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1. Introduction

One of the most important concepts of political science is power. While power is

a multi-faceted phenomenon, in this paper we will deal with the power of an agent in a

collective decision making procedure modeled as a voting game. That is, we are

concerned with the power of a member of a voting body or board that makes yes-or-no

decision about a proposed resolution (or bill) by votes according to some unambiguous

criterion. An index of power of a member of a body, a voter, is a numerical measure of

the voter’s influence to bring about the passage or defeat of a proposed resolution. It

should be based on the voter’s importance in casting the deciding vote.

The most well known indices of voting power are the Shapley-Shubik (1954) and

Banzhaf (1965) indices. Essential to the construction of the former index is the concept of

swing or pivotal voter. Given an ordering of voters, the swing voter for this ordering is

the person whose deletion from the coalition of voters of which he is the last member in

the given order, transforms this contracting coalition from a winning to a losing one. (A

coalition of voters is called winning if passage of a resolution is guaranteed by ‘yea’

votes from exactly the voters in that coalition. Coalitions that are not winning are called

losing.) The Shapley-Shubik index for voter i  is the fraction of orderings in which i  is

the swing voter. Strictly speaking, this index is an application of the well-known Shapley

value (Shapley, 1953) to a voting game, which is a formulation of a voting system in a

coalitional form game. The Banzhaf power index of a voter is based on the number of

coalitions in which the voter is pivotal. More precisely, it depends on the number of

possibilities in which a voter is in the critical position of being able to change the voting

outcome by changing his vote.

Alternatives and variations of the Shapley-Shubik and Banzhaf indices were

suggested, among others, by Deegan and Packel (1978), Johnston (1978) and Holler

(1982). Johnston argued that the Banzhaf index, which is based on the idea of a critical

defection of a voter from a winning coalition, does not take into account the total number

of voters whose defections from a given coalition are critical. Clearly, if a voter is the

only person whose defection from a coalition is critical, then this gives a stronger

indication of power than in the case where all person’s defections are critical. This is the
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central idea underlying the Johnston index. According to Deegan and Packel (1978) only

minimal winning coalitions should be considered in determining the power of a voter. (A

coalition is called minimal winning if none of its proper subset is winning.) They

suggested an index under the assumptions that all minimal winning coalitions are

equiprobable and any two voters belonging to the same minimal winning coalition should

enjoy the same power. The Holler index is given by the number of minimal winning

coalitions containing the voter divided by the sum of such numbers across all voters.

 Coleman (1971) pointed out the notion of voting power quantified by the

Shapley-Shubik index is not the power to affect the outcome of voting body in the usual

sense, that is, whether a resolution is passed or blocked. Rather, it is the power of the

voter to appropriate a share in the fixed prize of victory, available only to the winning

camp. For the sake of convenience, the size of the prize is assumed to be 1 unit, so that

the sum of the indices across voters is always 1. The indices suggested by Deegan and

Packel (1978), Johnston (1978) and Holler (1982) also reflect this notion of power (see

Felsenthal and Machover, 1998, chapter 6).

Coleman (1971) also suggested two indices of voting power. His first index, the

power of voter i  to prevent action, is given by the number of coalitions in which voter i

is swing divided by the number of winning coalitions in the game. The idea is that given

that the voting body makes a positive decision, it determines the conditional probability

that voter i  will be able to prevent the decision by changing side. Coleman’s second

index, the power of voter i to initiate act, is defined as the number of coalitions in which

voter i  is swing divided by the total number of losing coalitions in the game. Brams and

Affuso (1976) pointed out that these two indices are proportional to the Banzhaf index

and to each other. Dubey and Shapley (1979) showed that the harmonic mean of these

two indices becomes the Banzhaf index. Felsenthal and Machover (1998) demonstrated

by constructing examples that in going from one voting game to another, while the

Banzhaf index of a voter may reduce slightly, his loss of power to initiate action may be

very considerable. In contrast, he may gain a lot of power to prevent action. Thus, these

two indices ‘can give you information that you cannot get by looking at β ′ (the Banzhaf

index) alone’ (Felsenthal and Machover, 1998, p.51). However, these indices have not

been discussed much in the literature. Therefore, studying relationship between them in
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different types of voting games and demonstrating their properties rigorously will be a

worthwhile exercise.

Felsenthal and Machover (1998) proposed three postulates, namely, the transfers

principle, the bloc principle and the dominance principle as the major desiderata for an

index of power. The transfers principle requires that the power of voter j  should not

increase if he donates a part of his voting right to another voter i . According to the bloc

principle, under a voluntary merger between two voters a  and b , where b  is capable of

affecting the voting outcome, the power of the merged entity will be at least as large as

that of a . The dominance principle demands that if voter j’s contribution to the victory of

a resolution can be equaled or bettered by another voter i , then i  should not possess

lower power than j 1.

 The objective of this paper is to examine the two Coleman indices in the light of

different postulates suggested by Felsenthal and Machover (1998). It is shown rigorously

that these indices satisfy the three principles. We also establish a formal relation between

these two indices. We then show that an attainable upper bound of the power of a voter to

prevent act, namely, the number of winning coalitions in which the voter is swing divided

by the total number of winning coalitions containing the voter, can also be regarded as a

suitable index of power in the sense that it satisfies the transfers, bloc and dominance

principles. We refer to this upper bound as the transformed preventive index.

This paper is arranged in several sections. Section 2 deals with the background

material. In section 3 we discuss the postulates that an index of voting power should

satisfy.  In section 4 we discuss the properties of the Coleman indices. The transformed

preventive index has also been proposed in this section. Finally, section 5 concludes.

2. The Background

It is possible to model a voting situation as a coalitional form game, the hallmark

of which is that any subgroup of players can make contractual agreements among its

members independently of the remaining players.  Let },...,2,1{ nN =  be a set of

players.  The power set of N , that is, the collection of all subsets of N , is denoted by
N2 .  Any member of N2  is called a coalition.  A coalitional form game with the player
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set N  is a pair ),;( VN where +→ RV N2:  such that 0)( =φV , where +R  is the

nonnegative part of the real line.  For any coalition S , the real number )(SV  is the worth

of the coalition, that is, this is the amount that S  can guarantee to its members.  For any

set ,S  S  will denote the number of elements of S .

We frame a voting system as a coalitional form game by assigning the value 1 to

any coalition which can pass a bill and 0 to any coalition which cannot. In this context, a

player is a voter and the set },...,2,1{ nN =  is called the set of voters. Throughout the

paper we assume that voters are not allowed to abstain from voting.  A coalition S  will

be called winning or losing depending on whether it can or cannot pass a resolution.

Definition 1: Given a set of voters N , a voting game associated with N  is a pair

);( VN , where }1,0{2: →NV satisfies the following conditions:

(i) 0)( =φV .

(ii) 1)( =NV .

(iii) If NTSTS 2,, ∈⊂ , then ).()( TVSV ≤

The above definition formalizes the idea of a decision-making committee in

which decisions are made by vote.  It follows that the empty coalition φ  is losing

(condition (i)) and the grand coalition N  is winning (condition (ii)).  All other coalitions

are either winning or losing.  Condition (iii) can be regarded as a monotonicity principle.

It ensures that if a coalition S  can pass a bill, then any superset T  of S  can pass it as

well. A voting game );( VNG =  is called proper if 1)()( == TVSV  implies that

S φ≠∩T . According to this condition two winning coalitions cannot be disjoint. On the

other hand a voting game is called improper if there exists at least two winning coalitions

which are disjoint. The collection of all voting games is denoted by F.  For any

) ;( VNG = , we write GW  ( )GL  for the set of all winning (losing) coalitions associated

with G .  Thus, for any )0(1)(  , =⊆ SVNS  is equivalent to the condition that

( )GGS LW∈ .  For any game ) ;( VNG =  and for any voter Ni∈ , let i
GW  be the set of

all winning coalitions that contain i .
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Definition 2: A voting game ) ;( VNG =  with the voter set N , is called decisive if for

all NS 2∈ , 1)()( =−+ SNVSV .

Definition 3: Given a set of voters N , let ) ;( VN  be a voting game.

(i) For any coalition NS 2∈ , we say that Ni∈  is swing in S  if 1)( =SV  but

0}){( =− iSV .

(ii) For any coalition NS 2∈ , Ni∈  is said to be swing outside S  if 0)( =SV  but

1}){( =∪ iSV .

(iii) A coalition NS 2∈ , is said to be minimal winning if 1)( =SV  but there does not

exist ST ⊂  such that 1)( =TV .

Thus, voter i  is swing, also called pivotal or key, in the winning coalition S  if

his deletion from S  makes the resulting coalition }{iS −  losing.  Similarly, voter i  is

swing outside the losing coalition S  if his addition to S  makes the resulting coalition

}{iS ∪  winning.  For any voter i , the number of winning coalitions in which he is

swing is same as the number of losing coalitions outside which he is swing (Burgin and

Shapley, 2001, Corollary 4.1).  For any game ∈= ) ;( VNG F and Ni∈ , we write

)(Gmi  to denote this common number. Equivalently, )(Gmi  is the number of

coalitions for which voter i  is swing in G .  It is often said that )(Gmi  is the number of

swings of voter i .

Definition 4: For a set of voters N , let ) ;( VN  be a voting game.  A voter Ni∈  is called

a dummy in ) ;( VN  if he is never swing in the game.  A voter Ni∈  is called a non-

dummy in );( VN  if he is not dummy in ) ;( VN .

Following Felsenthal and Machover (1998), we have

Definition 5: For a voting game ) ;( VN  with the set of voters N , a voter Ni∈  is called

a dictator if }{i  is the sole minimal winning coalition of the game.
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A dictator in a game is unique. If a game has a dictator, then he is the only swing voter in

the game.

Definition 6: Let ) ;( VNG =  be a voting game.

(i) A coalition S  in G  is a blocking coalition if its complement is losing, that is,
NS 2∈  is blocking if GSN L∈− .

(ii) A voter Ni∈  is called a blocker in G  if }{i  is blocking coalition.

A blocker can prevent any decision by leaving a winning coalition.  We can characterize

a blocker as a voter who belongs to every minimal winning coalition.  A dictator in a

game is the unique blocker in the game.  However, a game may have several blockers.  A

game with two or more blockers does not have a dictator.  In a decisive game winning

and blocking are equivalent conditions.

A very important voting game is a weighted majority game.

Definition 7: For a set of voters } ..., ,2 ,1{ nN = , a weighted majority game is a

quadruplet ) ; ; ;( qVNG w= , where ),...,,( 21 nwww=w  is the vector of nonnegative

weights of the n = N  voters in ,N  q  is a nonnegative real number quota such that

∑
=

≤
n

i
iwq

1
 and for any NS 2∈ ,

                      1)( =SV    if  ∑
∈

≥
Si

i qw

                               = 0 otherwise.

That is, the thi  voter casts iw  votes and q  is the quota of votes needed to pass a bill.

Note that a weighted majority game satisfies condition (i) - (iii) of definition 1. A

weighted majority game );;;( qVNG w= will be proper if qw
n

i
i 2

1

<∑
=

. For an improper

game we have qw
n

i
i 2

1
≥∑

=

.
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Definition 8: Given a non-empty set X , a −t partition of X  is a collection of coalitions

( )tXXX ,....,, 21=X , where

1. XXXX t ⊆,...,, 21

2. φ=∩ ji XX , tji ,...,2,1, = ; ji ≠

3. XXXX t =∪∪∪ ...21 .

When 2=t , we say that the set X  has been bipartitioned.

Definition 9: Given ( ) F∈= VNG ; , a yes-no bipartition B  is a map from N  to

{ }1,1− . A player is assigned the value 1 if he votes ‘yes’ and –1 if he votes ‘no’. The

‘yes’ voting camp is referred to as +B , and the ‘no’ voting camp is denoted by −B .

Definition 10: Given ( ) F∈= VNG ; , a voter Ni∈  is said to agree with the outcome

of a yes-no bipartition B  in the game G , if either of the following two conditions hold:

1. ( ) 1=iB  and GB W∈+ .

2. ( ) 1−=iB  and GB W∉+ .

The statement that i  agrees with the outcome of a bipartition means that the decision

goes i ’s way: i  votes ‘yes’ and the bill is passed or i  votes ‘no’ and the bill is rejected.

Definition 11: Given ( ) F∈= VNG ; , we say that Nj∈  dominates Ni∈  if

whenever S  is a coalition such that Sj∉  and {} GiS W∈∪ , then { } GjS W∈∪ .

3. Properties for an Index of Voting Power

Following Felsenthal and Machover (1995, 1998), we argue that an index of power

+→ RHi F: , which gives us an idea of the influence of a voter i  over the outcome of

the voting procedure, should satisfy the following postulates:
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1. Vanishing Just For Dummies (VJD): For any 0)(  ,) ;( =∈= GHVNG iF  if and

only if Ni∈  is a dummy.

2. Iso-invariance (INV): Let ) ;( VNG =  and F∈′= ) ;( '' VNG  be two isomorphic

games, that is, there exists a bijection h  of N  onto 'N  such that for all

1)(  , =⊆ SVNS  if and only if 1))(( =ShV , where }: )({)( SxxhSh ∈= .  Then

)()( GHGH ii ′= .

3. Ignoring Dummies (IGD): For any F∈= )  ;( VNG  and for any dummy Nd ∈ ,

)()( dii GHGH −=  for all i ∈ { }dN − , where dG−  is the game obtained from G

by excluding d . Similarly, )()( dii GHGH += , where dG+  is the game obtained

from G  by including Nd ∉  as a dummy.

4. Dominance (DOM): For any F∈= )  ;( VNG  if j  dominates i , then

)()( GHGH ij ≥ .

5.  Transfers Principle (TRP): Let G  and G′  be two voting games with the same

voter set N  and let i  and j  be   two distinct voters such that the following three

conditions hold:

T1. Whenever i  and j are on the same side of a yes-no bipartition B ,  the outcome

of B  is identical in G  and G′ .

T2. Whenever i  and j  are on opposite sides of a yes-no bipartition B  and i  agrees

with the outcome of B  in G  then i also agrees with the outcome of B  in G′ .
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T3. There exists at least one yes-no bipartition B  such that i  agrees with the

outcome of B  in G′  but not in G .

Then we shall say that G′arises from G  by a transfer from j  to i .

We say that an index H  satisfies the transfer postulate, if whenever the above

conditions hold, ( ) ( )GHGH ii ≥′ . Likewise, ( ) ( )GHGH jj ≤′ .

6. Bloc Postulate (BOP): Given );( VNG = , assume that the voters Nji ∈,  are

amalgamated into one voter ij . Then the post-merger voting game is =′G );( VN ′′ ,

where { } { }ijjiNN ∪−=′ , , and )()( SVSV =′  if { }ijNS −′⊆  and

{ } { }),(()( jiijSVSV ∪−=′  if Sij∈ . The bloc postulate requires that for any

voter { }jik ,∈ , )(GHij ′ ≥ )(GH k  provided that { } { }kjil −∈ ,  is non-dummy.

By definition, a power index is always nonnegative. VJD shows that the necessary

and sufficient condition that the power index attains its lower bound, zero, is that the

concerned voter is a dummy. If a voter is a dummy, then he has no influence over the

final outcome of the voting procedure. In no situation can he change the outcome by

changing his vote. Since the essence of power of a voter lies in his capability of being a

pivotal voter, a voter’s power should be minimal (zero) if he is a dummy (see also Dubey,

1975, Dubey and Shapley, 1979, Taylor, 1995 and Burgin and Shapley, 2001). A similar

argument applies from the reverse direction.

INV is an anonymity condition. It says that any reordering of the voters does not

change the power enjoyed by a voter. Influence of a voter over the outcome does not

depend on the irrelevant characteristics of the voter, like his name or place of residence

etc. Even if those characteristics change (e.g. he swaps his place of residence with

another voter), his influence remains unaltered.

Since a dummy can never affect the outcome of voting it is natural to expect that

if a dummy is excluded from a voting game, the powers of the remaining voters remain

unaltered. Likewise, inclusion of a dummy in the game will not change the powers of the

existing voters. This is essentially what IGD says.
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According to DOM, if j  dominates i  then any contribution that i  can make to

the victory of a coalition should not be higher than that of j . A special case of this is a

monotonicity principle, which demands that in a weighted majority game, a voter with a

larger voting weight cannot have less power than a voter with a smaller weight.

TRP demands that power of voter j  should not increase under a transfer of a part

of his voting right to another voter i . Likewise the power of voter i  should not reduce

under the transfer. In the case of weighted majority games TRP means that voter j

cannot gain power by distributing some of his voting weight to another voter i .

Similarly, voting power of i  cannot reduce when he receives some voting weight from

another voter j .

BOP can be interpreted as follows. When a voter k  acquires the voting power of a

nondummy voter l , then voting power of the bloc consisting of these two voters should

not be lower than that of k . In other words, k  is not losing power by swallowing the

power of a nondummy voter l . This is quite reasonable intuitively. A person will not join

a bloc if the voting right of the bloc is lower than his own voting right.

Note that TRP is formulated in terms of power of either the donor or the recipient

of the voting right. We can also have a relative version of TRP, which involves powers

of both j and i , the donor and the recipient of the voting right.

Relative Transfers Principle (RTP): Let G  and G′  be the games as given in TRP.

Then

                                 
)(
)(

)(
)(

GH
GH

GH
GH

i

j

i

j ≤
′
′

,

 where 'iH s are assumed to be positive.

Clearly, TRP implies RTP. But the converse is not true. For instance, the normalized

Banzhaf index 

∑
=

N

j
j

i

m

m

1

 satisfies RTP but not TRP.

We can also formulate a relative version of IGD.
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Relative Dummy Ignoring Principle (RDP): Let G  and dG−  be the games as given in

IGD. Then  for any { }dNji −∈, , 
)(
)(

)(
)(

GH
GH

GH
GH

j

i

dj

di =
−

− ,

where 'jH s are assumed to be positive.

RDP says that the power of voter i  relative to another voter j  remains unaltered if a

dummy is excluded from the game. Obviously, we can analogously formulate a relative

dummy inclusion principle. Clearly, all indices that satisfy IGD will satisfy RDP but the

converse is not true. For instance, the index )(Gmi  satisfies RDP but not IGD.

4. The Coleman Indices

 The power of an individual member of a voting body, when power is interpreted

as ‘influence’ over the outcome of the voting procedure, can be exercised in two ways:

the member can initiate an action or can stall an action from being taken. The difference

between these two becomes obvious if one considers the case of a ‘vetoer’ or a bloc

voter. By the definition of a bloc voter, his ‘yes’ vote is necessary but not sufficient to

obtain the passage of a bill. So while the blocker can stall the passage of a bill by

individual action (without reference to how others vote), he cannot pass a bill by

individual action. For this he needs to consider how others vote.

To capture these two aspects of power, Coleman (1971) suggested two different

power indices for individual voters, namely, preventive power index and initiative power

index, which give us a measure of an individual’s power to prevent action and to initiate

action respectively.

 Preventive Index

The Coleman preventive power index for voter i  is defined as the number of

winning coalitions in which i  is decisive, divided by the total number of winning

coalitions in the game. Formally, in a game G , where )(Gmi  is the number of winning

coalitions in which i  is critical, voter i ’s power to bloc action is calculated as
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( ) { }( )[ ]

∑

∑

⊆

∈
⊆

−

=

NS

Si
NS

i SV

iSVSV

GP
)(

\

)(  = 
G

i Gm
W

)(
.                    (1)

The index can be interpreted as voter i ‘s probability to bloc a bill. GW  is the number of

possible situations which lead to the bill being passed. Since voter i ‘s ‘yes’ vote is

pivotal in im  of these situations, given that other voters do not change their vote, i  can

bloc the bill by changing his vote to ‘no’ only in these situations. So the probability that

voter i  can bloc a bill is 
G

i Gm
W

)(
. More clearly, ( )GPi  gives voter i ’s probability of

being decisive (or swing), conditional to the proposal being accepted if it is assumed that

all coalitions are equiprobable, that is, the voters make yes-no decision with probability

2
1

 for each and all the voters vote independently (Laruelle and Valenciano, 2002a).

Initiative Index

The Coleman initiative power index for voter i  is defined as the number of losing

coalitions outside which i  is critical divided by the number of losing coalitions in the

game. Formally, voter i ’s power to initiate action is calculated as

{}( ) ( )[ ]

∑

∑

⊆

∉
⊆

−

−∪

=

NS

Si
NS

i SV

SViSV

GI
)](1[

)(  = 
G

i Gm
L

)(
 = 

G
N

i Gm
W−2
)(

.                 (2)

The index can be interpreted as voter i ’s probability to initiate action. While in

Coleman’s preventive power index, swings of a voter i  are regarded as measuring his

ability to destroy a winning coalition, in Coleman’s initiative power index, swings are

thought of as measuring a voter’s ability to turn an otherwise losing coalition into a

wining one. Laruelle and Valenciano (2002a) provided an interpretation of this index in

terms of voter i ’s being decisive conditional to the proposal being rejected.
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Dubey and Shapley (1979) showed that the non-normalized Banzhaf index

12 −
=′

N
i

i
m

β , which is a measure of power of voter i , is the harmonic mean of these two

indices. More precisely,









+=

′ iii IP
11

2
11

β
.

Having defined both the preventive and initiative power indices, we are now in a

position to compare their relative strengths for an individual voter. We know that a voting

game G  satisfying the conditions in definition 1 can either be proper or improper. The

following theorem compares iI  and iP  for proper games.

Theorem 1: If ( )VNG ;=  is a proper game, then an individual’s power to initiate

action iI  is always less than or equal to the power to prevent action iP .

Proof: Since the number of all possible coalitions of the set of players in a game

( )VNG ;=  is N2 ,

N
GG 2=+ LW .                                      (3)

Since the game is proper, we must have 12 −≤ N
GW  (see Burgin and Shapley,

2001 and Barua, Chakravarty and Roy, 2003). It therefore follows from (3) that

GG LW ≤ .

Or, 
GG WL

11
≤ .

This implies that 
G

i

G

i GmGm
WL

)()(
≤ .

Hence iI ≤ iP . �

The demonstration of the relationship between iI  and iP  for improper games

relies on lemma 2, whose proof requires lemma 1.
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Lemma 1: Let );;;( qVNG w=  be an improper weighted majority game. Then there

cannot exist any bipartition of the set of players N , such that both the coalitions are

losing.

Proof: We prove this result by contradiction.

Suppose a bipartition of N  exists such that both the coalitions are losing. Let ( )21 , NN

be such a bipartition. Then NNN =∪ 21  and φ=∩ 21 NN . Since 1N  and 2N  are both

losing coalitions, we have the following set of inequalities:

qw
Ni

i <∑
∈ 1

and qw
Ni

i <∑
∈ 2

.

Adding both sides we get qww
Ni

i
Ni

i 2
21

<+ ∑∑
∈∈

.

Or, qw
Ni

i 2<∑
∈

.

Or, qw
N

i
i 2

1
<∑

=

.

This contradicts the improperness of );;;( qVNG w= . Hence the proof of lemma 1. �

Lemma 1 underlines an important distinction between proper and weighted

improper games. While in proper games, there can be no bipartition of the set of players

such that both the coalitions are winning, in weighted improper games, we can have no

bipartition of the player set such that both the coalitions are losing.

 We are now ready to prove lemma 2.

Lemma 2: Let );;;( qVNG w=  be a weighted majority game. Then  G  is improper

if and only if GG WL < .

Proof: Suppose G  is improper. By lemma 1, if GS L∈ , then GSN W∈− . Then

SNS −→  defines a one to one map from GL  into GW .  Hence GG WL ≤ . Now,

since G  is improper, NS ⊆∃ *  such that both *S  and *SN −  are in GW . Hence, *S

is not the image of any coalition GS L∈  under this map. Hence GG WL < .
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Conversely, suppose that GG WL < . Let the game G  be a proper game. Then

we cannot obtain any bipartition of the player set such that both the coalitions are

winning. So, if a coalition GS W∈ , then GSN L∈− . Thus, with every coalition S  in

GW , we can associate a unique element SN −  in GL . Therefore, GG LW ≤ . This is

a contradiction. Therefore, G  is an improper game.

Hence the proof of lemma 2. �

The following result drops out as an interesting corollary to lemma 2.

Corollary 1: A weighted majority game G  is proper if and only if GG LW ≤ .

We can now compare iI  and iP  for improper games.

Theorem 2: Let ( )VNG ;=  be an improper game.

(i) Then if G  can be represented as a weighted majority game, we have
12 −> N

GW . Consequently, a non-dummy individual’s power to initiate

action iI  is always greater than the power to prevent action iP .

(ii) However, if G  is not representable by a weighted majority game, then iI

need not be greater than iP .

Proof:

(i) We know that N
GG 2=+ LW . By lemma 2 for an improper weighted majority

game, GG WL < . Hence, we can say that 12 −> N
GW . It then follows that

G

i

G

i GmGm
WL

)()(
> , if i  is non-dummy.

Therefore, ii PI > .
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(ii) To show this part of the theorem we consider the following example.

},,,{ dcbaN =  and { } { } { } { } { } { } { }},,,,,,,,,,,,,,,,,,,{ dcbadcbdcadbacbadcbaG =W .

Clearly, it is an improper game. Suppose that the game is a weighted majority game.

Hence by lemma 2, GG WL < . But in this game 827 14 =<= −
GW , GG WL >= 9

=7, which contradicts the preceding inequality . Therefore, the game is not representable

as a weighted majority game.  Thus ii PI <  ( )dcbai ,,,= .

Hence the proof of theorem 2.  �        

We are now in a position to study the Coleman indices in the light of the

properties discussed in section 3.

Theorem 3 below discusses the preventive power index iP , defined in (1), in

terms of the postulates laid down by Felsenthal and Machover (1995, 1998).

Theorem 3:

(a) The Coleman index of the power to prevent act, iP , satisfies VJD, INV, IGD,

DOM, TRP and BOP for all voting games.

(b) The index iP  achieves its upper bound of 1 if and only if voter i  is a bloc voter.

(c) If ( ) F∈= VNG ˆ,ˆˆ  is obtained from ( ) F∈= VNG ,  by adding Nb∉  as a

blocker in Ĝ , then for any two non-dummy voters Nji ∈, , we have

      
)ˆ(
)ˆ(

)(
)(

GP
GP

GP
GP

j

i

j

i = .

Proof:

(a) Given that Ni∈  is a dummy in the game F∈= );( VNG , we have 0)( =Gmi  which

in turn shows that 0=iP .  Conversely, 0=iP  implies that 0)( =Gmi , that is, i  is a

dummy.  Hence iP  fulfils the VJD.

 A permutation of the voter set does not alter )(Gmi  and )(GW , hence )(GPi

satisfies INV.

To check verification of the IGD, note that we can write )(GW  as
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   ),()()( 21 GGG WWW ∪=

where }:)({)(1 SdGSG ∈∈= WW  and     }:)({)(2 SdGSG ∉∈= WW .

Clearly, )(2 GW  coincides with )( dG−W , the collection of all winning coalitions of the

game dG− .  Since NS ⊆  is winning in G  if and only if }{dS −  is winning in dG− , it

follows that the mapping }{dSS −→  is a bijection of )(1 GW  onto )(2 GW .  Hence

|)(|    |)(|   |)(| 21 GGG WWW +=

              = |)(|2 2 GW

              = |)(|2 dG−W .

Therefore, 
2

G
G d

W
W =

−
. By a similar argument ( ) ( )

2
GmGm i

di =− . Hence

( ) ( )dii GPGP −= . We can establish analogously that ( ) ( )dii GPGP += . Thus iP

satisfies the IGD.

We will now demonstrate that iP  satisfies TRP.

To understand the conditions T1- T3, we first define certain sets.

Let G  and G′  be two voting games with the same voter set N . Let i  and j  be two
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Condition T1:

This condition means that if i  and j  vote together in favour of the bill or against

the bill, the outcome of the voting process in G′  is same as in G . Consider a coalition

NS ⊆ . Let i , j S∈ .

Suppose in the yes-no bipartition B , S  votes ‘yes’ and SN −  votes ‘no’.

Condition T1 says that if the outcome of B  in the game G  is positive (the bill is

passed), then the outcome of B  in the game G′will also be positive. However if the

outcome in G  is negative (the bill is rejected), it will also be negative in G′ . That is, if

S  is winning (losing) in G , it will also be winning (losing) in the game G′  and vice

versa. That is, =ji
G

,W ji
G

,
′W .

Suppose in B , S  votes ‘no’ and SN −  votes ‘yes’. Condition T1 says

that if the outcome of B  in the game G  is positive (the bill is passed), then the outcome

of B  in the game G′will also be positive. However if the outcome in G  is negative (the

bill is rejected), it will also be negative in G′ . That is, if SN −  is winning (losing) in

G , it will also be winning (losing) in the game G′  and vice versa. That is,

=),(~ ji
GW ),(~ ji

G′W .

So, condition T1 can be summarized as

=ji
G

,W ji
G

,
′W

=),(~ ji
GW ),(~ ji

G′W

Condition T2:

Consider a coalition NS ⊆ . Let i S∈ . Then j SN −∈ .

Then, condition T2 says that if S  is winning in G , it will also be winning in G′ , and if

SN −  is losing in G , then it will also be losing in G′ . This means ⊆i
GW i

G′W  and

⊆j
GL j

G′L .

So, condition T2 can be summarized as

⊆i
GW i

G′W i
G

i
G ′≤⇒ WW
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⊆j
GL j

G′L ≥⇒ j
GW  j

G′W

Condition T3:

Consider a coalition NS ⊆ . Let i S∈ . Then j SN −∈ .

Condition T3 says that there must exist at least one yes-no bipartition B  such that

(i) If S  votes ‘yes’ in B , the bill is passed in G′  but not in G . That is, there must exist

at least one coalition S , i S∈ , j S∉ , such that S  is losing in G  but becomes a

winning coalition in G′ .
Or

(ii) If S  votes ‘no’ in B , the bill is passed in G  but not in G′ . That is, there must exist

at least one coalition S , i S∈ , j S∉ , such that SN −  is winning in G  but becomes

a losing coalition in G′ .

Let { }i
G

i
G SSSjSiNSA ′∈∉∉∈⊆= WW ,;,:1  and

:{2 NSA ⊆= ;, SiSj ∉∈ j
GS W∈  but }j

GS ′∉W .

Condition T3 can be summarized as below:

If 11 α=A  and

22 α=A

Then 121 ≥+αα

That means,
i
G

i
G WW >′  or j

G
j

G WW <′

It is easy to note that

i
G

i
G

i
G WWW −=∆ ′  = 1α

2α−=−=∆ ′
j

G
j

G
j

G WWW

Note that =∆ GW ( )ji
G

ji
G

j
G

i
G

,~, WWWW ∆+∆+∆+∆ = 00)( 21 ++−+ αα .
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Consider an element S  in the set 1A . Then i
GS W∉  but i

GS ′∈W . Now

i
GS W∉  implies that {}iS \  is also losing in G . Since condition T1 says that

( ) ),(~,~ ji
G

ji
G ′= WW , this means that {}iS \  is losing in G′  as well. But since

{} {}iiS ∪)\(  is winning in G′ , it implies that i  is a critical member of these coalitions

in the game G′  but not in G .

Now consider an element S  in the set 2A . Then j
GS W∈  but j

GS ′∉W . Now

j
GS ′∉W  implies that { }jS \  is losing in G′ . By condition T1 we know that { }jS \

must be losing in G  as well. But { } { }jjS ∪)\(  is winning in G . So j  is a critical

member of these coalitions in the game G  but not in G′ .

Though the set ji
G

,W  is the same as the set ji
G

,
′W , i  might become a critical

player in some of these coalitions, in which he was previously non-critical. Let the

number of these coalitions be 3α .  Formally, let :{3 NSA ⊆=  ;, Sji ∈ ji
GS ,W∈  but

j
GiS W∈}{\ , and ji

GS ,
′∈W  but }}{\ j

GiS ′∉W . Then 33 α=A .

Again there might be some winning coalitions containing both i and j  in which

j  is critical in the game G , but ceases to be critical in G′ . Let the number of these

coalitions be 4α . Formally, let :{4 NSA ⊆= ;, Sji ∈  ji
GS ,W∈  but i

GjS W∉}{\ ,

and ji
GS ,
′∈W  but }}{\ i

GjS ′∈W . Then 44 α=A .

It is easy to note that there cannot exist any winning coalition S  containing both

i and j  such that i  is a critical member of S  in G  but not in G′ . To see this, suppose

that such a coalition ji
GS ,W∈  exists. Then {} j

GiS W∉\  and {} j
GiS ′∈W\ . This

violates condition T2, which says that if a coalition containing j  and not i  is losing in

G , then it must be losing in G′  as well.
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By a similar reasoning we can note that there cannot exist any winning coalition

S  containing both i  and j  such that j  is a non-critical member of S  in the game G ,

but a critical member in the game G′ .

Therefore, we have the following:

im∆ = )()( GmGm ii −′ = 1α + 3α .

)()()( 42 αα +−=−′=∆ GmGmm jjj

GW∆ = =−′ GG WW 1α - 2α .

Note that 1α , 2α , 3α , 4α 0≥ .

It is obvious that GW∆  could be non-negative or non-positive. Accordingly GL∆

could be non-positive or non-negative.

Case 1: GW∆ ≤0.

(i) Then since, im∆ 0≥ , iP  will rise. That is, the power to prevent action of the

recipient will not fall.

(ii) From the above discussion it is clear that 0≤∆ jm . Since 1α , 2α , 3α , 4α 0≥ , it

is obvious that ≥+ 42 αα 12 αα − . That is, Gjm W∆−≥∆− . Also GW  ≥

)(Gm j . Therefore, we have

       GjGj Gmm WW ∆−≥∆− ).( .                           (4)

Therefore,

)()( GPGP jj −′ = 
G

j

GG

jj GmmGm
WWW

)()(
−

∆+
∆+

          = ( ) GGG

GjGj Gmm
WWW

WW
∆+

∆−∆ )(
 0≤  (Using (4).)

That is,

 )()( GPGP jj ≤′ .

Thus, the power to prevent action of the donor will not rise.
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Case 2: GW∆ >0

(i) First note that since im∆ ≥ GW∆  and Gi Gm W≤)( ,

           GiGi Gmm WW ∆≥∆ )( .                                        (5)

 Therefore,

)()( GPGP ii −′  = 
G

i

GG

ii GmmGm
WWW

)()(
−

∆+
∆+

= ( ) GGG

GiGiGiGi GmGmmGm
WWW

WWWW
∆+

∆−−∆+ )()()(

= ( ) GGG

GiGi Gmm
WWW

WW
∆+

∆−∆ )(

0≥  (Using (5).)

Therefore,

)()( GPGP ii ≥′ .

Thus, the power to prevent action of the recipient does not fall after the transfer.

(ii) For the donor j , the proof is straightforward. Since 0≤∆ jm  and 0≥∆ GW ,

the power to prevent action of the donor can never rise.

Since iP  satisfies INV and TRP, by theorem 7.11 of Felsenthal and Machover (1995) we

can conclude that it satisfies DOM. Satisfaction of BOP by iP  follows from the fact that

it satisfies TRP, INV and IGD (Felsenthal and Machover, 1995, theorem 7.10).

(b) If voter i  is a blocker, then by definition he can stall a bill by voting ‘no’, irrespective

of how others vote. This means that he is a pivotal voter in every winning coalition in the

game. Therefore, im  = GW , or, iP =1. Conversely, if iP =1, it means that im  = GW .

That is, i  is critical in every winning coalition of the game. So i  has to be a blocker.
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(c) Let us denote the set of winning coalitions in the game Ĝ  by 
Ĝ

W . Now

{ }{ }G
N

G
bSSbS WW ∈∈∈= \,:2 ˆ

ˆ . Therefore, 
Ĝ

W = GW . Also it is obvious from

the definition of 
Ĝ

W  that the number of coalitions in which any player i  is critical

remains unaltered in the new game. Therefore, power to prevent action of any player

remains unchanged and hence the desired result follows.

Hence the proof of theorem.�

The fact that Coleman’s preventive power index iP  satisfies VJD, INV, IGD,

DOM, TRP and BOP implies that it can be used as a measure of the extent of influence

that voter i enjoys over the outcome of the voting process. Felsenthal and Machover

(1998) suggested property (c) of theorem 3 as a desirable postulate for an index of power

as a prize (e.g., the Shapley-Shubik index) and referred to it as the added blocker

postulate (ABP). Although iP  is regarded as an index of power of influence, we note its

satisfaction of the ABP. It also follows from theorem 3 that iP  is bounded between zero

and one, where the lower and upper bounds are achieved when voter i  is a dummy and a

blocker respectively. Finally, since iP  satisfies TRP and IGD, it satisfies RTP and RDP

as well.

The following theorem discusses the Coleman initiative power index iI , defined

in (2), in terms of the postulates laid down in section 3.

Theorem 4:

(a) The Coleman index of the power to initiate act, iI , satisfies VJD, INV, IGD,

DOM, TRP and BOP for all voting games.

(b) In a proper voting game, the index iI  achieves its upper bound of 1 if and only if

the voter is a dictator.

(c) If ( ) F∈= VNG ˆ,ˆˆ  is obtained from ( ) F∈= VNG ,  by adding Nb∉  as a

blocker in Ĝ , then for any two non-dummy voters Nji ∈, , we have



25

      
)ˆ(
)ˆ(

)(
)(

GI
GI

GI
GI

j

i

j

i = .

That is, iI  satisfies ABP.

The proof of this theorem relies on the following lemmas.

Lemma 3: Consider the voting games G  and G′ , and the voters j  and i  as described

in TRP. Let GL  ( )G′L  be the set of losing coalitions in G (G′ ). Then assuming that

0≤−=∆ ′ GGG LLL , we have ≥∆ jm GL∆ .

Proof:

We have noted in the proof of theorem 3 that )( 42 αα +−=∆ jm . Also GW∆ = 1α - 2α ,

which means that GL∆ = 2α - 1α 0≤ , by hypothesis. Suppose, contrary to what the

lemma says, we have GL∆ > jm∆ . Then we must have

1α - 2α > 42 αα + ,

or, 41 αα − 22α>                                              (6)

Let us recall the definition of the sets 1A  and 4A  which have been considered in

the proof of theorem 3.

{ }i
G

i
G SSSjSiNSA ′∈∉∉∈⊆= WW ,;,:1 , 11 α=A .

{ :4 NSA ⊆= ;, Sji ∈ ji
GS ,W∈  but i

GjS W∉}{\ , and ji
GS ,
′∈W  but

}}{\ i
GjS ′∈W , 44 α=A .

Now, consider an element 1AS∈ . i
GS ′∈W  implies that { } ji

GjS ,
′∈∪ W  (since

a super set of a winning coalition is also winning). By condition T1 we know that

{ } ji
GjS ,W∈∪ . This combined with the fact that i

GS W∉  (since 1AS∈ ) tells us that

player j  is a critical member of the coalition { }jS ∪  in the game G  but not in G′ .

That is, { }jS ∪ 4A∈ . Thus, for every coalition 1AS∈ , we get a unique coalition

{ } 4AjS ∈∪ .
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Conversely, it can be checked that with every coalition 4AS∈ , we can associate

a unique coalition { } 1\ AjS ∈ . In other words, with every element in 1A  we can

associate a unique element in 4A  and vice versa. This implies 41 AA = , or, 41 αα = .

 Using the above equality and (6) we know that if GL∆ > jm∆ , then 20 α> ,

which is a contradiction, since 2α  is the cardinality of a set and hence cannot be

negative. So jm∆ ≥ GL∆ . Hence the proof. �

Lemma 4: Consider the voting games G  and G′ , and the voters j  and i  as described

in TRP. Let GL  ( )G′L  be the set of losing coalitions in G  (G′ ). Then assuming that

0≥−=∆ ′ GGG LLL , we have )()( GmGmm iii −′=∆ ≥  GL∆ .

Proof:

We have noted in the proof of theorem 3 that im∆  = 1α + 3α . Also GW∆ = 1α - 2α ,

which means that GL∆ = 2α - 1α . Suppose, contrary to what the lemma says, we have

GL∆ > im∆ . Then we must have

2α 1α− > 1α + 3α ,

or 2α 3α− >  12α .                                        (7)

(Note that by assumption 0≥∆ GL .)

Recall the definitions of the sets 2A  and 3A  in the proof of theorem 3.

Consider an element 2AS∈ . It is easy to note that {} ji
GiS ,W∈∪  and hence by

condition T1 {} ji
GiS ,
′∈∪ W . This combined with the fact j

GS W∈  and j
GS ′∉W  (since

2AS∈ ) says that i  is non-critical member of the winning coalition {}iS ∪  in the game

G  but becomes critical in the game G′ . Therefore {} 3AiS ∈∪ . Thus, for each

2AS∈ , {} 3AiS ∈∪ . Conversely it can be checked that for each 3AS ∈′ ,

{} 2AiS ∈−′ . Hence the correspondence →S  {}iS ∪  is a bijection from 2A  onto 3A .
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In other words, with every element in 2A  we can associate a unique element in 3A  and

vice versa. Therefore, 32 αα =

Using the above equality and (7) we know that if GL∆ > im∆ , then 10 α> ,

which is a contradiction, since 1α  is the cardinality of a set and hence cannot be negative.

So im∆ ≥ GL∆ . Hence the proof. �

Proof of theorem 4:

(a)  The proof that iI  satisfies VJD, INV, IGD is similar to the proof in theorem

3. We now prove that iI  satisfies TRP. We have already noted above that GW∆  could

be non-negative or non-positive, and that 0≥∆ im  and 0≤∆ jm .

Case 1: GW∆ 0≥ .

This means 0≤∆ GL . That is,

(i) GG LL ≤′

∴ ≥
′GL

1

GL
1

or, 
G

ii mGm

′

∆+
L
)(

≥
G

i Gm
L

)(
 (since 0≥∆ im ).

Thus, iI  or the power to initiate action of the recipient does not fall after the transfer.

(ii) To show that the power to initiate of the donor does not rise after the transfer, we first

note that by lemma 3, jm∆ ≥ GL∆ .  Also we know that )(Gm jG ≥L . So

GjGj Gmm LL ∆≤∆ ).(.     (since 0≤∆ jm  and 0≤∆ GL )           (8)

)()( GIGI jj −′ = 
GG

jj mGm
LL ∆+
∆+)(

 - 
G

i Gm
L

)(

                           = ( ) GGG

GiGj Gmm
LLL

LL
∆+

∆−∆ ).(.
0≤ . (Using (8))

Thus, the power of the donor cannot rise after the transfer.
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Case 2: GW∆ 0≤ .

 This means GL∆ 0≥ .

(i) From lemma 4 and using the fact that )(GmiG ≥L , we can say that

GiGi Gmm LL ∆≥∆ ).( .                                  (9)

 Let us now evaluate the expression )()( GIGI ii −′ .

)()( GIGI ii −′

=
G

i Gm
′

′
L

)(
- 

G

i Gm
L

)(

=
)(

)(

GG

ii mGm
LL ∆+
∆+′

- 
G

i Gm
L

)(

= ( ) GGG

GiGiGiGi GmGmmGm
LLL

LLLL
∆+

∆−−∆+ )()().(

= ( ) GGG

GiGi Gmm
LLL

LL
∆+

∆−∆ ).(

0≥  (Using (9)).

Thus power to initiate action of player i  does not decrease after i  receives some voting

right from another player.

(ii) For the donor j  the proof is straightforward because 0≤∆ jm  and 0≥∆ GL .

Proof of satisfaction of DOM and BOP by iI  is similar to the proof in theorem 3.

(b) If the game has a dictator then it becomes a proper game and GG LW =  12 −= N .

Also by the definition of a dictator, he is critical player in all the winning coalitions.

Therefore 1=iI . Conversely, 1=iI  implies that Gim L= . Since im  is also the

number of losing coalitions outside which i  is critical, Gim L=  implies that i  is

critical outside every losing coalition in the game. Since the game is proper,

Gim W≤  GL≤  = im . Therefore, GGim LW == . So i  is a critical member of
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each winning coalition of the game. This means i ’s ‘yes’ vote is necessary to pass the

bill. Following definition 1 we know that φ  is a losing coalition. Since i  is critical

outside every losing coalition in the game, therefore {}i  is a winning coalition. This

means i ’s ‘yes’ vote is sufficient to pass the bill. So i  is a dictator.

(c)  The proof of this part of the theorem is similar to the proof of part (c) of theorem 3. 

It is important to note that while iP  reaches its maximum in the case of an ordinary

blocker, iI  is maximum if the blocker is a dictator.

The previous two theorems show that both the Coleman index of the power to prevent

action and the power to initiate action can be used to get an idea of the extent of influence

that an individual voter enjoys over the outcome of the decision making body. However,

if we modify Coleman’s Preventive Power Index by replacing GW  by i
GW  in the

denominator, the resulting index also qualifies as a measure of influence of an individual

voter.

Let the transformed preventive index be defined as

iT  = 
i
G

i Gm
W

)(
.                                          (10)

Clearly, iT  is an attainable upper bound on iP . More precisely, for all F∈G ,

)()( GTGP ii ≤ .

Theorem 5:

(a) The Transformed Coleman index of the power to prevent act, iT , satisfies VJD,

INV, IGD, DOM, TRP, BOP and ABP for all voting games.

(b) iT  achieves its upper bound 1 if and only if i  is a blocker.

Proof:

(a) The proof that iT  satisfies VJD, INV, IGD is similar to the proof in theorem 3 and 4.

We now prove that iT  satisfies TRP. Suppose the game G′  is derived from the game G
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by transferring some voting right of voter j  to voter i . Following the discussion in the

proof of theorem 3, we have

31 αα +=∆ im ; 1α=∆ i
GW .

)( 42 αα +−=∆ jm ; 2α−=∆ j
GW .

Adopting a similar approach as in the proof of theorem 3 and 4, it is easy to see that after

the transfer the donor can never gain power (i.e. jT  can never rise) and the recipient can

never lose power (i.e. jT  can never fall). Satisfaction of DOM and BOP by iT  is easy to

check now.

The proof that iT  satisfies ABP is similar to the proof of part (c) of theorem 3.

(b) If i  is a blocker, then by definition he is a critical member of all the winning

coalitions in the game. So i
GGim WW == . This means iT =1. Conversely,

suppose iT =1. This implies i
Gim W= . That is, i  is a critical member of all winning

coalitions that he belongs to. Further, it is easy to note that there can be no winning

coalitions in which i is not a member. For, if there exists such a coalition S , such

that GS W∈  and Si∉ , then by monotonicity {}iS ∪ GW∈ , and i is not a critical

member of this coalition. This contradicts i
Gim W= . So we have Gim W=  =

i
GW . This implies that i  is a blocker.

Hence the proof of the theorem. �

5. Conclusions

An index of voting power is a measure of the extent to which a voter is able to

influence the passage or defeat of a resolution. Coleman (1971) suggested two such

indices, power to prevent an action and power to initiate an action. The former gives an

indication of the chance a voter has to block a bill and the latter is concerned with the

voter’s probability to initiate action. However, there has not been much discussion of

these indices in the literature on voting power. This paper rigorously examines these
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indices in the light of different properties for an index of voting power suggested by

Felsenthal and Machover (1995, 1998) and demonstrates their suitability in this context.

A relationship between these two indices is also established in the paper. It is further

shown that a transformation of the power to prevent an action index can also be

considered as an approximate voting power index.

A great deal remains to be done. For instance, an attempt to characterize these

indices using two sets of independent axioms will be a worthwhile exercise.

Note

1. Although Felsenthal and Machover (1998, p. 245) argued that ‘any reasonable

measure of a priori power …must respect dominance’, some authors (e.g. Laruelle and

Valenciano, 2002) questioned desirability of this postulate. See also Braham and Steffen

(2002).
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