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A functional central limit theorem for a class of urn models
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Abstract.  We construct an independent increments Gaussian process associated to a
class of multicolor wn models. The construction uses random variables from the urn
model which are different from the random variables for which central limit theorems
are available in the two color case.
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1. Introduction

Consider a four-color urn model in which the replacement matrix is actually a stochastic
matrix R as in refl [4]. That is, we start with one ball of any color, which is the 0-th
trial. Let W, denote the column vector of the number of balls of the four colors up o
the n-th trial, where the components of W, are nonnegative real numbers. Then a color is
observed by random sampling from a multinomial distribution with probabilities {1/ (n+
111W,;. Depending on the color that is observed, the corresponding row of R is added
to W), and this gives W) _|. A special case of the main theorem of Gouet [4] is that
if the stochastic matnx R s irreducible. then (1/(n+ 1))W) converges almost surely
(a.5.) W the stationary diswibution x of the imeducible stochastic matrix R (it should be
carefully noted that the multicolor urn model is vastly different from the Markov chain
evolving according to the transition matrix equal o the stochastic mawrix R, also notice
that T is a row vector). Suppose the nonprincipal cigenvalues of R satsfy &) < 1/2.4; =
1/2, 43 = 1/2 respectively, which are assumed to be real (and hence lie in (—1, 1)), and
E1,E1,E; be the comresponding eigenvectors. Using & = aRE = L il is seen that
(1/(n+1) W' & — 0.

Central and functional central limit theorems for W),.E have been the subject of sev-
eral papers in the literature [2,3.7] especially for two-color models and also some mul-
tcolor models. The nomming in the central limit theorems in the two color urn mod-
els depends on the nonprincipal eigenvalue as follows: for L < 1/2 the mte is /n, for
A = 1/2 the rate is /nlogn and the limits are normal in these two cases. However
for A = 1/2 the rate is [ ‘;_I{l + (A (j+ 1) and in this case the limit exists almost
surely.

Functional central limit theorems (FCLT) for a class of two-color urn models have
been considered by Gouet [3]. These FCLTs of Gouet [3] use the same normming,
as stated m the previous paragraph, under which central limit theorems have been
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proved in [2] and [3]. Ref. [3] contains a survey of the lilerature on such FCLT s, In
this articke we prove a different FCLT that uses random varables with the norming
[[E;_I{l + (A S j+ 1)) irrespective of whether A is less than /2, equal o 1/2 or greater
than 1/2. This is the main result of the paper. For the sake of convenience we restrict
ourselves 1o real eigenvalues only. We state the result for the above four-color model but
it can be seen from the proof that it can be extended o urn models with any number of
colors.

The article is organized as follows. In §2 we develop the notation, state the main
result and give its proof. Some of the calculations have been done separately in
53,

2. Main result
We wrile

“'L:rél'
! (1+j-*‘3.7)

where & is the eigenvector corresponding to the eigenvalue A;. From the description of
the urn model we have Wi & = Wi.E + 3 (RE = Wi & + Ay, &, where ¥, is the
column vector consisting of the indicator functions of balls of the four colors respectively.
We also have

Ziy= (1)

E{Z B} = —< Wi o)
where ., is the o-field of observations up 1o the n-th trial. From this it follows that #; , is
amartingale. From §3, it follows that Z3 , is L*-bounded so that it converges almost surely.
However in the two color case, for A < 1/2, WIE /\/nand for A = 1/2, W& /\/nlogn
converge o normal distributions and the FCLT's proved in [3] use such normalizations.
Thus the guestion of using the same norming [[H_I{l +{(A/(j+1)) ~n*, to get an
FCLT irrespective of A < 1/2 4 =1/2 or A = 1/2, is of interest. Our main result,
Proposition 2.1, is a step in this direction using the tails of the sequence (Z) ;. Za,.Z3,)
whereas the FCLT's in the literature are based on partial sums stating from the
beginning.

PROPOSITION 2.1.
The sequence of processes Gy (t) = (G (1), Gaylt), Gay(t)) where

[#2e’]
Ginlt) = Z ml"_l"_{zi.m—l —Zim)y i=1,23,120,

m=n

converges to an independent incirements Gaussian process Gt ) with covariance finction
cij(t) = thA & ') i, j = 1,2, 3, where the vector of the coordinate-wise product of
the components of the two vectors § and &; is denoted by §&; and the Euclidean inner
product of the two vectors is denoted by { ).

Note that the process G can be viewed as 8 multidimensional Wiener process with covari-
ance function o j(-).
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Proaf. From eq. (1) we have the following expansion:

A x"' i §.|
T T srs—me g g L}_
o “i”:::(l‘i'ﬁ)

.
el éJ?cf..lra + A xl—”_l . -
m m
Since the components of G (1) are martingales, an independent increments Gaussian pro-
cess as a limiting process is expected. In particular we follow Theorem 1.4, p. 339 of [1],
by which it is enough w show that the joint characterstics of the martingales converge
to a joint covariance function. Note that from (3) m 3 (Zime1 — Zim) = O1//m), as
W, &i/m and ¥ . & are bounded. This takes care of continuity of the paths and cross
quadratic variations which is condition (b) of that theorem. Thus il remains 1o show that
the cross quadratic varations convergeto o j(r). We first do this fori = 1, j = 2. From (3)
we have

(3)

(ol
”ilj_l'lll{ZI.Ju—l _zl.m:I Dt _';]lelj_l & m§| +.}]L -2 {xm_lﬁlj.

s o
f ol
nrl-l_l "'1{31_m_| = zl_mj i _ll,nlz—l 2 ;-:‘!é? J]L da—1/2 {x.';:ll:g—:l : ()

We want o show that in computing the cross quadratic variation, which is the limit of

[ne']
Z E{mi’ I"_ l‘_l "_{ZI mel — & m:":z"-' mel— £ m:| ?;ra}-
L3
only the second term from the right-hand side of each of eqgs (4) contributes. Since ¥, |
consists of indicator functions, which implies that

(z§|.xxar—|.r.) (Eﬁz.rxn—u) o Elﬁuﬁz.x}{n—m-
k i k

this contribution is the limit of

[nef]

e (e 2,

L

which is 1) A2 (& &, '), since from [4] we know W /(m+ 1) — & a.s. Also notice that
this partof the argument does not de pend on whether &) or Az are less than orequal to 1/2.

To see why the contribution to the cross quadratic variation from the first terms of (4)
zoes 1o 0, by Cauchy-Schwarz inequality it is enough to show that the sum of squares
overn to [ne'] of the first terms in each line of (4) goes to 0. This part of the argument will
depend on the value of &, Note the following which have been proved in §3:

For Ay < 1/2, Jf' is L2-bounded, (5)
; W' &, .
For Az =1/2, —%=— is L"-bounded. (6)

3/ M I{)g!ii
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Consider the case A < 1/2. We need 1o show

[ |

E mgl —0as.

We know that for A, < 1/2, W! E,/\/m is L*-bounded. so that

e |
| m {w:rﬁl

E ":EE

Since the sum side the expectation in the middle 1s decreasing inon, it converges o0 as.
For Az = 1/2. W) &1/ /mlogm is L?-bounded, and one can proceed similarly. Thus we
have proved that ¢y 2(t) = tA1A2(& &2, ). Similady ¢ j(1).i,j = 1,2, can be computed
as given in Proposition 2.1,

Now consider as 1o what will happen if we were computing say ¢ 3(t). For 4; = 1/2,
the expansion (4) is similar, and in the cross quadratic variation the contribution of the
second term from the right-hand side of

£fgy |
cnns,L_Z—,J —0. (73
" m=

{ g
.].1. | ’n.l.'l.

m3= 12 (Bm+1— Z3m) ~ —Aym™
is similar to what we had before. For 43 = 1/2, W:”ﬁ:,.-’[[‘”_ (14+{As/(j+ 1)) is a mar-
tingale and from Appendix 3.3,

w:ra 'i"r

e is [2-bounded. (#)

m

So W! & /m* converges almost surely. This implies that the contribution of the first term

i “,"'IJHEJ:' 1
Z 2 g2k

since 243 << 2. Thus e j(1).i = 1,2,3, j = 3, can be computed as given in the statement of
Proposition 2.1. This completes the proof. O

—as

m

3. Appendix

Suppose real eigenvaloes satisfy &) < 1/2, 4= 1/2,43 = 1/2and £, &, & be the corre-
sponding eigenvectors. In this section we prove that X, ¥, and Z; are I *-bounded where
Wi W5 W&

Xy = —= y Y=, Zy=—— 9
H \,"'{1'_! i .-—ngn. W= [[E;_ (1+ ) 9

a fact which has been used in the proof of Proposition 2. 1. For X,, and ¥, verification of L*-
boundedness is through Lemma 2.1 of [6]. This is done on a case by case basis depending
on A, and A, in the nexttwo subsections. For the reader’s convenience we state Kersting's
lemma from [6] here:

Lemma 2.1[6]. Let ., By (n = 1) be nonnegative numbers such that o, — 0, Y7 o, =
=, gnd for large n,

Bus1 = Bull — coty) +daty
with c,d = 0. Then limsup,_ . B, < d/c.
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3.1 L2-boundedness af Xy

Using W/ .| & = W/E + A1 ). & and the definition of X,,, we get

[n Xns1 51
T S L
il "\p'llln+1+ﬁ" 1

Taking conditional expectation and vsing (2) we get

1 22 AL W, .o
EX2 Fi=x211—-——1)(1 ' B
{Jr—l "} Jr( H+1)(+H+1)+H+1<n+l'§l>'

from which king further expectation we get

1 22, A W, .,
EX;. | =EX; 1——)(1+ )+ L_(E— E}.
i "( n+1 n+1 n+1 n+1 Si

The last vector E(W,. /(n+ 1)) consists of bounded components. Thus if 4 < 0, then

1 consl
EX;, | <EX; (1— )

n+1 +n+1"

and Kersting's lemma applies. If 4 = 0 then we still have 4 < 1/2 ie. 24 < 1. In this

Case
1 24 2
- jp ey oqy T 1
n+1 n+1 n+1 n+1

il )

n+1

Le. Kersting's lemma applies.
32 [’-boundedness of Y,
Using W) .| & = W} & + Aoy, . | &2 and the definition of ¥, we get

- nlogn X1 52
hr—l = hr E.IIIII l:]'! + 1:”03{:! + 1:| H:l V"'I':';‘-T-ml":l |ﬂg{!! + 1:|

Taking conditional expectation we get (recall A; = 1/2)

logn :
E{Y2 | Fa} =¥ — 1 )
{Yestl Fn}f = 1y (n+ 1)log(n+1) +"+1

A3 W, .,
i (n+1)login+1) <"+1 "'§1>'

from which taking further expectation we get

_{n+1j|ﬂg{n+l]—nlugn)(1 1 )
(n+1)login+1) n+1

-‘111 <E Wi 1§ﬂz>_

+{n+1:|h;g{n+1:| n+1"7°

EY . =EY; (1
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The vector E(W, /(n+ 1)) consists of bounded components. Now we apply the second
trick of the previous subsection o apply Kersting’s lemma. The following calculation
does the rest of the work.
We show that
in+1)login+1) —nlogn 1
(n+1)login+1) Cn+1

(n+1)log(n+1) { } — =
We approximate login+ 1) by logn + ﬁ This gives
' . ) 1
in+1)logln+ 1) —nlogn ~(n+ ljlogn+ (n+ 11— —nlogn
n
1
=logn+1+4+-.
n
Hence
1 1 1
logn + 1 +H —login+ 1)~ | logn+1 +H - Iugn+; — 1.
3.3 L’-boundedness of Z,
The proof follows Lemma 3.1 of [2]. We have earlier proved the approximation

A rE
Er-| _ZJr’” __'J,Z” +—"]L."rx" j_lg}
n e

Now with the martingale property of Zy, Z,. = Ze +(Z01 — Zy), and by the above
approxmmation we have
W, 2
1 <n_—”|' 3)

22 Az
[ 2 2 3 72 : 21 2
E{Zir_ll.?:rj Nz"‘ + ;i-zr == 2’-;-'2\- "+ﬁ,]_ -----?Iul—.m

implying

(10

A2 const
2 af, A 3 Con:
Bz = EZy (1 " ) T4 PRI

Since 243 = 1, by iteration of { 10) it follows that Z,, is L*-bounded.
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