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                                                          1. Introduction

A central concept of political science is power. While power is a many faceted

phenomenon, here we are concerned with the notion of power as it is reflected in the

formal voting system. If in a voting situation everyone has one vote and the majority rule

is taken as the decisive criterion, then everyone has the same type of power. The majority

rule declares a candidate as the winner if he gets the maximum number of votes among

the candidates. But if some persons have more votes than others, then they can certainly

manipulate the voting outcome by exercising their additional votes.

An index of voting power should reflect a voter’s influence, in a numerical way,

to bring about the passage or defeat of some bill. It should be based on the voter’s

importance in casting the deciding vote. The most well-known index of voting power is

the Shapley-Shubik (1954) index. Essential to the construction of this index is the

concept of swing or pivotal voter. Given an ordering of voters, the swing voter for this

ordering is the person whose deletion from the coalition of voters of which he is the last

member in the given order, transforms this contracting coalition from a winning to a

losing one. (A coalition of voters is called winning if passage of a bill is guaranteed by

‘yea’ votes from exactly the voters in that coalition. Coalitions that are not winning are

called losing.) The Shapley-Shubik index for voter i  is the fraction of orderings for

which i  is the swing voter. In fact, the Shapley-Shubik index is an application of the

well-known Shapley value (Shapley,1953) to a voting game, which is a formulation of a

voting system in a coalitional form game.

   Alternatives and variations of the Shapley-Shubik index were suggested, among

others, by Banzhaf (1965), Coleman (1971), Deegan and Packel (1978) and Johnston

(1978). The Banzhaf index of power of a voter is based on the number of coalitions in

which the voter is swing. More precisely, it determines the number of possibilities in

which a voter is in the critical position of being able to change the voting outcome by

changing his vote. The two indices suggested by Coleman (1971) are proportional to the

Banzhaf index, and to each other (Brams and Affuso, 1976).However, the Banzhaf -

Coleman indices, which are based on the idea of a critical defection of a voter from a

winning coalition, do not take into account the total number of voters whose defections
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from a given coalition are critical. Clearly, if a voter is the only person whose defection

from a coalition is critical, then this gives a stronger indication of power than in the case

where all persons’ defections are critical. This is the central idea underlying the Johnston

(1978) power index.

 Deegan and Packel (1978) argued that only minimal winning coalitions should be

considered in determining the power of a voter. (A coalition is called minimal winning if

none of its proper subsets is winning.) They suggested an index under the assumptions

that all minimal winning coalitions are equiprobable and any two voters belonging to the

same minimal winning coalitions should enjoy the same power. However, the Banzhaf -

Coleman, Johnston and Deegan-Packel indices have a common disadvantage: they all

violate the transfers principle and the bloc principle (see Felsenthal and Machover, 1995).

The transfers principle requires that the power of voter i , who is capable of affecting

voting outcome, should decrease if he donates a part of his voting right to another voter

j . According to the bloc principle, under a voluntary merger between two voters a  and

b , where b  is capable of affecting voting outcome, the power of the merged entity will

be larger than that of a . The Deegan-Packel index also violates the dominance principle,

which demands that if voter j ’s contribution to the victory of a resolution can be

equalled or bettered by another voter i , then i  should not possess lower power than j .

Felsenthal and Machover (1995) regarded these three postulates as the major desiderata

for an index  of voting power. It may be interesting to note that the Shapley Shubik index

satisfies all these three postulates.

 A common form of voting game is a weighted majority game, which can be

described by specifying nonnegative real number weights for the voters and a positive

real number quota satisfying a boundedness condition such that a coalition is winning

precisely when the sum of the weights of the voters in the coalition meets or exceeds the

quota. Weighted majority games arise in many contexts. Examples are: The European

Economic Community and stockholder voting in corporations (see Lucas, 1982, for

additional examples).

The objective of this paper is to suggest a new index of voting power in a

weighted majority game. This new index is based on the number of critical defections of

a voter and his weight in the game. It is in fact the second Banzhaf-Coleman index
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multiplied by the weight of a voter. This index is found to possess many interesting

properties including satisfaction of the bloc, donation and transfer principles. When

attention is restricted to weighted majority games only, this new index can, therefore, be

regarded as an extended version of the Banzhaf-Coleman indices because they all make

use of critical defections of a voter from coaltions, but the former does it in a more

satisfactory way in the sense that it does not have the shortcomings of the latter formulae.

It may be important to note that our objective is not to supplement the Shapley-Shubik

index or any index of voting power which satisfies the requirements for a power index.

Instead, we wish to see how the concept of critical defection and weight of a voter in a

weighted majority game can be employed successfully in developing an index of power.

The paper is organized as follows. The next section discusses the properties for an

index of voting power. Section 3 presents and analyses the new index in the light of the

properties introduced in section 2. A comparative discussion of some of the existing

indices with the new index is also presented in this section. In order to have a set of

postulates that are necessary and sufficient for identifying the new index uniquely, an

axiomatic characterization of the index is presented in section 4. Finally, section 5

concludes.

                                      2. Notation, Definitions and Preliminaries

It is possible to model a voting situation as a coalitional form game, the hallmark

of which is that any subgroup of players can make contractual agreements among its

members independently of the remaining players. Let { }nAAAN ,..., 21=  be a set of

players. For any set of players N, N  will stand for the number of players in N. The

power set of N, that is, the collection of all subsets of N is denoted by N2 . Any member

of N2  is called a coalition. A coalitional form game with player set N  is a pair ( )VN; ,

where RV N →2:  such that ( ) 0=φV , where R  is the real line. For any coalition S , the

real number ( )SV  is the worth of the coalition, that is, this is the amount that S  can

guarantee to its members.

We frame a voting system as a coalitional form game by assigning the value 1 to

any coalition which can pass a bill and 0 to any coalition which cannot. In this context, a
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player is a voter and the set { }nAAAN ,..., 21=  is called the set of voters. Throughout the

paper we assume that voters are not allowed to abstain from voting. A coalition S  will be

called winning or losing according as it can or cannot pass a resolution.

Definition1: Given a set of voters N , a voting game associated with N is a pair ( )VN; ,

where { }1,02: →NV  satisfies the following conditions:

(i) ( ) 0=φV .

(ii) ( ) .1=NV

(iii) If  ,TS ⊆  ,2, NTS ∈  then ( ) ( ).TVSV ≤

(iv) For ,2, NTS ∈  if ( ) ( ) ,1== TVSV  then .φ≠∩TS

The above definition formalizes the idea of a decision-making committee in

which decisions are made by vote. It follows that the empty coalition φ  is losing

(condition (i)) and the grand coalition N  is winning (condition (ii)). All other coalitions

are either winning or losing. Condition (iii) ensures that if a coalition S  can pass a bill,

then any superset T  of S can pass it as well. According to condition (iv) two winning

coalitions cannot be disjoint. Disjointness of two winning coalitions implies that two

s can be passed simultaneously.

Definition 2: The unanimity game ( )NUN;  associated with a given set of voters N is the

game whose only winning coali N.

 Given a set of voters N , let ( )VN;  be a voting game.

(i) For any coalition ,2 NS ∈ we say that Ni∈  is swing in S  if ( ) 1=SV  but

{}( ) 0=− iSV .

(ii) For any coalition NiS N ∈∈ ,2  is said to be swing outside S  if ( ) 0=SV  but

{}( ) 1=∪ iSV .

(iii)  A coalition NS 2∈ is said to be minimal winning if ( ) 1=SV  but there does not

exist ST ⊂  such that ( ) 1=TV .

Thus, voter i  is swing, also called pivotal or key, in the winning coalition S  if his

deletion from S  makes the resulting coalition {}iS −  losing. Similarly, voter i  is swing

outside the losing coalition S  if his addition to S  makes the resulting coalition {}iS ∪
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winning. For any voter i , the number of winning coalitions in which he is swing is same

as the number of losing coalitions outside which he is swing (Burgin and Shapley, 2001,

Corollary 4.1).

Definition 4: For a set of voters N , let ( )VN;  be a voting game. A voter Ni∈  is called

a dummy in ( )VN;  if he is never swing in the game. A voter Ni∈  is called a

nondummy in ( )VN;  if he is not dummy in ( )VN; .

Following Burgin and Shapley (2001) we have

Definition 5: For a voting game ( )VN;  with the set of voters ,N a voter Ni∈  is called a

dictator if {}i  is a winning coalition.

A dictator in a game is unique. If a game has a dictator, then he is the only swing voter in

the game.

As stated earlier, an extremely important voting game is a weighted majority

game.

Definition 6: For a set of voters { }nAAAN ,..., 21= , a weighted majority game is a

quadruplet ( ;;VNG = )q;w , where { },1,02: →NV w ( )nwww ,...,, 21=  is the vector of

nonnegative weights of the N  voters in N, q is a positive real number quota such that

∑ ∑
= =

≤<
N

i

N

i
i

i wq
w

1 12
 and for any NS 2∈ ,

( )SV = 1  if  ∑
∈

≥
Si

i qw ,

         = 0  otherwise.               (1)

That is, here the thi  voter has the weight iw  and q , fulfilling the boundedness condition

∑ ∑
= =

≤<
N

i

N

i
i

i wq
w

1 12
, is the quota of weights needed to pass a resolution. The games

( ;;VNG = )q;w  and ( ;;VNGa = wa )aq; , where 0>a , are equivalent in the sense that

for any S N2∈ , aqaw
Si

i∑
∈

≥  if and only if ∑
∈

≥
Si

i qw . Thus, a coalition is winning in G if

and only if it is winning in 0, >aGa . Clearly, every  weighted majority game satisfies



7

conditions (i)-(iv) of definition 1. (See Felsenthal and Machover, 1995, for additional

discussions on definitions 1 and 6.)

It should be noted that not all voting games are weighted majority games. An

important example is the United States legislative scheme in which a winning coalition

has to contain the President and a majority of both the Senate and the House of

Representatives or two-thirds of both the Senate and the House.

The collection of all weighted majority games is denoted by F. An index of voting

power of voter i  in a weighted majority game is a nonnegative real valued function iP

defined on F, that is, iP : F +→ R , the nonnegative part of the real line. Such an index

should fulfil certain desirable properties. Since here we are dealing with power in

weighted majority games, we will state these properties in terms of such games. General

formulation  (more precisely, formulation in the context of general voting games) of the

properties MIN, ANY, DEP, MON, BOP and TRP presented below are available in

Felsenthal and Machover (1995).

The first property we consider is:

Minimality (MIN): For all ( ;;VNG = )q;w ∈F for any ,Ni∈ ( )GPi  achieves its

minimum value, zero, if and only if i  is a dummy.

By definition, a power index of a voter i  is nonnegative. MIN says that the

necessary and sufficient condition that the index attains its lower bound, zero, is that the

concerned voter i  is a dummy. To understand this more explicitly, let us look at the game

0G = ( )5;6,2,1;;VN , where { }.,, 321 AAAN =  In 0G , none of the voters 1 and 2 is in a

critical position of making a winning (losing) coalition losing (winning). If we view

power simply in terms of the weight enjoyed by a voter, then in 0G , voter 2 has a higher

power than voter 1. But in terms of their ability of switching a coalition from winning

(losing) to losing (winning), they are identical because they are both dummy. As argued

in the literature (Taylor, 1995), since the essence of power of a voter lies in his capability

of being a key voter, we appeal that a voter’s power should be minimal (zero) if he is

dummy (see also Dubey, 1975; Dubey and Shapley, 1979; and Burgin and Shapley,

2001). A similar argument can be given from the reverse side. Since the power index has
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been assumed to be nonnegative, and a voter is either dummy or nondummy, MIN

implies that for a nondummy voter, the value of the power index is positive.

Now, if in a game no voter other than i  is capable of affecting voting outcome,

then i  does not have to share power with anybody. In other words, a voter i  possesses

maximum power  if he is the only nondummy voter in the game, more precisely, if he is a

dictator. Thus, we have,

Maximality (MAX): For all ( ;;VNG = )q;w ∈F, for any ( )GPNi i,∈  achieves its

maximum value whenever i  is a dictator.

Since a dummy can never affect the outcome of voting, it is natural to expect that

if a dummy is excluded from a voting game, the power of the remaining voters remain

unaltered. In view of this we can state the following postulate:

Dummy Exclusion Principle (DEP): For all ( ;;VNG = )q;w ∈F, and for any dummy

Nd ∈ , ( ) ( ),dii GPGP −=  where dG−  is the ( )1−N  weighted majority game obtained

from G  by excluding the dummy Nd ∈  and { }dNi −∈  is arbitrary.

Likewise, we can have a dummy inclusion principle, which requires that if d is

not a voter of ∈G F, then the power of any voter ,Ni∈  in the expanded game dG+

obtained from G  by including d  as a dummy, is the same as the power possessed by i

in the gameG .

The fourth property is anonymity.

Anonymity (ANY): For any ( ;;VNG = )q;w ∈F, where nN = , let ( )nΠΠΠ ,..., 21  be

any reordering of voters and let the corresponding reordering of the weights

( )nwww ,..., 21  be ( )
n

www ΠΠΠ ,...,
21

wΠ= . Then ( ) ( ),GPGP
ii Π= Π  where GΠ  is the

game ( Π;;VN )q;w .

Anonymity means that the power of a voter remains invariant under the same

permutation of the voters and their weights. Thus, any characteristic other than the

weights of the voters (e.g., their living conditions) is irrelevant to the measurement of

voting power. For instance, in calculating the voting power of a member of the European

Economic Community (say, France), the only consideration is its weight.



9

The next property is concerning the power of a voting bloc. Suppose that a set of

two voters in a game, say { }jiL ,=  forms a bloc and operates as a single voter.

Evidently, this generates a new voting game, which is obtained by replacing the two

voters by the new voter representing the bloc, whom we denote by b. The bloc’s weight

in the new game, which is denoted by Ĝ , is bw =∑
∈Lk

kw . The distinction between a bloc

and a coalition should be clear. A coalition is a subset of voters in the same game and

members of the coalition, whose separate identities exist as voters, may vote together in a

play of the game. On the other hand, a bloc is a new single voter in a new game and

separate identities of the components of the bloc do not exist as voters. The bloc principle

is then stated as

Block Principle (BOP): For any G ∈F, for any block b of two voters i  and j  and for

any voter { },, jiLk =∈  ( ) ( )GPGP kb >ˆ , given that ∈l { }kL −  is nondummy.

BOP can be interpreted as follows. When a voter k  acquires the voting power of a

nondummy voter l , then voting power of the bloc consisting of these two voters should

be higher than that of k . In other words, a voter ( k ) is gaining power by swallowing the

power of a nondummy voter ( )l . This is quite reasonable intuitively. A person will not

join a bloc if the voting right of the bloc is not larger than his own voting right. If iP

satisfies BOP, then it takes on a positive value whenever i  is a nondummy (Felsenthal

and Machover, 1995, theorem 5.10).

However, BOP does not say anything explicitly about the number of critical

defections of the bloc or merged voter. To determine this number, we first have the

following:

Definition 7: Let ( )VN;  be a voting game associated with the voter set N . Suppose that

the voters Nji ∈,  are amalgamated into one voter ij . Then the post-merger voting game

is the pair ( )VN ′′; , where { } { }ijjiNN ∪−=′ ,  and

( )SVSV =′ )(   if { }ijNS −′⊆

          { }( ) { }( )jiijSV ,∪−=  if Sij∈ .
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Given any voting game (N;V), let im  be the number of winning coalitions in

which Ni∈  is pivotal or swing. That is, im  is the number of winning coalitions from

which i 's defection is critical. Equivalently, im  is the number of losing coalitions outside

which i  is swing. These two equivalent statements will be represented by the statement

that im  is the number of swings of voter i .

The following proposition gives the number of swings of the bloc voter ij  in a general

voting game ( )VN; .

Proposition 1: Suppose that ( )VN;  is a voting game with the voter set N . Assume that

the voters Nji ∈,  are merged into one voter ij .  Then the number of swings of the bloc

voter ij  in the post-merger game ( )VN ′′;  is 
( )

2
ji mm +

, where ( )ji mm  is the number of

swings of voter ( )ji  in the original game ( )VN; .

Proof: ji mm + = {}( ) ( )[ ]
{ }

∑
−⊆

−∪
iNS

SViSV + { }( ) ( )[ ]
{ }

∑
−⊆

−∪
jNS

SVjSV

{}( ) ( )[ ]
{ }
∑
−⊆

−∪=
jiNS

SViSV
,

+ { }( ) { }( )[ ]
{ }
∑
−⊆

∪−∪
jiNS

jSVjiSV
,

, + { }( ) ( )[ ]
{ }
∑
−⊆

−∪
jiNS

SVjSV
,

       + { }( ) {}( )[ ]
{ }
∑
−⊆

∪−∪
jiNS

iSVjiSV
,

,

= { }( ) ( )[ ]
{ }
∑
−⊆

−∪
jiNS

SVjiSV
,

,2

= { }( ) ( )[ ]
{ }

∑
−⊆

′−∪′
ijNS

SVijSV2

=2 ijm ,

where ijm  is the number of swings of the voter ij in the merged game ( )VN ′′; . Hence

ijm =
( )

2
ji mm +

. This completes the proof of the proposition1. �

Since proposition 1 holds in a general voting game, it holds in a weighted majority game

as well. An interesting implication of this proposition is that the sum ( ji mm + ) is either

zero or an even positive integer.

The sixth postulate we consider is concerning the dominance of the contribution

of a voter over that of another to the victory of a coalition. If the contribution of voter i  is
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more than or equal to that of voter j , to any coalition, then i ’ s power should not be less

than j ’s. In terms of weighted majority games, this dominance principle becomes a

monotonicity condition, which states that voting power should be a nondecreasing

function of weight. Thus, in the European Economic Community since the weights of

Germany and Luxembourg are 10 and 2 respectively, the voting power of Germany

should not be less than that of Luxembourg. We thus have

Monotonicity (MON): For any ( ;;VNG = )q;w ∈F, if ij ww ≤ , then )()( GPGP ij ≤ ,

where i , j .N∈

For any ( ;;VNG = )q;w ∈F, we say that ( ;;VNG =′ )q;u ∈F, is obtained from G

through transfer of weights from voter i  to voter j  if

 

,,,

,

,

jikwu

wu

wu

kk

jj

ii

≠∀=

+=
−=
δ
δ

                                            (2)

where, iw≤< δ0  and ., Nji ∈ That is, given a voting body G, a new voting body G′  is

obtained through a donation of weights from i  to j . Such a situation may arise if a share

holder in a company sells a part of his shares to another share holder. Clearly, the power

of i , who is the donor of weights in the transfer, should decrease if i  is nondummy.

Formally,

Transfers Principle (TRP): For any G ∈F, suppose G′ ∈F is obtained from G through

a transfer of weights from i  to j , where i , j ∈  N and i  is not dummy. Then

)()( GPGP ii <′ .

Likewise, the power of voter j , who is the recipient of weights in (2), should not reduce

under the transfer. Certainly, if j  is dummy and remains dummy with the additional

weight, then j 's power should not decrease. But if the additional weight transforms j

from a dummy to a nondummy or if he was already nondummy before receiving the

additional weight, then j 's power should go up under the transfer. Thus, several

possibilities regarding change of statuses of i  and j  may arise in going from G toG′ .

Clearly, i  may lose some swing roles and j  may gain some new swing roles. It is also

likely that the transfer does not change their swing positions at all. For further discussions
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on these properties and related issues, see Kilgour (1974), Brams (1975), Brams and

Affuso ((1976), Fischer and Schotter (1978), Dreyer and Schotter (1980), Straffin (1982)

and Felsenthal and Machover (1995,1998).

                                  3. The New Index of Voting Power and Its Properties

Since the new index is closely related to the Banzhaf-Coleman indices, we begin

this section with a discussion of the latter indices. Although these indices are well-

defined for any arbitrary voting game, for the purpose of comparison with the new index

we define them on the set of weighted majority games. Following Owen (1978) and

Burgin and Shapley (2001) we define the first Banzhaf-Coleman power index of voter i ,

iB ,1 , as im , the number of swings of voter i . Formally, :1iB F +→ R  is defined by

( ) ii mGB =,1 ,                           (3)

where ( ;;VNG = )q;w ∈F is arbitrary. The second Banzhaf-Coleman power index iB ,2

is obtained by dividing iB ,1  by 12 −N , the maximal value that im  takes, that is, the value

of im  when i  is a dictator. More precisely,

  ( ) .
2 1,2 −

=
N

i
i

m
GB                               (4)

If in a voting model, each voter 'i s probability ip  of voting 'yes' or ‘no’ on a bill is

chosen independently from the uniform distribution [0,1], then the power of the voter i  is

estimated by iB ,2 ( Straffin, 1977). Since iB ,2  does not involve numbers of coalitions in

which voters other than i  are swing, Dubey and Shapley (1979) regarded it as an

absolute index of voter 'i s power. The third Banzhaf-Coleman index iB ,3  of voter i  is the

index iB ,1 (or iB ,2 ) normalized to make the indices of all voters add upto unity. That is,

     iB ,3 ( )G     =    

∑
=

N

j
j

i

m

m

1

   .                         (5)
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Since the third index involves swings of all voters in the game, it is regarded as a relative

index. As stated by Felsenthal and Machover (1995), in contrast to the first two indices, it

is rather difficult to handle the third index mathematically2.

Now, consider the game ( )5;5,2,2;;ˆ
0 VNG =  derived from 0G  by a transfer of

weight from voter 3 to voter 1. We note that the power of voter 3, as measured by the

first Banzhaf-Coleman index iB ,1 , is the same in both 0G  and 0Ĝ . This shows that

iB ,1 may not satisfy TRP. The same remark applies to iB ,2  as well. Felsenthal and

Machover (1995) showed that iB ,3  may increase under a transfer from a nondummy voter

i  to another voter j . They observed a similar counterintuitive behavior of iB ,3  with

respect to BOP.

In view of these observations, it may be worthwhile to suggest an extension of the

Banzhaf-Coleman indices that will respond correctly to the postulates considered in

section 2. We have already argued that iw , the weight possessed by voter i  may not be

an appropriate indicator of power of i . However iw  along with scaled down im , that is,

12 −N
im , may give us an adequate information on the level of power, since the two

together can tell us with what weight the voter is capable of making im  winning (losing)

coalitions losing (winning). More precisely, as an index of power of voter i , we suggest

the use of :iI F +→ R , where for any ( ;;VNG = )q;w ∈F,

 ( ) .
2 1−

=
N

ii
i

wm
GI                                   (6)

Thus, iI  is simply the second Banzhaf-Coleman power index iB ,2  multiplied by the

weight of the voter i . In view of Corollary 4.1 of Burgin and Shapley (2001), like the

three Banzhaf-Coleman indices, the new index iI  is symmetric- they remain the same

whether we define them by the number of swing positions in or outside coalitions.

Suppose in a weighted majority voting situation, each voter’s probability of voting for or

against a bill is selected independently from the uniform distribution [0,1]. Then

following Straffin (1977), we can show that iI becomes the weight of voter i  multiplied
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by the probability that other voters will vote such that the bill will pass or fail according

as i  votes in favour of or against it.

The following theorem summarizes the behaviour of iI  with respect to the

properties discussed in section 2.

Theorem1: The index iI  satisfies MIN, MAX, DEP, ANY, BOP, MON and TRP.

Proof: We first show that if ij ww ≤ , then ij mm ≤ . Let 1T  be the set of all winning

coalitions containing i  and j . Since sum of the weights is the only criterion to judge

whether a coalition is winning or not, ij ww ≤  means that the contribution j  makes to

the victory of coalition 1TS ∈ can be equalled or bettered by i . Therefore, if j  is a swing

voter in S, i  must be swing in it. Clearly, there may exist coalitions in 1T  in which i  is

swing but j  is not. Thus, we have 11 ij mm ≤ , where 1im  ( )1jm  is the number of

coalitions in 1T  in which i  ( )j  is swing.

Next, let iT2  ( )jT2  be the set of all winning coalitions that contain i  ( )j  but not j

( )i . If j  is swing in the coalition jj TC 2∈ , then since ij ww ≤ , i  becomes swing in the

coalition { } {} iji TijCC 2∈∪−=  generated from jC . That is, if j  is swing in a coalition

jj TC 2∈ , then i  must be swing in the coalition ii TC 2∈  that results from jC  when j  is

replaced by i . Since jj TC 2∈  is arbitrary, it follows that 22 ij mm ≤ , where 2im  ( )2jm  is

the number of coalitions in iT2 ( )jT2  in which i ( )j  is swing. Observing that

21 iii mmm += and 21 jjj mmm += , we have ij mm ≤ .

Given that ji ww ≥  implies ji mm ≥ , we have 
11 22 −−

≥
N

jj

N

ii
mwmw

. This in turn

implies that iI  satisfies MON. iI is obviously anonymous.

We shall now show that iI satisfies DEP. Note that exclusion of a dummy d from

a game G does not change iw . Let dG−  be the weighted majority game obtained from G

by excluding the dummy Nd ∈  and let { }dNi −∈  be arbitrary.
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Let     { }{ diNSi ,−⊆=′ψ  :  i  is a swing in S in }dG−

and {}{ iNSi −⊆=ψ  :  i  is a swing in S in }G .

Clearly, if i is a swing in S in dG− , then i is a swing in S in G. Also, if i is a swing in S in

dG− , then i  is a swing in { }dS ∪  in the game G. Hence, { }{ dSii ∪∪′=ψψ  : }iS ψ ′∈ .

Thus, ,2 ii ψψ ′=  that is, ii mm 2= , where im  is the number of swings of i in dG− .

Hence, ( ) ( ).
22

2

2 211 diN

ii

N

ii

N

ii
i GI

wmwmwm
GI −−−−

====  So iI  verifies DEP. (Note that this can

also be proved using proposition 1.)

To check verification of TRP, suppose that the game ( )qVNG ;;; u=′  is

generated from the game ( )qVNG ;;; w=  by a transfer from a nondummy voter i  to

another voter j (see equation (2)). Now,

( ) ( )
12 −

−′
=′

N

ii
i

wm
GI

δ
,                                  (7)

where im′  is the number of swings of voter i  in G′ . Since ii ww <−δ , it is not hard to

see that if i  is a swing in S in the game G′ , then i  is also a swing in S in the game G

irrespective of whether S contains j  or not. Hence, ii mm ≤′ . A direct comparison shows

that ( ) ( )GIGI ii <′ . Hence iI  satisfies TRP. If voter i  is a dummy in the game G then

0=im , which in turn shows ( ) 0=GIi . Conversely, let ( ) 0=GIi . In this case, given

0>iw , we must have 0=im , that is, i  must be a dummy. (Note that if 0=iw , then im

is certainly zero.) Thus, iI verifies MIN. Next, given w , ( )GIi  takes on the maximal

value if im  is maximized, that is, when i  is a dictator. Thus, iI  fulfils MAX. (Note that

if mi  is maximized, wi  is also maximized.) Felsenthal and Machover (1995, theorem

7.10) demonstrates that TRP, in the presence of ANY and DEP, implies BOP. Since iI

meets TRP, ANY and DEP, it meets BOP also. (Satisfaction of BOP by iI can also be

verified using proposition 1.) This completes the proof of the theorem.  �

Although iI  does not involve coalitions in which voters other than i  are swing

and their weights, it may change due to changes in weights of these other voters. For
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instance, a transfer of weight between voters j  and k , where kji ≠≠ , that changes

swing  positions of different voters, will change iI . Similarly, an increase in jw , where

ij ≠ , may change iI . This shows that iI  has a relative flavour although it is not

normalized in the sense that powers of all voters should add upto one. (See Felsenthal and

Machover, 1995, for a discussion on the normalization principle.) This shows that power

of voter i , as measured by iI , does not involve i  isolatedly, but incorporates the entire

structure of a voting game. In other words, iI  involves situations of the other voters, in

particular, the availability of other voters with whom i  can form winning coalitions. In

fact, iI  can be given a relative colour by noting that it satisfies a relative version of

TRP. According to this version, in any game, power of a nondummy voter i  relative to

that of another voter j  will decrease under a transfer of weight from i  to j . We state

this modified transfers principle as

Relative Transfers Principle (RTP): For any G ∈F, let G′ ∈F be the game obtained

from G  through a transfer of weight from a nondummy voter i  to another voter j . Then,

( )
( )

( )
( )GP

GP

GP

GP

j

i

j

i <
′
′

   ,                     (8)

where jP 's are  assumed to be positive.

Since TRP implies RTP, a voting power index that meets TRP, e.g., the Shapley-Shubik

index, will meet RTP as well. But RTP does not imply TRP, because a transfer from i

to j  that does not change i ’s power but increases j ’s power shows that the index fulfils

RTP but not TRP. For instance, if I i3,  is the normalized power index Ii  analogous to the

third Banzhaf-Coleman index, then I i3,  satisfies RTP but not TRP.

Relativity of iI  can also be brought about through its satisfaction of the

following modification of DEP.

Relative Dummy Exclusion Principle (RDP): For any ( ;;VNG = )q;w ∈  F, let dG−  be

the ( N -1) weighted majority game obtained from G be excluding the dummy .Nd ∈

Then for any ji, { },dN −∈
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( )
( )

( )
( )dj

di

j

i

GP

GP

GP

GP

−

−=   ,               (9)

where jP 's are  assumed to be positive.

RDP says that the power of a voter i  relative to another voter j  remains unaltered if a

dummy is excluded from the game. Obviously, we can analogously formulate a relative

dummy inclusion principle. Clearly, all indices that satisfy DEP, for example, iB ,2  and

the Shapley-Shubik index, will satisfy RDP. But RDP is weaker than DEP in the sense

that there may exist indices that may fulfil the former but not the latter. One such index is

.,1 iB  A second example that satisfies RDP but not DEP is the power index given by

ii wm .

We conclude this section with a discussion on the Shapley-Shubik, the Deegan-

Packel and Johnston indices. Although like the Banzhaf-Coleman indices, these three

power indices have been defined in the context of general voting games, we restrict our

attention to weighted majority games. For any ( ;;VNG = )q;w ∈F, the Shapley-Shubik

power index of voter i is

( )GH i  =   The number of orders in which i is swing  .

                                            !N

We can rewrite ( )GH i  in the combinatorial form as,

( )GH i   = ∑

⊆NS
for
swings
i !

)!()!1(

N

SNS −−
.            (10)

If in a voting model, each voter 'i s probability ip  of voting 'yes' or 'no' on a resolution is

a random variable and ip = p  for all i , where p  is chosen from the uniform distribution

[0,1], then the power of voter i  is estimated by iH  (Straffin, 1977). It meets MIN,

MAX, ANY, MON, DEP, BOP and TRP.

There are some important differences between the new index and the Shapley-

Shubik index. The latter makes use of permutations of the voters and relies on the orders

in which the winning coalitions are formed. It attaches importance to a voter whose
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deletion from a coalition of which he is the last member in a given ordering of voters,

converts the coalition from a winning to a losing one. On the other hand, the new index is

concerned with alternative combinations of voters and considers the number of coalitions

in which a voter is swing or key. It does not deal with the chronological orders in which

the winning coalitions are formed.

For any ( ;;VNG = )q;w ∈F, the Deegan-Packel index for voter i is defined as

follows. First, we take the reciprocal of the number of voters in each minimal winning

coalition to which i belongs and sum up these reciprocals. The resulting sum, iTDP , is

called the total Deegan-Packel power of voter i in the game G. Then the Deegan- Packel

index for i is

 ( )GDi  =

∑
=

N

j
j

i

GTDP

GTDP

1

)(

)(
 .                                (11)

The Deegan-Packel index violates MON, an observation made by Deegan and Packel

(1982) themselves. It also violates TRP and BOP. But it fulfils ANY.

Finally, for any ( ;;VNG = )q;w ∈F, the definition of the Johnston index of power

for voter i proceeds as follows. For any coalition S in which i is swing, find the reciprocal

of the number of voters who are swing in S. Add up these reciprocals over all coalitions

in which i is swing and call it the total Johnston power of voter i ( iTJP , for short). iTJP

for ( ;;VNG = )q;w ∈F is given by

 ( )GTJPi = ∑
⊆

−

NS

Sp 1)({ : S is winning but S- {i} is losing},                        (12)

 where ( )Sp  = number of voters who are swing in S. Then the Johnston power index of

voter i for the game G is

     ( )GJi  = 

∑
=

N

j
j

i

GTJP

GTJP

1

)(

)(
 .                                                                          (13)

The Johnston index meets ANY and MON. However, it violates TRP and BOP.
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    4. The Characterization Theorem
The voting power indices can give quite different results. One index can give

considerably more power to some voters than another. In view of this, it is necessary to

characterize alternative indices axiomatically for understanding which indices become

most appropriate in which situation. An axiomatic characterization gives us an insight of

the underlying index in a more elaborate way through the axioms employed in the

characterization exercise. Interesting characterizations of the Shapley-Shubik and

Banzhaf-Coleman indices have been developed and discussed by several researchers,

including, Dubey (1975), Straffin (1977, 1994), Owen (1978, 1978a), Dubey and Shapley

(1979), Lehrer (1988), Roth (1988), Haller (1994), Brink and Laan (1998) and Burgin

and Shapley (2001). For the Deegan-Packel index, a characterization was developed by

the authors themselves.

The objective of this section is to characterize the new index using a set of

intuitively appealing axioms. For this purpose, we need to extend the domain of the

power index Ii . We shall assume that the power index Ii  given by (6) is defined on all

“weighted voting games” ( )G N V= ; ; w , where ( )N V;  is a voting game considered in

definition 1 and ( )w = w w wn1 2, ,...,  is the vector of nonnegative weights of the n voters

in N. The set of all weighted voting games will be denoted by 
~
F . Since a weighted

majority game can also be regarded as a weighted voting game, F⊆ ~
F . In the literature

often 'weighted voting games' and 'weighted majority games' are used synonymously.

However, in this paper the former represents a more general type of games than the latter.

For instance, suppose that in an organization, where each member has a nonnegative

weight, a coalition is winning if and only if it is winning in the sense of definition 6 and it

contains the chairperson or two vice-chairpersons of the organization. This can be

regarded as a weighted voting game although it is not representable as a weighted

majority game of the type given by definition 6. Additional similar examples can be

constructed. Although the index Ii  is well-defined on a weighted voting game, as

discussed earlier, it has interesting and desirable properties when restricted to the

weighted majority games. Our characterization of the power index is with this extended

domain.  Throughout the section we will assume that, if ( ;; 111 VNG = )1w  and
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( ;; 222 VNG = )2w  are two weighted voting games, then for a voter 21 NNi ∩∈ , the

weights in both the games are the same. The weight of voter jNi∈ will be denoted by

jG
iw , where j =1,2. Thus if 21 NNi ∩∈ , then 1G

iw = 2G
iw . We will write jG

im  for the

number of swings of voter i in .2,1,, =∈ jNiG jj

Definition 8: Given ( ;; 111 VNG = )1w , ( ;; 222 VNG = )2w ∈ ~
F , we define, 21 GG ∨  as

the game with the set of voters 21 NN ∪ , weight vector { }21: NNiwi ∪∈=w , where,

1G
ii ww =                 if 1Ni∈

     =  2G
iw                if  2Ni∈ ,

and in which a coalition 21 NNS ∪⊆  is winning if and only if either ( ) 111 =∩ NSV  or

( ) 122 =∩ NSV .

Definition 9: Given ( ;; 111 VNG = )1w , ( ;; 222 VNG = )2w ∈ ~
F , we define, 21 GG ∧  as the

game with the set of voters 21 NN ∪ , weight vector { }21: NNiwi ∪∈=w , where,

1G
ii ww =                 if 1Ni∈

     =  2G
iw                if  2Ni∈ ,

and in which a coalition 21 NNS ∪⊆  is winning if and only if ( ) 111 =∩ NSV  and

( ) 122 =∩ NSV .

Thus, in order to win in 21 GG ∨ , a coalition must win in either 1G  or in 2G ,

whereas to win in 21 GG ∧ , it has to win in both 1G  and 2G . It may be noted that if 1G

and 2G  are two unanimity weighted majority games, then 21 GG ∧  is also a weighted

majority game.

We are now in a position to present four axioms on a power index iP  that

uniquely determines the new index iI  in (6). The first axiom we consider is the axiom

A4 considered in Dubey and Shapley  (1979) (see also Dubey, 1975). It shows that the

sum of powers of voter i  in the games 21 GG ∨  and 21 GG ∧  is equal to the sum of his

powers in 1G  and 2G .
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Axiom A1 (Sum Principle): For ( ;; 111 VNG = )1w , ( ;; 222 VNG = )2w ∈ ~
F ,

( ) ( ) ( ) ( )212121 GPGPGGPGGP iiii +=∧+∨ .                            (14)

In order to state the next axiom, let us consider the marginal contribution

{}( ) ( )SViSV −∪  of voter i  when he joins an arbitrary coalition S in ( ;;VNG = )w . Now

voter 'i s worth in the game is ( )iV . Equating this worth with the marginal contribution,

we note that voter i  is either a dummy ( )( )0=iV  or a dictator ( )( )1=iV . As stated

earlier, the power index of a voter should be minimum (maximum) if he is a dummy

(dictator). We consider these two extreme cases of power for voter i  in the following

axiom.

Axiom A2 (Extreme Powers): For every ( ;;VNG = )w ∈ ~
F , if {}( ) ( ) ( )iVSViSV +=∪

for all {},iNS −⊆  then

( ) ( ),iVw
GP

i

i =                                                  (15)

where 0>iw .

The third axiom is formulated in terms of substitutability between two voters.

Two voters in a game are said to be substitutes if the worth of an arbitrary coalition in the

game becomes the same when they join the coalition separately(Shapley,1953).

Therefore, it is reasonable to expect that their powers, as fractions of individual weights,

are the same. More precisely, we have the following axiom.

Axiom A3 (Weight Proportionality): Let voters i and j be substitutes in the game

( ;;VNG = )w ∈ ~
F , that is, {}( ) { }( )jSViSV ∪=∪  for all { }., jiNS −⊆ Then,

( ) ( )
j

j

i

i
w

GP
w

GP = ,                                     (16)

where iw  and jw  are positive3.

The next axiom is concerning the merger of two voters into one. It shows the

relationship between the power of a bloc or a merged voter and his constituents. It is

similar to axiom A5 of Nowak and Radzik (2000) (see also Lehrer, 1988).
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Axiom A4 (Two-Voter Merging Principle): Let ( ;;VNG ′′=′ )w′ ∈ ~
F  be the ( )1−N -

person merged game associated with a pair (i, j) of voters in the game ( ;;VNG = )w ∈F,

where NUV = , N ′  and V ′  are same as in the definition 7, and

kk ww =′             if jik ,≠

jiij www +=′  .

Then,

( ) ( ) ( )




 +=′

′
j

j

i

i

ij

ij

w
GP

w
GP

w
GP

 ,                                    (17)

where iw  and jw  are positive.

Theorem 2: A power index iP  satisfies A1-A4 if and only if iP  is the index iI  in (6).

Proof: We will first show that iI  satisfies all the axioms A1 through A4.

To show that A1 is satisfied by iI , first let 21 NNi −∈ . Now, any subset S ′of

12 NN −  can be appended to a swing coalition 1NS ⊆  for i  in 1G  to obtain a swing

coalition SS ′∪  for i  in 21 GG ∨  unless ( ) 2NSS ∩′∪  is winning in 2G . Hence the

number of swings for voter i  in 21 GG ∨  is

2112121 2 GG
i

NNG
i

GG
i mmm ∧−∨ −=    ,

where 21 GG
im ∧  is the number of swings of  i  in 21 GG ∧ . Since for 21 NNi −∈ , 2G

im =0,

we rewrite 21 GG
im ∨  as

2121212121 22 GG
i

NNG
i

NNG
i

GG
i mmmm ∧−−∨ −+= .

The same expression for 21 GG
im ∨  will be obtained if 21 NNi ∩∈  or 12 NNi −∈ .

Therefore, 

( )
11121

21

21

2

2

1

1

222 −∪

∧

−−
−+=∨

NN

i
GG

i

N

i
G
i

N

i
G
i

i

wmwmwm
GGI ,                       (18)

which in turn gives

( ) ( ) ( ) ( )212121 GIGIGGIGGI iiii +=∧+∨ .

This shows that iI  verifies A1.

To check satisfaction of A2 by iI , note that {}( ) ( ) ( )iVSViSV =−∪  gives
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{}( ) ( )[ ]
{ }

∑
−⊆

−∪=
iNS

i SViSVm

     = ( )
{ }

∑
−⊆ iNS

iV

     = ( )iVN 12 − .

Hence,

( ) ( )iVm
w

wm
w

GI
N

i
N

i

ii

i

i === −− 11 22
,                                    (19)

which shows that iI  meets A2.

Next we verify fulfillment of A3 by iI .

Now, let {}{ }iNS −⊆=ζ . Clearly, we can write ζ  as 21 ζζ ∪ , where

{ }{ }jiNS ,1 −⊆=ζ  and {}{ iNS −⊆=2ζ  and }Sj∈ . We rewrite 2ζ∈S  as { }jS ∪′ ,

where { }jiNS ,−⊆′ . Then,

{}( ) ( )[ ]
{ }

∑
−⊆

−∪=
iNS

i SViSVm

     {}( ) ( )[ ]∑
∈

−∪=
ζS

SViSV

     {}( ) ( )[ ]∑
∈

−∪=
1ζS

SViSV  + {}( ) ( )[ ]∑
∈

−∪
2ζS

SViSV

      {}( ) ( )[ ]
{ }
∑
−⊆

−∪=
jiNS

SViSV
,

 + { }( ) { }( )[ ]
{ }

∑
−⊆′

∪′−∪′
jiNS

jSVjiSV
,

,                  (20)

We can rewrite im  in (20) as

{}( ) ( )[ ]
{ }
∑
−⊆

−∪=
jiNS

i SViSVm
,

 + { }( ) { }( )[ ]
{ }
∑
−⊆

∪−∪
jiNS

jSVjiSV
,

, ,                    (21)

which on simplification becomes { }( ) ( )[ ]
{ }
∑
−⊆

−∪=
jiNS

i SVjiSVm
,

, , since by hypothesis

{ }( ) { }( ) { }V S i V S j S N i j∪ = ∪ ∀ ⊆ −, , .

By a similar calculation we get { }( ) ( )[ ]
{ }
∑
−⊆

−∪=
jiNS

j SVjiSVm
,

, .

Hence ji mm = . Therefore, ( ) ( )
j

j
N

j
N

i

i

i
w

GImm
w

GI === −− 11 22
, which shows that

iI  meets A3.
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Finally, let ( ;;VNG = )w be a weighted voting game where NUV = . Let

( )w′′′=′ ;;VNG  be the ( )1−N  merged game associated with the pair of voters ( )ji,  in

the game G . Then since NUV ′=′ ,

( )
222 2

1
22 −−− =

′
′

=
′

′′
=′

′
N

ij
N

ij

ij
N

ijij

ij

ij

w

w

w

wm
w

GI
.

Also,

( ) ( )
21111 2

1
2222 −−−−− =+=+=+ N

j
N

j

i
N

i

j
N

jj

i
N

ii

j

j

i

i

w

w

w
w

w

wm

w
wm

w
GI

w
GI ,

since NUV = . Thus, iI  satisfies A4.

We now show that if a power index iP  satisfies A1-A4, then it must be iI . First

observe that any iP  is uniquely determined by its values on unanimity games. This is

because, for any game ( ;;VNG = )w ∈ ~
F , 

kSSS GGGG ∨∨∨= ....
21

, where kSSS ,....,, 21

are minimal winning coalitions of G  and 
iSG is the unanimity game corresponding to

kiSi ,...,2,1, = . Thus, by A1, ( )GPi  is determined if ( )
1Si GP , ( )

kSSSi GGGP ....
32
∨∨  and

( )( )
kSSSi GGGP ∨∨∧ ...

21
 are known. But, ( )

kSSS GGG ∨∨∧ ...
21

= ∨∪ 21 SSG  
kSSG ∪∨

1
... and

hence, by induction hypothesis both ( )
kSSSi GGGP ....

32
∨∨  and ( )( )

kSSSi GGGP ∨∨∧ ...
21

are determined. So ( )GPi  is determined.

In view of the above discussion, we can say that it is enough to determine

;;( Ni UNP )w  for any unanimity game. We shall prove by induction on N  that,

;;( Ni UNP )w   = 12 −N
iw .

If  N =1, then by A2, ) 1;;( =
i

Ni
w

UNP w . So assume N >1. Let ji ≠  be two voters in

N  and for the merged game ( )w′′ ′ ,, NUN  associated with the pair ( )ji, , we have, by A4,

  
( )

i

Ni

w

UNP w;;
  + 

( )
j

Nj

w

UNP w;;
 = 

( )
ij

Nij

w

UNP

′

′′ ′ w;;
 .                  (22)

By induction hypothesis,
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( )
ij

Nij

w

UNP

′

′′ ′ w;;
=

22

1
−N

.                                                               (23)

Also by A3,

 
( )

i

Ni

w

UNP w;;
 =  

( )
j

Nj

w

UNP w;;
.                                                  (24)

Hence by (22)-(24), we have

2
( )

i

Ni

w

UNP w;;
 = 

22

1
−N

,

which gives ( )w;; Ni UNP  = 12 −N
iw .

Thus the values of iP  coincide with iI  on unanimity games and hence on all weighted

voting games.  �

We may now give an example to illustrate how the power of a voter in a game can

be calculated from his powers in the minimal winning coalitions in it. Consider the

weighted majority game ;;( VNG = );qw , where { }4321 ,,, AAAAN = , w ( )1,2,3,4=  and

the quota 7=q . (This example is due to Straffin, 1994). The minimal winning coalitions

are { }211 , AAS =  and { }4312 ,, AAAS = . Hence, denoting the unanimity game for iS  by

iSG  (i=1,2), and letting ( ) NN GUN =; , we get

( ) ( ) ( ) ( )NiSiSii GIGIGIGI −+=
21

.

Suppose now, that 1Ai = , that is, we want to find the power of voter 1A  in G . Then,

( )
32 2

4

2

4

2

4
1

−+=GI A

            = 2.5.

Likewise, we determine powers for other voters.

                                                     5. Concluding Remarks

Power of an individual voter depends on the chance he has of being critical to the

passage or defeat of a resolution. This paper suggests an index of power for an individual

voter in a weighted majority game, a very popular and common type of voting game. The

index is found to satisfy all the intuitively compelling axioms suggested in the literature
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for a voting power index. We then relate the new index with some of the existing indices

in order to investigate its relative performance. An axiomatic characterization of the new

index has also been carried out for getting a greater insight of it.

An interesting extension of our analysis will be to check independence of the

axioms A1-A4. By independence we mean that if one of these axioms is dropped, then

there will be a power index other than iI  in (6) that will satisfy the remaining three

axioms but not the dropped one. That is, independence says that none of the axioms A1-

A4 implies or is implied by another. This is left as a future research programme.

One limitation of our index is that it is applicable to weighted games only and

dependent on the weights chosen. However, weighted games are extremely easy to

imagine and arise in real life quite frequently. From this perspective, our index has a very

clear merit.

                                                                Notes

1. Felsenthal and Machover (1995, theorem 11.1) implicitly demonstrated proposition1

while determining the value of the second Banzhaf-Coleman index for a bloc voter.

However, our proof of the proposition is different from their proof.

2. Strictly speaking, the two Coleman indices are given by ω
i

i
mE =1  and

( )ω−= N
i

i
mE

22 , where ω  is the total number of winning coalitions in the game.

We, however, follow the convention adopted in the literature and refer to iB1 - iB3  as

the Banzhaf-Coleman indices. It is easy to see that iE1  and iE2 , which are called

indices of power to prevent action and power to initiate action and whose harmonic

mean becomes iB2 , may behave in the same way as iB1  with respect to TRP.

3. Nowak and Radzik (2000) suggested a similar 'Weight Proportionality' axiom for

mutually dependent voters, where two voters i  and j  in a game ( )VN;  are called

mutually dependent if {}( ) ( ) { }( )jSVSViSV ∪==∪  for all { }., jiNS −⊆
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