amino acids for proteins. Profiles,
a class of biopolymers generated by multiple alignment of a
group of related sequences based on matrices of frequencies,
were considered in the study. A sequence is represented as a
vector in a unit hypercube (corresponding to an FS) that assigns
to each position–monomer pair the possibility with which the
monomer (base or amino acid) appears in this position. The
midpoint of a pair of fuzzy biopolymers of the same length is
interpreted as an average of the knowledge of the sequences
represented by them.

A systematic verification and improvement of underlying pro-
files has been undertaken [48], using fuzzy c-means clustering
for contextual analysis. Here, the authors investigate the recog-
nition of potential transcription factor binding sites in genomic
sequences.

B. ANNs

The popularity of ANNs in genomic sequence analysis is
mainly due to the involvement of high-dimensional space with
complex characteristics, which is difficult to model satisfacto-
rily using parameterized approaches. We describe here the role
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of different models, like SOM, MLP, recurrent network, coun-
terpropagation, RBF network, ART, and their combination with
other soft computing techniques, in gene identification.

1) MLP: Perceptrons were used to predict coding regions in
fixed-length windows [23] with various input encoding methods,
including binary encoding of codon and dicodon frequency, and
the performance was found to be superior to Bayesian statisti-
cal prediction. Perceptrons have also been employed to identify
cleavage sites in protein sequences [26], with the physicochem-
ical features (of 12 amino acid residues) like hydrophobicity,
hydrophilicity, polarity, and volume serving as the input. How-
ever, single-layer perceptrons are limited to linearly separable
classification problems.

The MLP has been employed for both classification as well
as rule generation.

a) Classification: An MLP, with backpropagation learn-
ing, was used to identify exons in DNA sequences in GRAIL
[24]. Thirteen input features used include sequence length, exon
GC composition, Markov scores, splice site (donor/acceptor)
strength, surrounding intron character, etc., calculated within a
fixed 99-nucleotide sequence window and scaled to lie between
0 and 1. A single output indicated whether a specific base, cen-
tral to the said window, was either coding or noncoding.

A three-layered MLP, with binary encoding at input, was em-
ployed to predict acceptor and donor site positions in splice
junctions of human genomic DNA sequences [29]. A joint as-
signment, combining coding confidence level with splice site
strength, was found to reduce the number of false positives.

Prediction of the exact location of transcription initiation site
has been investigated [30] in mammalian promoter regions, us-
ing MLP with different window sizes of input sequence. MLPs
were also employed to predict the translation initiation sites [31],
with better results being generated for bigger windows on the
input sequence. Again, some of the limitations of MLPs, like
convergence time and local minima, need to be appropriately
handled in all these cases.

Protein classification into 137–178 superfamilies with a mod-
ular architecture involving multiple independent MLPs [34], in-
cluded 400–1356 input features like counts of amino acid pairs,
counts of exchange group pairs and triplets, and other encoded
combinations using singular value decomposition. Multiple net-
work modules run in parallel to scale up the system. This sort
of divide-and-conquer strategy facilitates convergence.

b) Rule generation: Identification of important binding
sites, in a peptide involved in pain and depression, has been at-
tempted [32] using feedforward ANNs. Rules in M -of-N form
are extracted by detecting positions in the DNA sequence where
changes in the stereochemistry give rise to significant differ-
ences in the biological activity. Browne et al. also predict splice
site junctions in human DNA sequences, which has a crucial
impact on the performance of gene finding programs. Donor
sites are nearly always located immediately preceding a GT
sequence, while acceptor sites immediately follow an AG se-
quence. Hence, GT and AG pairs within a DNA sequence are
markers for potential splice junction sites, and the objective is to
identify which of these sites correspond to the real sites followed
by prediction of likely genes and gene products. The resulting

rules are shown to be reasonably accurate and roughly compara-
ble to those obtained by an equivalent C5 decision tree,6 while
being simpler at the same time.

Rules were also generated from a pruned MLP [33], using
a penalty function for weight elimination, to distinguish donor
and acceptor sites in the splice junctions from the remaining
part of the input sequence. The pruned network consisted of
only 16 connection weights. A smaller network leads to better
generalization capability as well as easier extraction of simpler
rules. Ten rules were finally obtained in terms of AG and GT
pairs.

2) SOM: Kohonen’s SOM has been used for the analysis
of protein sequences [35], involving identification of protein
families, aligned sequences, and segments of similar secondary
structure, with interactive visualization. Other applications of
SOM include prediction of cleavage sites in proteins [27], pre-
diction of beta-turns [36], classification of structural motifs [40],
and feature extraction [41].

Clustering of human protein sequences into families were in-
vestigated [49] with a 15× 15 SOM, and the performance was
shown to be better than that using statistical nonhierarchical
clustering. The study demonstrated that hidden biological in-
formation contained in sequence protein databases can be well
organized using SOMs.

The self-organizing tree algorithm (SOTA) is a dynamic bi-
nary tree that combines the characteristics of SOMs and divisive
hierarchical clustering. SOTA has been employed for clustering
protein sequences [51] and amino acids [50]. However, if the
available training data is too small to be adequately representa-
tive of the actual dataset then the performance of the SOM is
likely to get affected.

An unsupervised growing self-organizing ANN [44] has been
developed for the phylogenetic analysis of a large number of se-
quences. The network expands itself following the taxonomic
relationships existing among the sequences being classified. The
binary tree topology of this model enables efficient classification
of the sequences. The growing characteristic of this procedure
allows termination at the desired taxonomic level, thereby over-
coming the necessity of waiting for the generation of a complete
phylogenetic tree. The time for convergence is approximately a
linear function of the number of sequences being modeled.

3) RBF: A novel extension to the RBF is designed by us-
ing the concept of biological similarity between amino acid
sequences [28], [57]. Since most amino acid sequences have
preserved local motifs for specific biological functions, the nu-
merical RBFs are replaced here by certain such nonnumerical
(bio-) basis functions. The neural network leads to reduced com-
putational cost along with improved prediction accuracy. Appli-
cations are provided on prediction of cleavage sites as well as the
characterization of site activity in the human immunodeficiency
virus (HIV) protease. The knowledge of these sites can be used
to search for inhibitors (antiviral drugs) that block the cleavage
ability of the enzyme. The prediction accuracy is reported to be
93.4%.

6http://www.spss.com/spssbi/clementine//
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4) ART: Multiple layers of an adaptive resonance theory
2 (ART2) network have been used to categorize DNA frag-
ments [45] at different resolution levels, similar to a phyloge-
netic (evolutionary) analysis. The ART network trains fast, and
incrementally adapts to new data without needing to review old
instances. However, the ability to generalize is limited by the
lack of a hidden layer.

5) Integration With Other Techniques: Benefits often accrue
from using a combination of different learning strategies. A
modified counterpropagation network, with supervised learning
vector quantization (LVQ) performing nearest-neighbor classi-
fication, was used for molecular sequence classification [37].

Dynamic programming has been combined with MLP in
GeneParser [25] to predict gene structure. Sequence information
is weighted by the MLP to approximate the log-likelihood that
each subinterval exactly represents an intron or exon. Dynamic
programming is then applied to determine the combination of
introns and exons that maximizes the likelihood function. Input
to the network consists of the differences for each statistic be-
tween the correct and incorrect solutions, and the difference in
the number of predicted sequence types. The output maximizes
the difference between correct and incorrect solutions.

Evolving ANNs for discriminating between functional ele-
ments associated with coding nucleotides (exons) and noncod-
ing sequences of DNA (introns and intragenic spacer) has been
reported [21]. The connection weights of a fixed MLP architec-
ture are evolved for classification, using evolutionary computa-
tion, with practical application to gene detection. Performance
of the evolved network is compared to that of GRAIL [24] and
GeneParser [25].

Extreme learning machine (ELM), a new machine learning
paradigm with a sigmoidal activation function and Gaussian
RBF kernel for the single hidden-layer feedforward neural net-
work, has been used to classify protein sequences from ten
classes of superfamilies [38]. The classification accuracy is re-
ported to be better, along with a shorter training time, as com-
pared to that of an MLP of similar size using backpropagation.
Since the ELM does not involve any control parameters like
learning rate, learning epochs, stopping criteria, that require to
be tuned as in MLP, this promises an added advantage.

C. NF

Extraction of motif from a group of related protein sequences
has been investigated in an NF framework [42], using data from
PROSITE. A statistical method is first used to detect short pat-
terns occurring with high frequency. Fuzzy logic enables the
design of approximate membership functions and rules about
protein motifs, as obtained from domain experts. An RBF neu-
ral network is employed to optimize the classification by tuning
the membership functions.

D. GAs

GAs and GP have been primarily applied to primary genomic
sequences for functions involving their alignment, reconstruc-
tion, and detection. This is described later.

1) Alignment: The simultaneous alignment of many amino
acid sequences is one of the major research areas of bioinfor-
matics. Given a set of homologous sequences, multiple align-
ments can help predict secondary or tertiary structures of new
sequences. GAs have been used for this purpose [52]. Fitness
is measured by globally scoring each alignment according to a
chosen objective function, with better alignments generating a
higher fitness. The cost of multiple alignment Ac is expressed
as

Ac =
N −1∑
i=1

N∑
j=1

Wi,j cost(Ai,Aj ) (1)

where N is the number of sequences, Ai is the aligned sequence
i, cost(Ai,Aj ) is the alignment score between two aligned se-
quences Ai and Aj , and Wi,j is the weight associated with that
pair of sequences. The cost function includes the sum of the
substitution costs, as given by a substitution matrix, and the
cost of insertions/deletions using a model with affine gap (gap-
opening and gap-extension) penalties. Roulette wheel selection
is carried out among the population of possible alignments, and
insertion/deletion events in the sequences are modeled using a
gap insertion mutation operator.

Given N aligned sequences A1, . . . , AN in a multiple align-
ment, with Ai,j being the pairwise projection of sequences Ai

and Aj , length(Ai,j ) the number of ungapped columns in this
alignment, score(Ai,j ) the overall consistency between Ai,j and
the corresponding pairwise alignment in the library, and W ′

i,j

the weight associated with this pairwise alignment, the fitness
function was modified [53] to

F =

∑N −1
i=1

∑N
j=1 W ′

i,j × score(Ai,j )∑N −1
i=1

∑N
j=1 W ′

i,j × length(Ai,j )
. (2)

The main difference with (1) is the library, which replaces the
substitution matrix and provides position-dependent means of
evaluation.

2) Reconstruction: The generation of accurate DNA se-
quence is a challenging and time-consuming problem in ge-
nomics. A widely used technique in this direction is hybridiza-
tion, which detects all oligonucleotides7 of a given length k
(usually eight to ten bases) that make up the corresponding DNA
fragment. The oligonucleotide library is very large, containing
4k elements, with microarray chip technology being often used
in its implementation. However, the hybridization experiment
introduces both negative (missing oligonucleotides) and posi-
tive (erroneous oligonucleotide) errors in the spectrum of el-
ements. The reconstruction of the DNA sequence, from these
errors, is an NP-hard combinatorial problem. GAs have been
successfully applied to difficult instances of sequence recon-
struction [21], with a fitness function maximizing the number
of elements chosen from the spectrum (subject to a restriction on
the maximum length n) of the sequence of nucleotides. The rep-
resentation of a candidate solution is in terms of a permutation
of indices of oligonucleotides from the spectrum.

7A short sequence of the four nucleotide bases, A, C, T , G.
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3) Detection: GP has been combined with finite state au-
tomata (FSA) to discover candidate promoter sequences in pri-
mary sequence data [43]. FSAs are directed graphs that can
represent powerful grammars in the Chomsky hierarchy, and
Turing machines. In GP-Automata, a GP-tree structure is asso-
ciated with each state of the FSA. The method is able to take
large base pair jumps, thereby being able to handle very long
genomic sequences in order to discover gene-specific cis-acting
sites8 as well as genes that are regulated together. It is to be
noted that an aim of drug discovery is to identify cis-acting sites
responsible for coregulating different genes.

The training dataset9 consists of known promoter regions,
while nonpromoter examples constitute samples from the cod-
ing or intron sequences. The objective of the GP-tree structure,
in each state of the GP-Automata, is to find motifs within the
promoter and nonpromoter regions. The terminal set includes
A,C, T , and G. The method automatically discovers motifs of
various lengths in automata states, and combines motif matches
using logical functions to arrive at a cis-acting region identifi-
cation decision.

Phylogenetic inference has been attempted using GA [46]
and parallel GA [47]. An individual in a population is a hy-
pothesis consisting of the tree, branch lengths, and parameters
values for the model of sequence evolution, while the fitness
is the likelihood score of the hypothesis. In the parallel ver-
sion [47], each individual in a population is handled by one pro-
cessor or node that computes its corresponding likelihood. This
operation being extremely time-consuming, the parallelization
at this level causes a nearly linear-order search time improve-
ment for large data. The number of processors used is equal to
the size of the evolving population, plus an additional proces-
sor for the control of operations. Selection is accomplished on
the maximum-likelihood score; migration and recombination is
permitted between subpopulations; and mutation can be branch-
length based or topological. Results are provided on 228 taxa of
DNA sequence data.

E. SVMs

Remote homology detection by quantifying the similarity be-
tween protein sequences has been attempted using SVMs [39],
for the purpose of superfamily recognition in the Structural Clas-
sification of Proteins (SCOP) database. The data consist of 4352
sequences extracted from the Astral database. Local alignment
kernels are adapted from the Smith–Waterman algorithm for
strings. These kernels measure the similarity between two se-
quences, by summing up scores obtained from local alignments
with gaps of the sequences.

Proteins can be classified into 12 subcellular locations, viz.,
chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum,
extracellular, Golgi apparatus, lysosome, mitochondria, nu-
cleus, peroxisome, plasma membrane, and vacuole. Since the

8A major cis-acting region in both prokaryotes and eukaryotes is located
just upstream of a gene’s transcription start site, and is known as the promoter
region. The promoter attracts a holoenzyme that catalyzes production of RNA
from the DNA template. At the promoter, the complex attaches to DNA strands
to initiate genetic transcription.

9http://www.fruitfly.org/

TABLE II
APPLICATION OF SOFT COMPUTING TO PROTEIN STRUCTURE

subcellular location of a protein strongly influences its func-
tionality, therefore its proper prediction from the sequence is
of utmost importance. A novel concept of functional domain
composition [55] has been designed to generate the represen-
tative vector base of proteins in their high-dimensional space.
The SVM is subsequently used to predict the protein subcellular
location. Another systematic approach to predicting subcellular
localization of human proteins [56] combines SVM with Psi-
BLAST. While SVM modules work on amino acid and dipeptide
compositions, the Psi-BLAST helps in performing similarity
search.

IV. PROTEIN STRUCTURE

Protein structure prediction typically uses experimental in-
formation stored in protein structural databases, like the
Brookhaven National Laboratory Protein Data Bank (PDB)
[58]. A common approach is based on sequence alignment with
structurally known proteins. The experimental approach involv-
ing X-ray crystallographic analysis and nuclear magnetic reso-
nance (NMR) being expensive and time-consuming, soft com-
puting techniques offer an innovative way to overcome some of
these problems. Table II summarizes their application to protein
structure prediction.

A. Secondary Structure

A step on the way to a prediction of the full 3-D structure of
protein is predicting the local conformation of the polypeptide
chain, called the secondary structure. The whole framework was
pioneered by Chou and Fasmann [96]. They used a statistical
method, with the likelihood of each amino acid being one of
the three (alpha, beta, coil) secondary structures estimated from
known proteins.

1) ANNs: In this section, we highlight the enhancement in
prediction performance of ANNs, with the use of ensembles and
the incorporation of alignment profiles.

The data consist of proteins obtained from the PDB. A fixed-
size window constitutes the input to the feedforward ANN. The
network predicts the secondary structure corresponding to the
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TABLE III
COMPARATIVE PERFORMANCE FOR PROTEIN

SECONDARY STRUCTURE PREDICTION

centrally located amino acid of the sequence within the window.
The contextual information about the rest of the sequence in the
window is also considered during network training. A compar-
ative study of performance of different approaches, on this data,
is provided in Table III.

Around 1988, the first attempts were made by Qian and Se-
jnowski [59] to use MLP with backpropagation to predict pro-
tein secondary structure. Three output nodes correspond to the
three secondary structures. Performance is measured in terms
of an overall correct classification Q (64.3%) and Matthews
correlation coefficient (MCC). We have

Q =
l∑

i=1

wiQi =
C

N
(3)

for an l-class problem, with Qi indicating the accuracy for the
ith class, wi being the corresponding normalizing factor, N
representing the total number of samples, and C being the total
number of correct classifications.

MCC =
(TP × TN) − (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP, TN, FP, and FN correspond to the number of true
positive, true negative, false positive, and false negative clas-
sifications, respectively. Here, N = TP + TN + FP + FN and
C = TP + TN, and −1 ≤ MCC ≤ +1 with +1(−1) corre-
sponding to a perfect (wrong) prediction. The values for MCC
for the α-helix, β-strand, and random coil were found to be
0.41, 0.31, and 0.41, respectively.

The performance of this method was improved by Rost and
Sander [60], [61], by using a cascaded three-level network with
multiple-sequence alignment. The three levels correspond to a
sequence-to-structure net, a structure-to-structure net, and a jury
(combined output) decision, respectively. Correct classification
increased to 70.8%, with the MCC being 0.60, 0.52, and 0.51,
respectively, for the three secondary classes. Supersecondary
structures (folding units), like αα- and ββ-hairpins, and αβ-
and βα-arches, serve as important building blocks for protein
tertiary structure. Prediction of supersecondary structures was
made from protein sequences [62] using MLP. The size of the in-
put vector was the same as the length of the sequence window.
There were 11 networks, each with one output, for classify-
ing one of the 11 types of frequently occurring motifs. A test
sequence was assigned to the motif category of the winning

Fig. 1. Secondary protein structure prediction using ensemble of ANNs.

network having the largest output value. Results demonstrated
more than 70% accuracy.

Hybrid approaches to applications related to protein sec-
ondary structure also exist in literature. A knowledge-based
approach was employed to extract inference rules about a bio-
logical problem that were then used to configure ANNs [63].
Integration with GAs was attempted to generate an optimal
ANN topology [69], and its performance on secondary struc-
ture prediction was found to be comparable to that of Qian and
Sejnowski [59].

2) Ensemble Networks: Prediction of protein secondary
structure has been further developed by Riis and Krogh [64],
with ensembles of combining networks, for greater accuracy in
prediction. The Softmax method is used to provide simultane-
ous classification of an input pattern into multiple classes. A
normalizing function at the output layer ensures that the three
outputs always sum to one. A logarithmic likelihood cost func-
tion is minimized, instead of the usual squared error. An adaptive
weight encoding of the input amino acid residues reduces the
overfitting problem. A window is selected from all the single
structure networks in the ensemble. The output is determined
for the central residue, with the prediction being chosen as the
largest of the three outputs normalized by Softmax.

The use of ensembles of small, customized subnetworks is
found to improve predictive accuracy. Customization involves
incorporation of domain knowledge into the subnetwork struc-
ture for improved performance and faster convergence. For ex-
ample, the helix-network has a built-in period of three residues
in its connections in order to capture the characteristic peri-
odic structure of helices. Fig. 1 provides the schematic network
structure. Overall accuracy increased to 71.3%, with the MCC
becoming 0.59, 0.50, and 0.41, respectively, for the three sec-
ondary classes.

3) Use of Alignment Profile: The alignment profile gener-
ated by Psi-BLAST has been incorporated by Jones [65] to
design a set of cascaded ANNs. These profiles enable finding
more distant sequences, use a more rigorous statistical approach
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for computing the probability of each residue at a specific po-
sition, and properly weigh each sequence with respect to the
amount of information it carries.

Prediction of segments in protein sequences containing
aromatic–backbone NH interactions10 has been attempted [66].
Such interactions help in the stabilization of protein secondary
and tertiary structures as well as folding, on the basis of their spa-
tial distribution. Incorporation of evolutionary information in the
form of multiple alignment, by Psi-BLAST, enhances the perfor-
mance in terms of MCC. Two consecutive three-layered feedfor-
ward sequence-to-structure and structure-to-structure networks,
trained by backpropagation, are employed. It is observed that a
segment (window) of seven residues provides sufficient input in-
formation for prediction of these aromatic–NH interactions. The
actual position of donor aromatic residue within the potential
predicted fragment is also identified, using a separate sequence-
to-structure neural network. The implementation was made on
a nonredundant dataset of 2298 protein chains extracted from
the Protein Data Bank (PDB).

Ensembles of bidirectional recurrent neural network archi-
tectures are used in conjunction with profiles generated by Psi-
BLAST to predict protein secondary structure for a given amino
acid sequence [67]. The classification decision is determined by
three component networks. In addition to the standard central
component associated with a local window at location t of the
current prediction (as in feedforward ANNs), there exist contri-
bution by two similar recurrent networks corresponding to the
left and right contexts (like wheels rolling from the N 11- and
C 12-terminals along the protein chain). An ensemble of 11 net-
works are trained, using backpropagation. Two output catego-
rizations are followed, viz., 1) three classes (α-helix, β-strand,
random coil), as in SSpro and 2) eight classes as in DSSP13 pro-
grams. The output error is the relative entropy between the out-
put and target probability distributions. At the alignment level,
the use of Psi-BLAST, with the ability to produce profiles that
include increasingly remote homologs, enhances performance
as compared to that employing only BLAST [68]. The system
was implemented on proteins from the PDB, which are at least
30 amino acids long, have no chain breaks, produce a DSSP
output, and are obtained by X-ray diffraction methods with high
resolution. The accuracy of secondary structure prediction is
thereby enhanced to about 75%.

4) SVMs: Hua and Sun [70] reported the first use of SVMs
to protein secondary structure prediction. A segment overlap
measure provides a more realistic assessment of the quality of
a prediction, and a useful reliability index has been developed.
Results are provided on a database of 513 nonhomologous pro-
tein chains with multiple sequence alignment. The performance
is comparable to that of ANN-based approaches [61], with over-
all per-residue accuracy being 73.5% and the MCC computed

10A nonconventional hydrogen bonding interaction involving side-chain aro-
matic ring and backbone NH group.

11The amino acid residue connected to an end of a polypeptide sequence by
its CO group, leaving it with a free NH group.

12The amino acid residue connected to an end of a polypeptide sequence by
its NH group, leaving it with a free CO group.

13http://www.cmbi.kun.nl/gv/dssp/

as 0.64, 0.52, 0.51, respectively, for α-helices, β-strands, and
random coils. Whereas for ANNs one needs to choose an ap-
propriate topology, the SVM requires the selection of a kernel
function. In this case, the RBF has been used. An optimal win-
dow length is found to be proportional to the average length
of the secondary structure segments. This was extended in [71]
by combining a dual-layer SVM with Psi-BLAST. The outputs
represented the probability of a residue belonging to that class.
Here, the overall accuracy increased to 75.2%.

Proteins of a specific functional family share common struc-
tural and chemical features and, given sufficient samples, an
SVM can be trained to recognize proteins possessing the char-
acteristics of a particular function. Enzymes represent the largest
and most diverse group of all proteins, catalyzing chemical re-
actions in the metabolism of all organisms. SVM has been used
to classify enzymes into functional families [72], as defined by
the Enzyme Nomenclature Committee of IUBMB. While pos-
itive samples correspond to enzymes belonging to a particular
family, the negative samples constitute representative enzymes
from all the other enzyme families as well as nonenzyme pro-
teins. The SVM is also evaluated for its capability in classifying
distantly related enzymes as well as homologous enzymes of
different functions.

Every enzyme sequence is represented by specific feature
vectors, assembled from encoded representations of tabulated
residue properties like amino acid composition, hydrophobic-
ity, normalized Van der Waals’ volume, polarity, polarizability,
charge, surface tension, secondary structure, solvent accessi-
bility, etc., for each residue in the sequence. The performance
of the two-class SVM classification is measured in terms of
the accuracies for positive Qp = TP/(TP + FN) and negative
Qn = TN/(TN + FP) prediction, and MCC. The results, imple-
mented on enzymes from 46 families (Swiss-Prot14 database),
suggest its potential for protein functional prediction.

Interaction between mutually binding protein pairs gives rise
to specific biological functions. Using a diverse database of
known protein interactions (DIP), an SVM was trained to rec-
ognize and predict possible interactions solely based on primary
structure and associated physicochemical properties [73]. Fea-
ture vectors like sequential charge, hydrophobicity, and surface
tension were selected as input corresponding to each residue in
the amino acid sequences of a protein–protein complex. Binary
decisions were generated regarding potential interactions.

B. Tertiary Structure and Folding

Protein structure comparison is often used to identify set
of residue equivalencies between proteins based on their
3-D coordinates, and has a wide impact on the understanding
of protein sequence, structure, function, and evolution. This is
because it can identify more distantly related proteins, as com-
pared to sequence comparison, since protein structures are more
conserved than amino acid sequences over evolution.

The determination of an optimal 3-D conformation of a pro-
tein corresponds to folding, and has manifold implications to

14http://www.expasy.ch/sprot/.
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drug design. An active site structure determines the functional-
ity of a protein. A ligand (enzyme or drug) docks into an active
site of a protein. Many automated docking approaches have
been developed, and can be categorized as: 1) rigid docking:
both ligand and protein are rigid; 2) flexible-ligand docking:
ligand flexible and protein rigid; and 3) flexible-protein dock-
ing: both ligand and protein are flexible (only a limited model of
protein variation allowed, such as side-chain flexibility or small
motions of loops in the binding site).

1) FSs: A contact map is a concise representation of a pro-
tein’s native 3-D structure. It is expressed as a binary matrix,
where each entry is a “1” if the corresponding protein residue
pair are in “contact” (with Euclidean distance being within a
threshold). When represented graphically, each contact between
two residues corresponds to an edge. An alignment between two
contact maps is an assignment of residues in one to those of the
equivalent other. A pair of contacts is equivalent when the pairs
of residues that define their endpoints are also equivalent. The
number of such equivalent contacts determine the overlap of the
contact maps for a pair of proteins, with a higher overlap indicat-
ing increased similarity between them. A generalization of the
maximum contact map overlap has been developed [84] using
one or more fuzzy thresholds and membership functions. This
enables a more biological formulation of the optimization prob-
lem. Investigations are reported on three datasets from the PDB.
Clustering of protein structures is done to validate the results.

2) ANNs: One of the earliest ANN-based protein tertiary
structure prediction in the backbone [74] used MLP, with binary
encoding for a 61-amino acid window at the input. There were
33 output nodes corresponding to the three secondary struc-
tures, along with distance constraints between the central amino
acid and its 30 preceding residues. A large-scale ANN was em-
ployed to learn protein tertiary structures from the PDB [75].
The sequence-structure mapping encoded the entire protein se-
quence (66–129 residues) into 140 input units. The amino acid
residue was represented by its hydrophobicity scale, normalized
between −1 and +1. The network produced good prediction
of distance matrices from homologous sequences, but suffered
from a limited generalization capability due to the relatively
small size of the training set.

Interatomic Cα distances between amino acid pairs, at a given
sequence separation, were predicted [76] to be above (or below)
a given threshold corresponding to contact (or noncontact). The
input consisted of two sequence windows, each with 9 or 15
amino acids separated by different lengths of sequence, and a
single output indicated the contact (or noncontact) between the
central amino acids of the two sequence windows.

Instead of using protein sequence at input, a protein struc-
ture represented by a side-chain–side-chain contact map was
employed at the input of an ANN to evaluate side-chain pack-
ing [77]. Contact maps of globular protein structures in the PDB
were scanned using 7× 7 windows, and converted to 49 binary
numbers for the input. One output unit was used to determine
whether the contact pattern is prevalent in the structure database.

Information obtained from secondary structure prediction
is incorporated to improve structural class prediction using
MLP [78]. The 26 input nodes include the 20-amino acid com-

position, sequence length, and five secondary structure charac-
teristics of the protein. Four outputs correspond to four tertiary
super classes. Prediction of 83 folding classes in proteins has
been attempted [79] using multiple two-class MLPs. The input
was represented in terms of major physicochemical amino acid
attributes, like relative hydrophobicity (hydrophobic, neutral, or
polar), predicted secondary structure, predicted solvent accessi-
bility (buried or exposed), along with certain global descriptors
like composition, transition, and distribution of different amino
acid properties along the protein sequence.

A single-layer feedforward ANN, trained with scaled con-
jugate gradient algorithm, is used to identify catalytic residues
found in enzymes [80] based on an analysis of the structure and
sequence. Structural parameters like the solvent accessibility,
type of secondary structure, depth, and cleft that the residue lies
in, along with the conservation score and residue type are used
as inputs for the ANN. Performance is measured in terms of the
MCC. The network output is spatially clustered to determine
the highly scoring residues, and thereby predict the location of
most likely active sites.

Radial basis function (RBF) network, a supervised feedfor-
ward ANN, has been employed [81] to optimally predict the
free energy contributions of proteins due to hydrogen bonds,
hydrophobic interactions, and the unfolded state, with simple
input measures.

3) GAs: GAs have been mainly applied to tertiary protein
structure prediction, folding, docking, and side-chain packing
problems.

a) Structure and folding: Structure alignment has been
attempted in proteins using GAs [85], by first aligning equivalent
secondary structure element (SSE) vectors while optimizing an
elastic similarity score S. This is expressed as

S =

{∑L
i=1

∑L
j=1

(
θ − dA

i j −dB
i j

d̄i j

)
e−(d̄i j /a)2 , i �= j

θ, i = j
(5)

where dA
ij and dB

ij are the distances between equivalent positions
i and j in proteins A and B, respectively, d̄ij is the average of
dA

ij and dB
ij , and θ and a are constant parameters, with the logic

implying that equivalent positions in two proteins should have
similar distances to other equivalent positions. Second, amino
acid positions are optimally aligned within the SSEs. This is
followed by superposition of protein backbones, based on the
position equivalencies already determined. Finally, additional
equivalent positions are searched in the non-SSE regions.

Tertiary protein structure prediction and folding, using GAs,
has been reported in [21], [82], [86], and [87]. The objective is
to generate a set of native-like conformations of a protein based
on a force field, while minimizing a fitness function depending
on its potential energy. Proteins can be represented in terms of:
1) 3-D Cartesian coordinates of its atoms; and 2) the torsional
angle Rotamers, which are encoded as bit strings for the GA.
The Cartesian coordinates representation has the advantage of
being easily convertible to and from the 3-D conformation of
a protein. Bond lengths b are specified in these terms. In the
torsional angles representation, the protein is described by a set
of angles under the assumption of constant standard binding
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geometries. The different angles involved are the: 1) bond angle
θ; 2) torsional angle φ, between N (amine group) and Cα ; 3)
angle ψ, between Cα and C ′ (carboxyl group); 4) peptide bond
angle ω, between C ′ and N ; and 5) side-chain dihedral angle χ.

The potential energy U(r1, . . . , rN ) between N atoms is min-
imized, being expressed as

U(r1, . . . , rN ) =
∑

i

Kb(bi − bi
0)

2 +
∑

i

Kθ (θi − θi
0)

2

+
∑

i

Kφ [1 − cos(nφi − δ)] +
∑
i,j

qiqj

4πε0εr rij

+
∑
i,j

ε

[(
σij

rij

)12

− 2
(

σij

rij

)6
]

.

Here, the first three harmonic terms on the right-hand side in-
volve the bond length, bond angle, and torsional angle of co-
valent connectivity, with bi

0 and θi
0 indicating the down-state

(low energy) bond length and bond angle, respectively, for the
ith atom. The effects of hydrogen bonding and that of solvents
(for nonbonded atom pairs i, j, separated by at least four atoms)
is taken care of by the electrostatic Coulomb interaction and
Van der Waals’ interaction, modeled by the last two terms of
the expression. Here, Kb,Kθ ,Kφ , σij , and δ are constants, qi

and qj are the charges of atoms i and j, separated by distance
rij , and ε indicates the dielectric constant. Two commercially
available software packages, containing variations of the po-
tential energy function, are Chemistry at HARvard Molecular
Mechanics (CHARMm) and Assisted Model Building with En-
ergy Refinement (AMBER).

Additionally, a protein acquires a folded conformation fa-
vorable to the solvent present. The calculation of the entropy
difference between a folded and unfolded state is based on the
interactions between a protein and solvent pair. Since it is not
yet possible to routinely calculate an accurate model of these
interactions, an ad hoc pseudo-entropic term Epe is added to
drive the protein to a globular state. Epe is a function of its
actual diameter, which is defined to be the largest distance be-
tween a pair of Cα carbon atoms in a conformation. We have

Epe = 4(actual diameter−expected diameter) [kcal/mol] (6)

where expected diameter/m = 8 ∗ 3
√

len/m is the diameter in
its native conformation and len indicates the number of residues.
This penalty term ensures that extended conformations have
larger energy (or lower fitness) values than globular confor-
mations. It constitutes the conformational entropy constituent
of potential energy, in addition to the factors involved in the
expression for U .

b) Docking: Genetic optimization for ligand docking
(GOLD) [92] is an automated flexible-ligand docking program,
employing steady-state GA involving the island model.15 It eval-
uates nonmatching bonds while minimizing the potential energy
(fitness function), defined in terms of Van der Waals’ internal and

15Evolves several small, distinct populations, instead of one large population.

external (or ligand-site) energy, torsional (or dihedral) energy,
and hydrogen bonds. However, 1) an enforced requirement that
the ligand must be hydrogen-bonded to the binding site; and 2)
an underestimation of the hydrophobic contribution to binding,
sometimes lead to failures in docking in certain cases over here.

Each chromosome in GOLD encodes the internal coordi-
nates of both the ligand and active protein site, and a mapping
between the hydrogen-bonding sites. Reproduction operators
include crossover, mutation, and a migration operator to share
genetic material between populations. The output is the ligand
and protein conformations associated with the fittest chromo-
some in the population, when the GA terminates. The files han-
dled are the Cambridge Crystallographic Database, Brookhaven
PDB, and the Rotamer library.16

AutoDock [93] works on a genome composed of a string of
real-valued genes encoding the 3-D coordinates and different
angles. Mutation of the real-valued parameters is accomplished
through the addition of a Cauchy-distributed random variable.
Both conventional as well as Lamarckian17 GAs are used, along
with elitism.

A Generic Evolutionary Method for Molecular Docking
(GEMDOCK) [94] has been developed for flexible-ligand
docking. The potential energy function, involving numerous
atomic interactions, is often computationally too expensive
to implement using evolutionary strategies. Hence, rapid
recognition of potential ligands is emphasized using a robust,
simpler scoring function, encountering fewer local minima.
Discrete and continuous search techniques are combined with
local search to speed up convergence. The energy function
encompasses electrostatic, steric, and hydrogen-bonding poten-
tials of the molecules. A new rotamer-based mutation operator
helps reduce the search space of ligand structure conformations.
GEMDOCK is an automatic system that generates all related
docking variables, like atom formal charge, atom type, and the
ligand binding site of a protein. A major problem in GOLD, viz.,
its sensitiveness to docking hydrophobic ligands, is reduced
in GEMDOCK [94]. However, its empirical scoring function
is yet to incorporate important functional group interactions
between ligands and proteins as in GOLD.

In a slightly different approach, the prediction of the con-
served or displaced status of water molecules in the binding
site, upon ligand binding, was made [95] by using a k-nearest-
neighbors classifier. GAs determine the optimal feature-weight
values for the classifier. Fitness is based on the percentage of
correct predictions made.

c) Side-chain packing: The side-chain packing problem
deals with the prediction of side-chain conformations. This is
a crucial aspect of protein folding, since it determines feasible
backbone conformations. GAs have been used in the prediction
of side-chain packing [88] to search for low-energy hydrophobic
core sequences and structures, using a custom rotamer library
as input. Each core position is allocated a set of bits in the

16Provides the relationship between side-chain dihedral angles and backbone
conformation

17Provides a local search, with replacement on a small fraction of the popu-
lation within each generation. In Baldwinian approach, unlike in Lamarckian,
the original population is not updated by the solution found in the local search.
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chromosome, to encode a specific residue type and a set of
torsional angles as specified in the library.

d) Use of evolutionary programming (EP): Evolutionary
programming has been employed for faster finding of deep min-
ima in the energy landscape of protein folding [89]. One folding
step of the protein molecule involves: 1) calculation of molec-
ular motion of the structure, i.e., rotation around one bond and
2) computation of free energy of the new conformation, which
is discarded if it increases after the molecular motion. This pro-
cess is simultaneously repeated to simulate a large set of folding
operations, each using a different expanded starting structure
for the protein. The program then determines those simulations
yielding structures with the lowest free energies. It uses a lattice
model of proteins to speed up the simulation, allowing only
bond angle changes (0◦,±45◦,±90◦) between adjacent amino
acid residues along one or two of the three planes.

Mutations of the program were created using different types
or magnitudes of molecular motions, or different positions of
bonds around which rotations are performed, or different se-
quences of these motions. Positive mutants, i.e., those which
performed better than the original program, were used for fur-
ther mutations. Negative program mutants, i.e., those which did
not find a deeper energy minimum within a certain period of
time, were discarded. It is observed that only 20 evolution steps
yielded a more than ten-fold increase in speed of finding deep
minima in the energy landscape of two 64-residue proteins.

4) SVMs: Protein fold class prediction, from sequence, has
been attempted using SVMs [90], [91], and the performance
compared to that of ANNs and other standard statistical classifi-
cation methods. SVMs were found to converge fast and result in
high accuracy. In [90], scores of multiple parameter datasets are
combined using majority voting. An l-class problem is modeled
by l two-class classifiers, and a polynomial Gaussian kernel
used. The 27 most populated folds, from the PDB, are used
as output classes. Feature vectors extracted from the primary
sequence are based on three descriptors, viz., 1) percent com-
position of the three constituents (polar, neutral, hydrophobic
residues); 2) transition frequencies (polar-to-neutral, neutral-to-
hydrophobic, etc.); and 3) distribution pattern of constituents
(where the first residue of a given constituent is located, and
where 25%, 50%, 75%, and 100% of that constituent are con-
tained).

In [91], a protein is represented as a sequence (s1, . . . , sq ),
where each si stands for one of the 20 amino acids. This is
embedded in terms of the relative frequencies of k-tuples of
amino acids, resulting in a 20k -dimensional feature space. The
output consists of 42 categories of tertiary structures.

Detection of the active site of an enzyme as well as its micro-
environment helps reveal its structural and functional mecha-
nism, and enables conducting of structure-based drug design by
regulating the enzyme function. Given the 3-D atomic coordi-
nates of an enzyme, SVM has been employed to identify active
sites based on distance [83]. Gaussian RBF has been used as
the kernel, with a width selected to minimize an estimate of the
VC-dimension.18

18Vapnik Chervonenkis dimension.

TABLE IV
APPLICATION OF SOFT COMPUTING TO MICROARRAY

V. MICROARRAY

Each DNA array contains the measures of the level of ex-
pression of many genes. Various distances and/or correlations
can be computed from pairwise comparison of these patterns.
Let genej (ej1, . . . , ejn ) denote the expression pattern for the jth
gene for i = 1, . . . , n samples. The Euclidean distance between
the jth and the kth genes, computed as

dj,k =
√∑

i

(eji − eki)2 (7)

is suitable when the objective is to cluster genes displaying sim-
ilar levels of expression. Cluster validation can be done using
either external and internal criterion analyses [97]. External cri-
terion analysis validates a clustering outcome by comparing it
to a given gold standard, which is another partition of the ob-
jects generated by an independent process based on information
other than the given dataset. Internal criterion analysis, on the
other hand, uses information from the given dataset, like (say)
compactness and isolation, to determine the goodness of fit of
the clustering. A quantitative data-driven framework has been
developed [98] to evaluate different clustering algorithms, with-
out using additional biological knowledge about the gene ex-
pression data. The Pearson correlation coefficient −1 ≤ r ≤ 1
measures the similarity in trend between two profiles (genes).
The distance is given as

dj,k = (1 − r) = 1 −
∑

i{(eji − êj )(eki − êk )}/n

σej
× σek

(8)

where êj and σej
indicate the mean and standard deviation,

respectively, of all points of the jth profile.
There exists considerable literature on the applications of dif-

ferent soft computing paradigms in the area of gene expression
data. An overview is provided in Tables IV and V.
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TABLE V
USAGE DETAILS FOR MICROARRAY ANALYSIS

A. FSs

Fuzzy c-means [131] is a well-known fuzzy partitive algo-
rithm employed for clustering overlapping data. Use of fuzzy
clustering enables genes to simultaneously belong to multiple
groups, thereby revealing distinctive features of their function
and regulation. Fuzzy c-means algorithm has been applied to
cluster microarray data [99]. The value of the fuzzifier m is
appropriately tuned for gene selection, based on resultant distri-
bution of distances between genes. The selected genes exhibit
tight association to the clusters.

Many proteins serve different functions depending on the
demands of the organism, such that a corresponding set of
genes is often coexpressed with multiple, distinct groups of
genes under different conditions. This type of conditional
coregulation of genes is modeled using a heuristically modified
version of fuzzy c-means clustering [100], to identify overlap-
ping partitions of genes based on the response of yeast cells to
environmental changes.

The temporal order and varying length of sampling intervals
are some of the important factors for clustering time-series mi-
croarray data into biologically meaningful partitions. However,
the shortness and unequal sampling of gene expression time-
series data limits the use of conventional modeling in these
cases. The fuzzy short time-series algorithm [101] clusters pro-
files based on the similarity of their relative change in expres-
sion level and the corresponding temporal information. Here,
the short time-series distance measure is incorporated in the
fuzzy c-means framework. The performance, on the transcrip-
tional data of sporulation in budding yeast, is evaluated in terms
of Dunn’s clustering validity index [97].

An interesting image-processing application to fuzzy filter-
ing of cDNA microarray color images in the two-channel Red–
Green space has been developed [130]. The two-component
adaptive vector filter integrates concepts from FSs, nonlinear
filtering, multidimensional scaling, and robust order statistics.
Robust noise removal is achieved by tuning a membership func-
tion, which utilizes distance criteria based on a novel color-ratio
model, on cDNA vectorial inputs at each image location. This
sort of reduction in noise impairment facilitates subsequent anal-
ysis of the cDNA images.

B. ANNs

The two major mining tasks, modeled here, are clustering and
classification. While unsupervised learning is self-organized,
supervised learning helps incorporate known biological func-
tions of genes into the knowledge discovery process of gene
expression pattern analysis for gene discovery and prediction.

1) Clustering: Kohonen’s SOM has been applied to the clus-
tering of gene expression data [102]–[104]. It generates a robust
and accurate clustering of large and noisy data, while provid-
ing effective visualization. SOMs require a selected node in the
gene expression space (along with its neighbors) to be rotated
in the direction of a selected gene expression profile (pattern).
However, the predefinition of a 2-D topology of nodes can often
be a problem considering its biological relevance.

SOTA has also been applied to gene expression clustering
[106]. As in SOMs the gene expression profiles are sequentially
and iteratively presented at the terminal nodes, and the mapping
of the node that is closest (along with its neighboring nodes) is
appropriately updated. Upon convergence, the node containing
the most variable (measured in terms of distance) population of
expression profiles is split into sister nodes, causing a growth
of the binary tree. Unlike conventional hierarchical clustering,
SOTA is linear in complexity to the number of profiles. The
number of clusters need not be known in advance as in c-means
clustering. The algorithm starts from the node having the most
heterogeneous population of associated input gene profiles. A
statistical procedure is followed for terminating the growing of
the tree, thereby eliminating the need for an arbitrary choice of
cutting level as in hierarchical models. However, no validation
is provided to establish the biological relevance.

A binary tree-structured vector quantization [105] uses: 1)
SOM for visualization and 2) partitive c-means clustering for
grouping the similar component planes of SOMs and organizing
them. Results are provided on cDNA microarray lung cancer
data.

2) Classification: Classification of acute leukemia, having
highly similar appearance in gene expression data, has been
made by combining a pair of classifiers trained with mutually
exclusive features [110]. Gene expression profiles were con-
structed from 72 patients having acute lymphoblastic leukemia
(ALL) or acute myeloid leukemia (AML), each constituting one
sample of the DNA microarray.19 Each pattern consists of 7129
gene expressions. A neural network combines the outputs of the

19http://www.genome.wi.mit.edu/MPR
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multiple classifiers. Feature selection with nonoverlapping cor-
relation (such as Pearson and Spearman correlation coefficients)
encourages the classifier ensemble to learn different aspects of
the training data in a wide solution space. The recognition ac-
curacy and generalization capacity are reported to be higher
than those involving SVM [116], [117], SOM, decision tree,
and k-nearest neighbors classifier.

An autoassociative neural network has been used for
simultaneous pattern identification, feature extraction, and
classification of gene expression data [111]. The network
output approximates a reconstructed version of the input
vector. Backpropagation is used to adjust the connection
weights. The analysis of the network structure and strength of
connections allows the: 1) identification of specific phenotype
markers; 2) extraction of peculiar associations among genes
and physiological states; and 3) assignment to multiple classes,
like different pathological conditions or tissue samples. Results
are demonstrated on leukemia and colon cancer20 datasets.

Bayesian regularized neural network has been employed
[112] to classify multiple gene expression temporal patterns,
with sequential time points under different experimental condi-
tions. The Bayesian setting, along with the regularization, help
overcome experimental as well as biological noise or uncer-
tainty. A feedforward architecture is used, with the input neu-
rons corresponding to the number of time points or experimental
conditions in the microarray experiment. Results are provided
on the yeast data.

C. NF

Fuzzy ART network [132] has been employed for cluster-
ing the time-series expression data related to the sporulation of
budding yeast [107].

An evolving modular fuzzy neural network, involving dy-
namic structure growing (and shrinking), adaptive online learn-
ing, and knowledge discovery in rule form, has been applied
to the leukemia and colon cancer gene expression data [122].
Feature selection improves classification by reducing irrelevant
attributes that do not change their expression between classes.
The Pearson correlation coefficient is used to select genes that
are highly correlated with the tissue classes. Rule generation
provides physicians, on whom the final responsibility for any
decision in the course of treatment rests, with a justification re-
garding how a classifier arrived at a judgement. Fuzzy logic
rules, extracted from the trained network, handle the inher-
ent noise in microarray data while offering the knowledge in
a human-understandable linguistic form. These rules point to
genes (or their combinations) that are strongly associated with
specific types of cancer, and may be used for the development
of new tests and treatment discoveries.

A dynamic fuzzy neural network, involving self-generation,
parameter optimization, and rulebase simplification, is used
[113] for the classification of cancer data such as lymphoma,21

20http://microarray.princeton.edu/oncology
21http://llmpp.nih.gov/lymphoma/data/figure1/figure1.cdt

small round blue cell tumor (SRBCT),22 and liver cancer.23 Ini-
tial feature selection is done in terms of t-tests. It is observed that
a small number of important genes (five out of 4026, eight out of
2308, 24 out of 1648 features, in the three datasets, respectively)
succeed in attaining 100% classification.

D. GAs

The identification of gene subsets for classifying two-class
disease samples has been modeled as a multiobjective evolu-
tionary optimization problem [114], involving minimization of
gene subset size to achieve reliable and accurate classification
based on their expression levels. The nondominated sorting GA
(NSGA-II) [133], a multiobjective GA, is used for the pur-
pose. This employs elitist selection and an explicit diversity-
preserving mechanism, and emphasizes the nondominated so-
lutions. It has been shown that this algorithm can converge to
the global Pareto front, while simultaneously maintaining the
diversity of population.

Results are provided on three cancer samples, viz., leukemia,
lymphoma, and colon. An l-bit binary string, where l is the num-
ber of selected (filtered) genes in the disease samples, represents
a solution. The major difficulties faced in solving the optimiza-
tion problem include the availability of only a few samples as
compared to the number of genes in each sample, and the resul-
tant huge search space of solutions. Moreover, many of the genes
are redundant to the classification decision, and hence need to
be eliminated. The three objectives simultaneously minimized
are: 1) the gene subset size; 2) number of misclassifications in
training; and 3) number of misclassifications in test samples.

The grouping GA (GGA) [134] is a modified GA, developed
to suit the particular structure of grouping problems like cluster-
ing. GGA has also been applied to the clustering of microarray
data [21]. The clusters of expression profiles are directly en-
coded in the chromosomes, based on their ordinal numbers,
and the fitness function is defined on this set of groupings. The
composition of the groups controls the value of the objective
function.

GAs have also been used to correctly classify the SRBCT
dataset with a selection of 12 genes [115]. There are four classes
of tumors, from 88 samples described by 2308 genes. Simulated
annealing (SA) [135] is employed to generate a robust cluster-
ing of temporal gene expression profiles [108]. An iterative
scheme quantitatively evaluates the optimal number of clusters,
while simultaneously optimizing the distribution of genes within
them. The ith profile is represented by a vector {ei1, . . . , ein},
with expression component eit corresponding to the normalized
expression level of gene i at time t in the range [0, 1]. The dis-
tribution of profiles is optimized for c clusters by minimizing
the within-cluster distance between them, using

E(c) = (c)
c∑

k=1


∑

i∈Uk

∑
j∈Uk

di,j


 (9)

22http://research.nhgri.nih.gov/microarray/Supplement/
23http://genome-www.stanford.edu/hcc/
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where di,j is the Euclidean distance (7) between profiles be-
longing to cluster Uk .

Some recent applications of GAs, in microarray, deal with bi-
clustering and segmentation. Biclustering aims at determining
subsets of genes that are similarly expressed over an optimal
subset of conditions (or samples), thereby better reflecting the
biological reality. Existing greedy algorithms for biclustering
often yield suboptimal solutions. GAs are employed [128], by
integrating a greedy algorithm as a local search in order to
improve the quality of biclustering. Optimization is done with
respect to the conflicting goals of homogeneity and size. Results
are provided on 2884 genes of yeast data, involving 17 condi-
tions. Evolutionary segmentation of the yeast genome has also
been attempted in literature [129].

E. RSes

A basic issue related to many practical applications of knowl-
edge databases is whether the whole set of attributes in a given
information system is always necessary to define a given parti-
tion of the universe. Many of the attributes are superfluous, i.e.,
we can have optimal subsets of attributes that define the same
partition as the whole set of attributes. These subsets are called
the reducts in rough set theory [14], and correspond to the min-
imal feature set that are sufficient to represent a decision. These
have considerable impact on subsequent decision-making.

RSes have been applied mainly to microarray gene expression
data, in mining tasks like classification [120], [121], clustering
[109], and feature selection [127].

1) Classification: Classification rules (in if–then form) have
been extracted from microarray data [120], using RSes with su-
pervised learning. The underlying assumption is that the asso-
ciated genes are organized in an ontology, involving super- and
subclasses. This biological knowledge is utilized while generat-
ing rules in terms of the minimal characteristic features (reducts)
of temporal gene expression profiles. A rule is said to cover a
gene if the gene satisfies the conditional part, expressed as a
conjunction of attribute–value pairs. The rules do not discrim-
inate between the super- and subclasses of the ontology, while
retaining as much detail about the predictions without losing
precision.

Gastric tumor classification in microarray data is made using
rough set-based learning [121], implemented with ROSETTA in-
volving GAs and dynamic reducts [136]. The fitness function
incorporates measures involving the classification performance
(discernibility) along with the size of the reduct. Thereby prece-
dence is provided to solutions having less number of attributes.
A major problem with microarray data being the smaller num-
ber of objects with a comparatively larger number of attributes,
a preprocessing stage of feature selection based on bootstrap-
ping is made. The dataset consists of 2504 human genes corre-
sponding to the conditional attributes, while the 17 tumor types
are clubbed as six different clinical parameters or the decision
attributes.

2) Clustering: In the rough c-means clustering algorithm,
the concept of c-means is extended by viewing each cluster as
an interval or rough set [137]. A rough set Y is characterized by

its lower and upper approximations BY and B̄Y , respectively.
This permits overlaps between clusters. Here, an object Xk can
be part of at most one lower approximation. If Xk ∈ BY of
cluster Y , then simultaneously Xk ∈ B̄Y . If Xk is not a part of
any lower approximation, then it belongs to two or more upper
approximations.

An evolutionary rough c-means clustering algorithm has been
applied to microarray gene expression data [109]. RSes are used
to model the clusters in terms of upper and lower approxima-
tions. GAs are used to tune the threshold, and relative importance
of upper and lower approximation parameters of the sets. The
Davies–Bouldin clustering validity index [97] is used as the fit-
ness function of the GA, which is minimized while arriving at an
optimal partitioning. It was found that the algorithm performed
particularly well over the colon cancer gene expression data,
involving a collection of 62 measurements from colon biopsy
samples with 2000 genes (features).

3) Feature Selection: An evolutionary rough feature selec-
tion algorithm [127] has been used for classifying microarray
gene expression patterns. Since the data typically consist of a
large number of redundant features, an initial redundancy reduc-
tion of the attributes is done to enable faster convergence. There-
after rough set theory is employed to generate reducts, which
represent the minimal sets of nonredundant features capable of
discerning between all objects, in a multiobjective framework.
The effectiveness of the algorithm is demonstrated on three
cancer datasets, viz., colon, lymphoma, and leukemia.

While Chu et al. [113] generated a five-genes set for 100%
correct classification on the lymphoma data in the NF frame-
work, Banerjee et al. [127] obtained a misclassification for just
two samples from the test data using a two-genes set. In case
of the leukemia data, a two-genes set is selected, whereas the
colon data results in an eight-genes reduct size.

F. SVMs

SVMs are particularly suited to handling large feature spaces
and identifying outliers. This characteristic makes them capable
of efficiently modeling high-dimensional microarray data. Use
of SVMs has been reported [118] for functionally classifying
gene expression data from budding yeast.

Classification of the SRBCT dataset was performed with
SVM [119], providing 100% accuracy for a selection of 20
important genes. Extraction of three principal components also
resulted in similar classification performance. Use of RBF ker-
nels in SVM [123] resulted in 100% training and testing ac-
curacy with a reduced set of important genes (7 for SRBCT, 5
for Lymphoma, 20 for Leukemia). Some other applications of
SVMs include [116], and [117].

Cao et al. [124] apply saliency analysis to SVMs for gene
selection in tissue classification. The importance of genes is
ranked by evaluating the sensitivity of the output to the inputs,
in terms of the partial derivative. The recursive saliency analysis
(RSA) algorithm is developed to remove irrelevant genes in case
of the leukemia and colon data.

Recursive feature elimination (RFE) [125] selects a set of
genes by continuously eliminating those that make a relatively
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small contribution to classification, as measured by the accuracy
of the SVM on the whole gene set. This is a greedy, wrapper fea-
ture selection approach that iteratively trains new SVMs while
eliminating genes with the smallest weights from the set. A four-
genes set, with perfect accuracy, is selected over the leukemia
data. This multivariate approach is, however, sensitive to the
presence of irrelevant genes as well as outliers.

In order to overcome this problem, a hybrid of univariate
(maximum likelihood) and multivariate feature selection (RFE)
has been designed [126] to generate a good selection of fewer
genes providing a high prediction accuracy. While a univariate
approach considers the contribution of each gene (or feature)
in isolation from the others, a multivariate approach focuses
on the selection of a fewer genes on the whole. At first the
maximum likelihood method identifies and removes genes that
are expected to have low discrimination ability. This is followed
by the application of RFE to further reduce the size of the
feature set. Authors claim a resultant significant gain in run
time. Applications of this integrated approach are reported on the
leukemia and SRBCT datasets. Perfect accuracy was obtained
with a three-genes set for leukemia, while a set of 15 genes were
found to be sufficient to differentiate the samples of SRBCT.

VI. GENE REGULATORY NETWORK

Understanding of regulatory networks is crucial to the under-
standing of fundamental cellular processes involving growth,
development, hormone secretion, and cellular communication.
Determination of transcriptional factors that control gene ex-
pression can offer further insight into the misregulated expres-
sions common in many human diseases.

In this section, we outline some of the recent literature on the
use of ANNs and SVMs in the area of gene regulatory networks.

A. ANNs and Hybridizations

Recurrent neural network has been used to model the dynam-
ics of gene expression [138]. The significance of the regulatory
effect of one gene product on the expression of other genes of
the system is defined by a weight matrix. Multigenic regulation,
involving positive and/or negative feedback, is considered. The
process of gene expression is described by a single network,
along with a pair of linked networks independently modeling
the transcription and translation schemes.

Adaptive double self-organizing map (ADSOM) [139] pro-
vides a clustering strategy for identifying gene regulatory net-
works. It has a flexible topology and allows simultaneous visual-
ization of clusters. DSOM combines features of SOM with 2-D
position vectors, to provide a visualization tool for deciding on
the required number of clusters. However, its free parameters
are difficult to control to guarantee proper convergence. AD-
SOM updates these free parameters during training, and allows
convergence of its position vectors to a fairly consistent number
of clusters (provided its initial number of nodes is greater than
the expected number of clusters). The effectiveness of ADSOM
in identifying the number of clusters is proven by applying it to
publicly available gene expression data from multiple biological
systems such as yeast, human, and mouse.

Ritchie et al. [140] optimized the backpropagation neural
network architecture, using GP, in order to improve upon the
ability of ANNs to model, identify, characterize, and detect
nonlinear gene–gene interactions in studies of common human
diseases. The performance is reported to be superior in terms
of predictive ability and power to detect gene–gene interactions
when nonfunctional polymorphisms are present.

Bayesian networks with Bayesian learning were employed
[141], in a reverse engineering approach, to infer gene regula-
tory interactions from simulated gene expression data. Use of
GAs for reconstructing genetic networks has been reported in
literature [142], [143]. Typically the GA searches for the most
likely genetic networks that best fit the data, considering the set
of genes to be included in the network along with the strength
of their interactions.

Identification of protein–DNA interactions in the promoter
region, in terms of DNA motifs that characterize the regulatory
factors operating in the transcription of a gene, is important
for recognizing genes that participate in a regulation process.
This enables determination of their interconnection in a gene
regulatory network. A hybrid methodology for this purpose has
been developed [144] by combining ANN, fuzzy sets, and mul-
tiobjective GAs. A time-delayed neural network (TDNN) learns
compound binding site motifs from nonspecific DNA sequences
by decomposing it into modules corresponding to submotifs.
The MCC of (4) is used to discriminate between promoters and
nonpromoters. The system can handle multiplicity of RNA poly-
merase targets and multiple functional binding sites in closely
located regulatory regions, along with the associated uncertainty
of the motifs.

B. SVMs

Regulatory network is predicted by SVMs [145] for the bud-
ding yeast genome by mining the gene expression data from
different physiological conditions. The relationship between
the expression time-course of a transcription factor (TF) and
its target factor not being a simple correlation, SVMs are found
to fare better than conventional hierarchical clustering. SVMs
are trained using both positive and negative examples from the
dataset. A negative example is a gene pair that definitely has
no regulatory relationship. The training set consists of a pair of
genes, with the first being the known TF (R) and the second be-
ing the target gene (T ) that is potentially regulated by R. After
training, the system determines the probabilities of each R ⇒ T
pairing in order to construct parts of a regulatory network. The
dataset consists of 209 TFs× 6128 genes, resulting in mining
among 1 280 752 combinations to determine which of these
pairs represent a true regulatory relationship. The accuracy of
the prediction is reported to be 93%, involving both positive and
negative examples.

VII. CONCLUSION AND DISCUSSION

Bioinformatics is a new area of science where a combination
of statistics, molecular biology, and computational methods is
used for analyzing and processing biological information like
gene, DNA, RNA, and proteins. Improper folding of protein
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structure is responsible for causing many diseases. Therefore,
accurate structure prediction of proteins is a major goal of study.
With the availability of huge volume of high-dimensional data,
there exists a lot of possibilities for the emergent field of bi-
ological data mining. Hybrid approaches, combining powerful
algorithms and interactive visualization tools with the strengths
of fast processors, hold promise for enhanced performance in
the near future.

Soft computing paradigms, like fuzzy sets, ANNs, GAs,
RSes, and SVMs, have been used for analyzing the different
protein sequences, structures and folds, microarrays, as well as
regulatory networks. Since soft computing permits approximate,
good solutions, instead of the high-precision, globally optimum
solution, it allows one to arrive at a low-cost goal faster.

We have provided, in this paper, a detailed review on the role
of soft computing techniques in different aspects of bioinformat-
ics, mainly involving data-mining tasks. It is categorized based
on the domain of operation, the function modeled, and the tool
used. The major tasks covered include classification, clustering,
feature selection, and rule mining. Gene regulatory networks, a
relatively new area of study, have also been surveyed.

The characteristics of adaptivity and learning help ANNs
to minimize error and self-organize in data-rich environments.
The low-precision, approximate reasoning of fuzzy sets allows
faster convergence. Different types of hybridizations incorpo-
rate the generic and application-specific merits of the constituent
paradigms. Exhaustive enumeration and evaluation of all gene
combinations being NP-hard, the GAs use intelligent, goal-
directed search while optimizing a fitness function determined
by the knowledge about the environment. RSes allow dimen-
sionality reduction for high-dimensional data, and are found
suitable in mining microarray gene expressions.

Knowledge about the domain is often found to be useful in
improving performance of a system. For example, the incor-
poration of the alignment profile generated by Psi-BLAST is
found to be advantageous in protein secondary structure deter-
mination by both ANNs and SVMs. This is evident from the
comparative study projected in Table III. Similarly, the use of
prior knowledge about the secondary structure at the input en-
hances the performance for tertiary structure determination. The
role of soft computing in exploring protein sequence and struc-
ture data has been summarized in Tables I and II. An overview
of soft computing applications to microarray analysis has been
provided in Tables IV and V.

Metabolism is the chemical engine that drives a living pro-
cess. By means of utilization of a vast repertoire of enzymatic
reactions and transport processes, organisms process and con-
vert thousands of organic compounds into various biomolecules
necessary to support their existence. The cells as well as the
organisms direct the distribution and processing of metabolites
throughout an extensive map of pathways. While we seek to
develop strategies to effectively eliminate metabolic pathways
due to microorganisms through antibiotics in order to curb bac-
terial infection, we also strive to enhance the performance of
certain other pathways or introduce novel routes for the pro-
duction of biochemicals of commercial interest. The domain
of metabolic pathways and gene regulatory networks open up

significant challenges for research involving application of soft
computing techniques.
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[101] C. S. Möller-Levet, F. Klawonn, K. H. Cho, H. Yin, and O. Wolken-
hauer, “Clustering of unevenly sampled gene expression time-series
data,” Fuzzy Sets Syst., vol. 152, pp. 49–66, 2005.

[102] K. Torkkola, R. M. Gardner, T. Kaysser-Kranich, and C. Ma, “Self-
organizing maps in mining gene expression data,” Inf. Sci., vol. 139,
pp. 79–96, 2001.

[103] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Smitrovsky,
E. S. Lander, and T. R. Golub, “Interpreting patterns of gene expression
with self-organizing maps: Methods and applications to hematopoietic
differentiation,” Proc. Nat. Acad. Sci. USA, vol. 96, pp. 2907–2912, 1999.

[104] P. Törönen, M. Kolehmainen, G. Wong, and E. Castrén, “Analysis of
gene expression data using self-organizing maps,” FEBS Lett., vol. 451,
pp. 142–146, 1999.

[105] M. Sultan, D. A. Wigle, C. A. Cumbaa, M. Maziarz, J. Glasgow,
M. S. Tsao, and I. Jurisica, “Binary tree-structured vector quantization
approach to clustering and visualizing microarray data,” Bioinformatics,
vol. 18, Suppl. 1, pp. S111–S119, 2002.

[106] J. Herrero, A. Valencia, and J. Dopazo, “A hierarchical unsupervised
growing neural network for clustering gene expression patterns,” Bioin-
formatics, vol. 17, pp. 126–136, 2001.

[107] S. Tomida, T. Hanai, H. Honda, and T. Kobayashi, “Analysis of ex-
pression profile using fuzzy adaptive resonance theory,” Bioinformatics,
vol. 18, pp. 1073–1083, 2002.

[108] A. V. Lukashin and R. Fuchs, “Analysis of temporal gene expression
profiles: Clustering by simulated annealing and determining the optimal
number of clusters,” Bioinformatics, vol. 17, pp. 405–414, 2001.

[109] S. Mitra, “An evolutionary rough partitive clustering,” Pattern Recognit.
Lett., vol. 25, pp. 1439–1449, 2004.

[110] S. B. Cho and J. Ryu, “Classifying gene expression data of cancer us-
ing classifier ensemble with mutually exclusive features,” Proc. IEEE,
vol. 90, no. 11, pp. 1744–1753, Nov. 2002.
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