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The problem of Identifying motifs comprising nucleotides at a set of polymorphic DMA sites, not necessarily
contiguous, arises In many human genetic problems. However, when the sites are not contiguous, no efficient
algorithm exists for polymorphic motlf identification. A search based on complete enumeration Is computationally
inefficlent. We have developed probabilistic search algorithms to discover motifs of known or unknown lengths. We
have developed statistical tests of significance for assessing a motil discovery, and a statistical criterfon for
simultaneously estimating motif length and discovering . We have tested these algorithms on various synthetic data
sets and have shown that they are very efficlent, in the sense thar the “true” motifs can be detected In the vast
majority of replications and in a small number of iterations. Additionally, we have applied them to some real data
sets and have shown that they are able to identify known motifs. In certain applications, it is pertinent to find motifs
that contain contrasting nucleotides at the sites Included In the motlf (e.g., motfs [dentified In casecontrol
assoclation studies). For this, we have suggested appropriate modifications. Using simulations, we have discovered
that the success rate of identification of the correct motif s high In case-control studies except when relative risks are
small. Qur analyses of evolutionary data sets resulted in the Identification of some motifs that appear to have
important implications on human evolutionary inference. These algorithms can easily be Implemented to discover
motifs from multilocus genotype data by simple numerical recoding of genotypes.

[Supplemental material s avallable online at www.genome.org. The following individuals kindly provided reagents,

samples, or unpublished information as Indicated in the paper: A. Chowdhury.]

Single nucleotide polvmorphisms (SMPs) are abundant in the hu-
man genome and occur at roughly 1 per 2 kb spacing on the
average (Balasubramanian et al. 2002). Alleles at SNP loci are
often nonrandomly associated. Various evolutionary mecha-
nisms, including drift and natural selection, maintain the asso-
clation of specific nucleotides at two or more sites, which may
not be contiguous, The search for nucleotides that exhibit asso-
clation at a set of polymorphic sites is of interest in studies of
commaon diseases (Sabeti et al. 2002) and in evolutionary genet-
ics (Tateno et al. 1997; Daly et al. 2001). We define a set of
nucleotides that occurs with a high frequency at multiple poly-
morphic DMA sites, not necessarily contiguous, in a group of
individuals as a "polymorphic motif.” We note that our defini-
tion of a motif differs from the conventional definition, for ex-
ample, that is used for finding regulatory sequences in promaoter
regions of genes (Keiler and Shapiro 2001), in two ways; (1) the
sites included in our definition are polymorphic, and (2) the sites
need not be contiguous. In conventional motif-identification
problems, search is made for evolutionarily conserved nucleotide
sequences at a contiguous set of nucleotide positions (Gupta and
Liu 2003). In case-control studies of common diseases, it is of
interest to find polyvmorphic motifs and to test whether there are
differences in motif frequencies hetween cases and controls
(Khani-Hanjaniet al. 2002). Motifs that are found in significan thy
higher frequencies among cases are associated with the disease
under study. If variants in multiple genes are indeed involved in
the disease, the sites in such a motif may not be contiguous,
Similarly, the discovery of polvmorphic motifs is important in
evolutionary genetics. Indeed, such maotifs have been used to

define subhaplogroups of specific clades thaplogroups) of the hu-
man mitochondrial imt) DMNA (Bamshad et al. 2001).

In the context of evolutionary or human genetic studies,
there are two related issues. First, to identify motifs or haplotypes
that occur at high frequencies in subsets of a large data set, such
a5 those sampled from specific geographical regions or groups, or
from individuals afflicted with a specific disease. Having identi-
fied such motifs, the second problem is to decipher the biological
or population genetic processes (e.g., linkage, drift, selection,
epistasis) that have resulted in the existence of these high-
frequency maotifs. In this study, we shall only address the Ffirst
issue, viz., how to identify high-frequency maotifs. To address the
second issue, collection of further data (e.g., family data), statis-
tical modeling, investigations of metabolic pathwavs, wet-
lahoratory experimentation, etc., may be required.

It is theoretically possible to discover polymorphic motifs in
a set of N-aligned DINA sequences, each of length L nucleotides,
by examining frequencies in all possible k = k tables,
k=23, L However, this is computationally infeasible. The
purpose of this study s to propose a set of computationally st
probabilistic search algorithms that may be used for motif find-
ing, and to evaluate their efficiencies using both synthetic and
real data sets. Keeping SMNP loci in mind, which are usually bial-
lelic, we formulate, describe, and assess these algorithms using
sequences of binary characters. However, there is no inherent
restriction in these algorithms that the search has to be confined
to binary sequences. These algorithms can also be used on mul-
tilocus genotvpe data of diploid individuals. When genotvpe
data are used, the distinct genotypes only need to be numerically
recoded, as discussed later. Thus, the proposed algorithms are
fairlv general in nature, and can be put to diverse uses.

We first propose an algorithm for identifving a motif of a
given length. We then extend this algorithm when the length is
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unknown. Finally, we propose a modification for identifving
"variant” motifs. The problem of identifving a variant motif
arises when, given a collection of DNA sequences derived from a
set of individuals, it is of interest to identify whether an appro-
priately defined subset of individuals in this collection possesses
a motif that s different from that possessed by the remaining
subset of individuals. For example, in a case-control study, it is
pertinent to identify whether the cases possess a motif at a cer-
tain number of sites that comprise nucleotides, each of which is
different from the nucleotide possessed by the controls at the
corresponding sites. Identification of such a variant motif can
help in identifying SMPs associated with the disease in question.
The problem of identifving variant motifs in subsets of a collec-
tion of sequences at the hvpervariable segment-1 (HVS1) of hu-
man mtDMNA has recelved a lot of attention (Cuintana-Murcl et
al. 1999). In particular, eforts have been made to to identify
contrasting motifs in HVS1 in subsets of individuals belonging to
different haplogroups (HGs) that are defined by the presence of
specific nucleotides at sites outside of the HVS1.

In each of these problems, a variant motif s defined in re-
lation to another. For example, for case-control data, the variant
motif among cases is defined in contrast to the one found among
the controls. In the evolutionary analvsis of mtDMNA HVS1 se-
quences, search for a motif is made in contrast to the Cambridge
Reference Sequence (CRS) (Anderson et al. 1981). In such cases,
for motif searching, not only do we have to find a high-frequency
motif, but this motif should contain nucleotides that are com-
pletely or largely different from those present in the reference
sequence at the corresponding nucleotide positions.

Methods

Consider a data matrix (). . where a;; denotes a nucleotide
(AT,G, or C) at the [ polymorphic site (f= 1,2,....L) for the i*
individual (f=1,2,..., N). The data matrix is generated from
aligned DMNA sequences of a specific genomic segment of N indi-
viduals, from which all monomaorphic sites have been removed.
We note that if these N individuals belong to a casecontrol
study, then the data matrix needs to be initially created by pool-
ing all cases and controls, and subsequently separated into two
matrices, one for cases and another for controls. A similar strat-
egy Is also required in evolutionary studies, while simultaneously
dealing with two populations. We also note that if disjoint seg-
ments of DA are to be simultaneowsly examined for motif find-
ing, then appropriate segments may be separately aligned, and
the aligned segments concatenated in the data matrix.

Let ¥V ={12,... L} denote the set ofall L polymorphic sites in
the data. Let IT, denote the set of all possible combinations of p
sites in V. To fix ideas, consider the data matrix given in Tahle 1.
In this matrix, N=4, and L =7. Thus, V={12,_..7| For p=2,
My = (11,21 (1,3h.., [L7h (23] (2,4h.., [6,7) | = [V3),

Table 1. An example of a data matrix

Variant site no.

Sequence,

Individual no. 1 2 3 4 5 [ 7
1 A A T T G C C
2 A G T C G C T
3 A G T T A C T
4 G G c C A T T

k=12..(0). In general, I, = [Vi}, k= 12,...(;) and V} = s},
.t’_é,...,xﬁ (xf £ V] For a Axed k, we define the modal sequence on ‘.ﬁ
as that particular combination of nucleotides at the sites
|k, x’_é,...,xﬁ} included in ir’f,, k= 1,2,...[:;] which has the highest
frequency. In the data matrix of Table 1, the modal sequence, for
example, on V1 = [1,2} Is AG with requency 2, on V3 = (1,3} 5 AT
with frequency 3, etc. We define a motif of length p as the maxi-
mally frequent modal sequence on I1; that is, the sequence that

occurs with the highest frequency (glohally modal) among
A

modal sequences on V2, V2,..., :,r:;f'. In our example, the motif of
length 2 Is AT on V3 = |1,3} with frequency 3.

In general, the problem of finding a motif of length p from
an N =L data matrix reduces to identifying the set V&, k=12, ..,
[i;], from I, such that the modal sequence on ‘.’f is globally
maodal. With an N« L data-matrix, the search space I1, has [i;]
elements. Obviously, each element ol I1, s astring, §, comprising
the identities of those specific psites chosen out of L. There are [i;]
such strings in IT,. An exhaustive search of this space I1, is com-
putationally very expensive, and perhaps infeasible. We propose
a stochastic search method, similar in spirit to the Metropolis-
Hastings version (Metropolis et al. 1953) of simulated annealing,
which is computationally fast and efficient. In this method, we
maximize an objective function, (), that is naturally defined as
the “frequency of the modal sequence on the string 8 € 11,7 By
our definition, maximizing the frequency of the modal sequence
on I, leads to identification of the maotif of length p. Thus, the
search comprises choosing both sites and characters at these
sites, so that the chosen set of characters at the chosen set of sites
has the maximum frequency in the data set.

Algorithm for finding a motlf of a given length and assessing
its statistical significance

Although in real problems, the maotif length is usually unknown,
for ease of exposition, we fiest describe an algorithm for a known
maotif length p, and then generalize it to the case of an unknown
maotif length. Instead of maximizing (%), we shall consider the
equivalent problem of minimizing a monotonically decreasing
function, Hi%), of &(5). The algorithm is iterative. We start with
an arhitrary string 5 of length p; that is, a set of pdistinct nucleo-
tide sites drawn randomly from the L polvmorphic sites. In each
iterative step, an element (a specific site) of the string 5 is up-
dated. The updating procedure requires the computation of (%),
which is done from the frequency distribution of all unique se-
quences at the sites included in the string 5. For this purpose,
given a specific string of sites, §, of length p, we enumerate from
data the frequencies (fj) of all unique nucleotide sequences g
(1=1,2..), at the sites included in 5. At each iterative step, we
update a single site, and after p such iterative steps, we get a
completely updated string. The procedure of updating a string
completely is called a sweep. Thus, a sweep comprises p iterative
steps. Let 5, denote the updated string after ¢ sweeps.
We shall use the following notations:

1. Let 8§, = (¥, ¥2 ., 2™, where ¥" denotes the i element (a
site) of the string at the (t + 1) sweep.

2. Let §" denote a string in the (t+1)™ sweep, whaose First |
(0 =i=p-1)elements have already been modified.

3. Let 5"y denote a string in the (f+ 1)™ sweep, whose first
(0 =i=p-1)elements have already heen modified and the
(i + 1" element is replaced by element p.

4. Let " denote the minimum value of H($) after completion of

the i iterative step in the (t+ 1)" sweep step.




Motif identification algorithms

5. Let M}" denote the string of elements (array of sites) corre-
sponding to HIM,

We initlally set H =0, and M as a "null” string, that Is, a
1:xp vector whose elements are all set to zero. The updating
procedure for the # element in the (t + 1) sweep uses the idea
underlving the Metropolis-Hastings algorithm (Metropolis et al.
1953), which can be described as follows:

We first calculate B, = c.in(t + 1); where ¢ Is a constant and
c= 0. One element (x) 1s selected at random from the set V51 '
that is, from the set V={1,2,..., L}, from which the elements
included in the set 5 ' have been removed. We then probabi-
listically update x!" to ¥ | according the following rule:

0 x  with probahility minA, 1)
Y= |y with probability 1 - mingA, 1)
where, A=¢ Bl S~ Yy - HsY "'1.1.-'-"'|||_

Ohwiously, the transition probability from one string to an-
ather depends only on the outcome of the current string (hMarkov
property). As is easily understood from the above updating rule,
at any step of the iteration, a new string that vields a smaller
value of H(5) 1s always accepted, but to avold being trapped at
a local minimum, the new string with higher value of H(5)
may also be retained with a small probability (that crucially de-
pends on the preassigned control parameter ¢ and the corre-
sponding sweep step f). It may be noted, however, that as the
number of sweeps, t, increases, the process stabilizes. In other
wards, the probahility of accepting a worse string decreases as
t increases. The algorithm converges to the global minimum if
B, increases to infinity logarithmically (Winkler and Lutz
2003), and the speed of convergence is determined by the local
oscillations of the function H at various coordinates of its ar-
gument. [Detailed results on convergence of nonstationary
Markov chains can be found in Winkler and Lutz [2003]). It is
clear that our cholce of B, satisfies this general property. In prac-
tice, it is important to start with a small value of ¢ (say, five), but
also to try with larger values of ¢ to examine convergence to the
same optimal value of the function and the rate of convergence.
Large values of ¢ can substantially speed up convergence, but can
also result in the algorithm heing trapped in a local minimum,
and a large number of sweeps may be required to get out of the
trap.

After each iteration, we compare H(S' () with H' 'IE,
HIS Y < BV, then HISY Y(x)) 1s the new value for H' Y
and M} Is the updated string 5 "'(x). Otherwise, we do not
change HY' " and M". In each iteration, therefore, we compare
the value of the objective function with the smallest value it has
attained thus far. (If that smallest value remains the same over a
large number of consecutive sweeps, then the entire procedure
may have to be restarted with a new randomly chosen string.
This is standard in most numerical optimization procedures.)
This introduces the concept of elitism in our algorithm, which is
popular in evolutionary computation (Goldberg 1989), and is
done to retain the best value that was achieved during the entire
run. Using available convergence results (Liu 2001; Winkler and
Lutz 2003), it can be shown that as the number of sweeps goes to
infinity, the value of the objective function converges to the
glohal minimum. In practice, however, the procedure needs to he
terminated after a finite number of sweeps. We have terminated
when an upper bound (usually taken to be a large number; we
have used the value of 5000 in our analvses) on the total number
of sweeps was reached.

We note that, as with all numerical optimization proce-
dures, it is desirable to repeat the procedure a certain number of
times from different starting strings, and examine whether con-
vergence to the same optimal value is obtained. The number of
repetitions of the procedure that is practically feasible obviously
depends on the availability of computing resources.

Having discovered a motif of a given length p in a data set,
it is important to assess the statistical significance of the discov-
erv. For this, we need to estimate the probability of existence of
a motif of length pin a “random” data set of "similar” structure
as the real data set in terms of nucleotide composition (as ex-
plained in detail in the Results section), that has a frequency
higher than the motif discovered in the real data set. If this prob-
ability is smaller than a preassigned value (say, 0.05), then the
maotif that has been discovered can be declared to be statistically
significant. To estimate this probability, we created a large num-
ber of random data sets, by randomly permuting the elements of
each column of the real data set. For each random data set thus
created, we used our algorithm to discover the motif of length p
with the highest frequency, that is, the "best” motif. The propor-
tion of random data sets in which the best motif had a frequency
higher than that of the motif discovered in the real data set
provided an empirical estimate of statistical significance. We
note that for this purpose, ideally, the best motif in each random
data set should be identified by a complete enumeration search,
and not by using the algorithm proposed by us. However, this is
infeasible unless the real data set s small. (We have actually
carried out the complete enumeration search in many small data
sets; the results are presented later.)

Exrension of the algorithm when the motif length Is unknown
and assessment of statistical significance

In practical applications, the motif length () will usually be un-
known., When g is unknown, one can start with a small value of
frand increase this value sequentially, examining for each value
of p the extent of decrease in the value of ((5). One can stop with
that value of pwhen an increase to (f + 1) results in a “substan-
tial™ drop in the value of (5). In practice, two values, p - and
P May he specified, and search for p mayv be made in the
interval [ .. Poad. We now need a measure to evaluate whether
the drop in the value of &(5) for two consecutive values of g is
substantial to stop the iterative algorithm.

For any given value of the motif length p € [, 0 P, We
can use the algorithm described for identifving a motif of a given
maotif length, and obtain the (maximum) value of &(8) given p,
which we shall denote as (5. We, therefore, calculate
S| s GOS0, + 10 GHS| L) Let dipy) denote the value of
GS|m) — Gisly + 1), where & € [P Paae— 1.

To assess the statistical significance of a decrease in S| as
the motif length (p ) is increased, we propose the following cri-
terion. Let

— 2 dipp
dp= X —tb—,
Prmin 1= Porin]
and
i1 [ﬂ'lp]]z o
Fp)= .-,U_—J]‘E-’ﬂmllzi Punie <= B < Ponax
pipmin bt = Pin
If (dip) — dip)) = Zo(p)), then we declare the decrease from

GUS | to Gis[e, + 1) as significant, and stop with the motif length
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p. The idea underlving this criterion is that we declare a drop in
the value of the objective function to be statistically significant
if this drop differs from the mean of all previous drops by
more than two times the variance of all previous drops. In the
rare event that o p) =0, we use the stopplng criterion
sy, — 1) = 2.06(8|p,), and declare the length of the maotif as p,.

Although the above method of assessment of statistical sig-
nificance is intuitively appealing, the choice of the value of the
constant (=2) in the stopping criterion is somewhat arbitrary.
Further, in the above search procedure, it is possible that the sets
of sites included in motifs of length p and (p + 1) are disjoint. In
many practical applications, this may not be desirable. Therefore,
after the initial stage, new sites should he added to the set of sites
included in the motif discovered thus far. Such an addition is
made by searching for a site from among those sites not included
in the identified motif. This strategy is not only more meaningful
in many practical applications, but is also computationally less
expensive. However, there is a trade-off. After convergence of this
procedure, it s possible that the identified motif of length g (say)
is suboptimal among all motifs of length g. When this procedure
is adopted, we suggest the use of the criterion described below to
assess statistical significance of increase of motif length from p to
p+ 1) Let wy and m,,, denote the probabilities of occurrence of
the maotifs of lengths pand (p + 1), respectively. Let 8, , denote
the probability of the nucleotide at the new site included in the
motif as its length is increased from p to p+ 1. We now wish to
test the null hypothesis Hy @ m,, =7, 2 8y, versus the alterna-
tive hypothesis H, @@, =@, * #,,,. Inother words, we wish to
test whether the additional site and the nucleotide at this site
that were included to expand the motif of length p to p+1 is
assoclated, to a greater degree, with those sites and nucleotides
alreadv included in the motif (of length p) than s expected by
chance. The level of significance of the test is given hy: ZY ()
(7 % Bl — (7, % B,,)" |, where ‘hats’ denote the relative
frequency estimates of the parameters and n= N x 1:'!-“ i

Starting with a small maotif length, one can continue to in-
crease its length until the level of significance falls below a pre-
assigned value (say, 0.05).

If the structure of a data set is such that sequential addition
of sites leads to the same motif at every stage, compared with the
direct procedure of identifving a motif of a certain length, then,
as we shall show later, the use of these two procedures of testing
statistical significance vield concordant inferences.

Identification and statistical significance of variant motifs

In a standard case-<control study, a set of N individuals (cases)
possessing a characteristic (e.g., aspecific disease) and another set
of N individuals (controls), usually matched for age and gender
with the cases, not possessing that characteristic, are chosen.
DMA sequence data are generated on these 2N individuals, and
polvmaorphic sites identified. If the data are diploid, appropriate
analyses are carried out (Stephens et al. 2001) to estimate the
frequencies of distinct haploid sequences (haplotypes). The oh-
jective is to identify a haplotvpe—polymorphic motif—that oc-
curs at a high frequency among cases, but in low frequency
among controls, resulting in a high degree of association of the
haplotype with disease. If, indeed, the assoclation is due to cau-
sality, then it is expected that there will simultaneously exist a
haplotype at a high frequency among controls that comprises
alternative nucleotides at the same sites as those found in the
high-frequency haplotype among cases. In other words, there

will exist a variant motif occurring at a high-frequency among
controls compared with that among cases. To identify such mo-
tifs among cases and controls, we need to maximize an objective
function with respect to three parameters, which may he written
in ageneral form as: GIS,) = gif,Gm), where [ and 5 are, respec-
tively, the frequencies of sequences of nucleotides at the sites in
5, among cases and controls, and m is the number of mismatches
hetween the nucleotide sequences considered for cases and con-
trals. The objective function is so chosen that it is monotonically
increasing in fi, fz and m and is to be maximized with respect to
these three parameters. The idea is that, since we are searching
for a varlant motif among controls, we need to find a high-
frequency motif among them that simultaneously exhibits a
large number of mismatches with a high-frequency maotif occur-
ring among cases. Except for this natural modification in the
ahjective function, no change in the search algorithm described
earlier was made. An example and details of its implemen tation
are given in Supplemental text 1.

Upon termination of the algorithm, we test whether the
odds-ratio estimated from the 2 = 2 table comprising the fre-
quencies of the two motifs identified among cases and controls
(or in the two data matrices under consideration) was signifi-
cantly different from unity (Breslow and Day 1993).

Following the same spirit as for a single data set discussed
and described earlier, one may also assess the statistical signifi-
cance of the discovered motif in case-control data by using a
permutation algorithm to generate a large number of “random”
data sets of a structure similar to that of the controls. We have
done this. For each case-control data set, svnthetic or real, after
having identified a motif in the case data by using the variant-
maotifalgorithm, we generated a large number of control data sets
by permuting the elements of each column of the control data
matrix. We then used the algorithm, and empirically estimated
the probability that the odds-ratio obtained for the real data sets
of cases and controls is lower than the odds-ratio obtained from
the real case data and a randomly generated control data set. ‘We
have used this probability as a measure of statistical significance
(p-value) of the motif discovered from the real data sets.

In data sets pertaining to evolution, the method of finding
a variant maotif is simpler because a specific reference sequence Is
generally given. In this setup, given a string, 5, of length p, we
enumerate from the data all possible sequences Ep (f=12..)0f
nucleotides, at the sites included in §,. For each such sequence
£, we calculate its frequency . We then calculate the number
of mismatches, my,, of each of these sequences £, (1= 1,2,..)
with the reference sequence. The objective function is obviously
to be modified as

G(8,) = gifa,m).

It is evident from the objective function that the value of my, for
which ((3,) Is maximized is =p. This indicates that, if the value
of my, realized at the maximum value of the above objective
function is less than p, then there mayv exist sequences of length
P with more than my, mismatches with the reference sequence.
But the frequency of such a sequence will be much smaller than
fip resulting in a drop in the value of G(5,). One effective steategy
that we have used in implementing the above objective function
is to start the algorithm with a large value of p. This enables us to
find a sequence with a considerably high frequency, where m,
out of the psites differ from the reference sequence. By keeping
track of the sites at which the sequence differs from the reference
sequence, we can find the sequence at the sites constituting the
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variant motif. Another advantage of &
using the algorithm is that, even
without anv prior on the actual
length of the maotif (discussed in de- Pl

tail in the previous section), the ob- mT
jective function obtains its maxi-

mum at some value of my,, which
enables us to get the motif length,

the best estimate of which is my,
from a single run.

To assess the statistical signifi-
cance of the discovered motif, we
generated a large number (10,000 of [ -
“random” data sets of a structure
similar to the original. If the length
of the motif discovered in the origi-

—a— o) g 2N e XN

u=@ar

) am = o =0 e

nal data set was p, we restricted the
search algorithm to maximize only

over those sequences for which m,
was equal to p. That is, in the ran-
domly generated data, given a string
5. the frequency of a sequence was
set to O 0f it had less than p mis-
matches with the reference se-
quence.
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Results

Performance of the algorithms: Assessment using synthetic
data sets

Data Set |

We designed various synthetic data sets, so that the motif ineach
data set was known, to assess the performance of our algorithm.
In our synthetic Data Set 1, a data matrix (N = L) was created,
and a known maotif of a fixed length (p ) was planted in a pro-
portion o of individuals. Data sets were created with different
values of relevant parameters; details are given in Supplemental
Text 2. The algorithm was applied on each synthetic data matrix,
with different values of the control parameter ¢ As stated earlier,
instead of maximizing (%), we consider an equivalent problem
of minimizing a monotonically decreasing function H(5) of ((5).
We have taken

1

HS) = 15®)

in this and in all of the remaining analvses. This cholce was
subjective and was guided by its simplicity. However, anv other
monotonically decreasing function, HiS), of Gi8) will also obwvi-
ously work. The results are presented in Figure 1A-C, for N = 200,
p=10, L= 50, 100, 150, and 200, = 0.3,0.5, and 0.7, and ¢ = 50,
100, and 200. (More detailed results for various other values of
the parameters are presented in Supplemental Table 2.) For every
combination of values of N, L, and p, with an appropriate choice
of the control parameter ¢ our proposed algorithm correctly
identified the planted motif in 100% of simulation runs. (Al-
though, for brevity, we have presented results only for N = 200
and p = 10, results are similar for other values of N and p.) The
role of the control parameter ¢ is that it speeds up convergence
with larger values, but the convergence may not be to the correct
optimum. In our simulation experiments, while for values of

g O == D =g TN

% Coavee denfcM
«48288

] o0 150 a0
L

| w0 ] ——u=D g —a—y=0T

Figure 1. Summary of results of synthetic Data Set 1 with motif length, p = 10: (4-C) Effect of the control
parameter ¢ an time to convergence for three values of u, and () the effect of increase of the number of
polymorphic sites on the probability of comect motif identification (with ¢ = 200) for various values of u.

¢ =50, 100, and 150, the planted maotif was correctly identified in
100 of simulation runs for any set of values of L and p, the
proportion of correct identification was substantially smaller for
=200 (Fig. 1D). For ¢= 200, the mean number of sweeps to
convergence was the lowest compared with the other values of ¢
(Fig. 1A-C). Thus, there is a trade-off between speed of conver-
gence and convergence to the correct value. In any application of
our algorithm, we recommend that multiple values of ¢ be used,
starting with a small value. In other words, we recommend that
some experimentation on the convergence behavior of our algo-
rithm with respect to ¢ be done before accepting the results ob-
tained by using a specific value of ¢.

For every synthetic data set (for different values of N and L)
on which the algorithm was used to discover a motif of length p
(=the length of the planted motif), we generated 10,000 random
data sets of similar structure to test the statistical significance of
the discovered maotif, as explained earlier. In every case, the es-
timated probability that a random data set has a motif of fre-
quency higher than that of the discovered motil was <10 7.
Thus, in every case, the discovered motif was statistically signifi-
cant at a level <107,

We have also assessed the levels of significance as the motif
length was increased. The significance levels were all <0005 as
the maotif length was increased from 2 to 10, but were =0.5 when
the motif length was increased from 10 to 11, (Statistical signifi-
cance was assessed using both the criteria described in an earlier
sectinn—assessing the significance of a "drop” in frequency with
increase in motif length and also of the addition of a site. Both
criteria vielded concordant inferences in every simulation
run.) This indicates that our algorithm was not only able to dis-
cover the planted maotif of length 10, but the discovery was sta-
tisticallv significant. Further, increase of length to 11 was not
statistically significant. Detailed results are presented in Supple-
mental Table 2.

Some general results on the validity and good performance
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of the proposed method of assessing statistical significance of a
motif discovered by our algorithm are presented in Supplemental
text 3.

To examine the limits to which our algorithm can perform
well, we constructed new data sets. The descriptions of the data
sets and results are given in Supplemental texts 4 and 5.

Data Set 2

We created a synthetic data set analogous to that generated by
a casecontrol study. Two separate data matrices, each of size
N x L, corresponding to the cases and controls, were created.
We planted, in the case data matrix, a motif of length g in a
proportion o, of individuals. Under the common-disease,
commaon-variant model (Collins et al. 1998), each of the psites
(SMPs) carries a small relative risk (RR) to the disease, that
collectively results in a large haplotype (motif) relative risk.
Hence, in the data matrix corresponding to the controls,
we changed the proportion of the motif relative to the cases
in such a way that the relative risk conferred by the high-
risk varlant at the i site of the motif was =0. Details of the
methodology for creation of Data Set 2 are given in Supplemental
text f.

In creating synthetic data sets, we have used various values
of ; and RR. The algorithm for finding variant motifs was
used. Statistical significance was assessed by testing the null hy-
pothesis of the odds-ratio being equal to unity, as described ear-
lier.

The values of the parameters used in generating the syn-
thetic data sets were as follows: N= 100; L= 100, 200, 300; p= 4
and 6; 1, =02, 0.4, and ER= 1.2, 1.5 and 2.0. For each com-
bination of L and w,, 1000 synthetic data sets were generated
with each of the various combinations of the other parameters.
The algorithm was run on each data set for values of the control
parameter ¢ = 50, 75, and 100. The results are given in Tahle 2, for
=100, (For ¢ =50 and 75, the results, not shown, were virtually
identical.) In general, our algorithm correctly identified the
planted motif in a large proportion of simulation runs only when
the KRR attributable to a single site was high. The probability
of correct Identification decreased with decrease in RE. Further,
for Axed values of the parameters v, and RE, this probability
decreased with increase in the motif length, p, but was found to
be not strongly dependent on the value of L. Although, for sev-
eral combinations of simulation parameter values, the probabil-
ity of correct identification was small or zero, we note that the
number of sites and nuclectides that matched between the
planted and identified motifs was large, except for RR = 1.2, This
indicates that just by chance there may exist motifs with haplo-
tvpe (motif) relative risks higher than that of the planted maotif.
However, it is clear that unless the relative risk is small, the true
maotif will share many sites and nucleotides with the identified
maotif.

Whether or not the identified motif matched with the
planted motif in a synthetic data set, we carried out a test of
statistical significance of the identified motif by generating
10,000 random data sets of a similar structure as the control
data and estimating the odds-ratios, as explained earlier. The
pvalues corresponding to the identified motif in the real data,
are given in Tahle 3. Mone of the identified motifs for the various
combinations of the parameter values (motif-length, p; o and
the number of polyvmorphic sites) was statistically significant
when BRE was small (=1.2). However, when the ER was 1.5 or 2,

the identified motifs were all statistically significant at the 5%
level.

Data St 3

This data set was constructed to mimic an evolutionary scenario.
When two populations that have diverged from an ancestral
population evolve separately, the daughter populations accumu-
late separate sets of mutations that increase in frequencies be-
cause of natural selection or ather evolutionary forces. Thus, one
may find motifs in the daughter populations, with some maotif
sites heing shared between the two populations, while some be-
ing unshared (Schwaiger and Epplen 1995). The shared sites are
presumably those sites that belonged to a motif that was present
in the ancestral population, while the unshared sites are those
that have arisen and increased in frequency since the divergence
of the two populations from the ancestral population. We con-
structed a synthetic data set to mimic this evolutionary scenario
(details are provided in Supplemental text 7) and applied our
algorithm to assess whether it is possible to discover the relevant
maotifs. In this data set, the parental population () carried a
maotif of length 10, while each of the two daughter populations
(0, and [v) carried motifs of length 15, with the 10 parental sites
and five additional sites in each maotif.

We carried out 1000 independent simulation runs using the
procedure described above, with ¢ = 200. Detailed results for five
runs are provided in Table 3, which show that our probabilistic
search algorithm always converged and identified the correct
maotifs of correct lengths in the parental and in the daughter
populations in a small number of sweeps. The final motifs were
statistically significant at levels <0.005, as assessed by the proce-
dure in which 10,000 random data sets were generated. As a
matter of fact, correct convergence was achieved in every one of
the 1000 runs (detailed results not provided) and the conver-
gence wsing the proposed algorithm was faiely fast (Supplemental
Table ).

Identification of variant motifs: Applications to real data

Gilbert's syndrome: Case-controd study

In an ongoing study on Gilbert's syndrome (OMIR # 143500), we
have generated DMA sequence data of the promoter of UGT1A1
gene among affected individuals and normal controls. The svn-
drome, characterized by elevated levels of unconjugated serum
hilirubin, is caused primarily due to the homozvgous insertion of
a pair of nucleotides T and A at specific sites in this promoter
(Bosma et al. 1995). However, a small fraction of normal indi-
viduals also carry these insertions in heterozvgous form. In ad-
dition to these insertions, in our study, we have found a subset of
affected individuals to carry an additional trinucleatide (CAT)
insertion at a specific site in the promoter. This insertion has not
heen found in any of the unaffected control individuals. Haplo-
tvpes and their frequencies were estimated from the sequence
data, separately for the cases and controls. The size (80 = 456) of
the data matrix was the same for both cases and controls. We
have used the algorithm for finding variant motifs (with ¢ = 100)
and were able to identify the 5-site motif (corresponding to the
TA dinucleatide and the CAT trinucleatide insertions) correctly.
The 5-site motif was estimated to be present in 11.25% of the
cases and %% of controls, which agreed with the actual count.
Since none of the controls possessed this motif, the relative risk
cannot be computed, but the finding is obviously significant




Table 2. Percentage of simulation runs indicating matches between planted and identified motifs pertaining to case-control data set 2, and the significance levels of the

identified motifs

RR
2.0 1.5 1.2
Planted Mo, of Number of matches® Number of matches Number of matches
Motif polymor phic
length iy sites o 1 2 3 4 5 6  pvalue 0O 1 2 3 4 5 6  p-value ] 1 2 3 4 5 6 pvale
100 0 0 0 0 W — — <07 0 o0 0 552 448 — — 0007 435 339 122 104 0 — — 0522
0.2 200 0 0 0 0 W — — <107 0 o0 0 574 426 — — 0008 468 315 127 90 0O — — 0481
300 0 0 0 0 W — — <07 0 o0 0 603 397 — — 0011 492 358 1001 49 0 — — 0497
4
100 ¢ 0 0 0O 100 — — <1077 L] o o 56.1 439 — — 0.011 253 316 281 148 02 — 0927
0.4 200 ¢ 0 0 0 100 — =10-7 1] i 0 568 432 — — 0.011 281 322 257 1392 01 0.931
300 o 0 0o o W — — <10-7 0 0 0 591 409 — 0.013 288 336 241 134 01 — — 099
100 o 0 o O o L] 100 <107 0 B2 131 237 353 189 08 0.010 198 372 219 187 24 © o 0.498
0.2 200 o0 0 o o 1] 1] 100 <1077 0 @5 168 226 322 186 03 0011 227 340 208 182 41 0 0 0489
300 ¢ 0 0 0 o o 100 <107 o 112 121 239 319 206 03 0.013 228 353 216 186 1.7 © ] 0.490
[
100 0 0 0 0 133 568 299 <107 o 3.2 B 186 512 185 0.4 0.017 352 283 276 B3 06 O ] 0917
0.4 200 0 0 0 0 14% 603 248 <1077 L] 3.2 B.4 163 527 189 05 0.018 365 259 285 86 05 0 L] 0.901
300 0 0 0 0 147 611 242 <1077 o 37 B9 161 530 179 04 0021 378 227 319 73 03 0O ] 0.BB&

“Number of matches indicate the number of sites and the nucleotides at the sites that match between the motif identified by the algorithm and the planted motif.
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Table 3. Detailed results pertaining to synthetic data set 3 for five independent simulation runs

Characteristics of Synthetic Data Matrices

Mumber of Whether
Mo tif Simulation sweeps to corverged to
Population length number Sites in motif* Frequencies of “1" at motif sites convergence “correct” motif
Population 1 {Dy) 10 1 17 22 24 27 28 36 39 40 43 50 B55 B45 B4 B37 B55 B47 B43 B4F B2Y BN 3B YES
2 1 4 8 15 19 20 22 37 39 44 B55 B32 B4B B67 B61 B74 B50 B5B B51 B49 27 YES
3 6 7 B 9 11 16 20 21 35 47 B76 B4o B37 B52 B30 B55 B43 B51 B9 B49 64 YES
4 3011 13 27 35 39 42 46 47 50 B46 BB B51 B34 B74 BF4 B3F B4B B32 B56 35 YES
5 5 710 16 2 29 30 33 42 44 B30 B46 B27 B40 B51 Be0 B53 B51 BSE Ble B4 YES
Population 2 (D) 15 1 17 22 24 27 28 36 39 40 43 50 BA3 B45 B67 BS54 BJS B46 B51 BSB B44 B32 13 YES
T8 31 34 42 48 845 B27 Ble BBE BS5
2 1 4 B 15 19 20 22 37 39 44 B57 B21 B52 BB2Z B63 BB7 B3B8 Bo6 BSB B53 37 YES
712 21 31 46 B28 B90 BBG B30 BSO
3 6 7 B 9 11 16 20 21 35 47 B73 B35 B39 B59 BIB B53 BA3 B51 BF6 B4B ) YES
2 27 16 37 o4 B45 B4n BY9O B24 Ble
4 3011 13 27 35 39 42 46 47 50 844 B74 B4B 831 B67 B60 B19 B62 B34 B56 11 YES
5 15 26 317 38 B27 BO% BBG B26 BS56
5 5 710 16 2 29 30 33 42 44 B43 B40 B21 B4B B54 BBO B38 B36 B4F B2O0 28 YES
T & 27 35 448 821 B45 876 Bo0 BE1
Population 3 (D) 15 i 17 22 24 27 28 36 39 40 43 50 B70 B43 B47 B41 B24 B57 B59 Bod4 B22 B4S 42 YES
I w15 31 44 BB2Z B2B B11 B92 B52
2 1 4 B 15 19 20 22 37 39 44 Be5 B12 B31 BAE BA3 BF7 B33 B55 B36 B24 23 YES
9 18 26 29 49 B33 B37 BY90 BE6 B54
3 6 7 B 9 11 16 20 21 35 47 Be0 B33 B45 B73 B21 B39 B52 BY2 BSY B4e 58 YES
12 25 30 319 42 BB6 BZ6 B76 B34 B43
4 3011 13 27 35 39 42 46 47 50 846 B61 B26 B38 BB2 B6S B34 B47 B3IS 872 61 YES
10 20 21 32 50 B29 BES BE3 B26 B40
5 5 710 16 22 29 30 33 42 44 B44 B42 B26 B49 B52 B40 B51 B34 BP9 B2S 12 YES

& 131 20 37 47

811 B27 BBS B64 B67

“The sites indicated in italics are the five new sites that are specific to the daughter population, (D, and D,) in each simulation run, in addition to the 10 sites of the ancestral population (D).
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(11.25% among cases, vs. 0% among controls). The exact p-value
computed from the binomial distribution (using the estimate of
the probahility of the motif from the pooled data of cases and
conteols) is 9.74 = 103

LDL receptor haplotypes among indfviduals of European and Afrcan
descent: The PARC study

In an ongoing project entitled "“Pharmacogenomics and Risk of
Cardiovascular Disease™ (PARC) at the University of Washington,
Seattle, data on haplotvpes of individuals belonging to African
descent (1 = 48) and European descent (n = 46), pertaining to the
LDL receptor gene (located on human chromosome 19p13.3),
have heen made available in the public domain (http:/f
droog.gs. washington.edu/parc/data/ldle/welcome.htm). The
number of polvmorphic sites (L) in this data set is 117. We
have used our algorithm to find whether there are any high-
frequency contrasting (variant) motis present among individo-
als of European and African descent. We have used our algorithm
for finding variant motifs (with ¢ = 100) and discovered that the
motif TTTGGTAGC of length 9 occurs at the nucleatide sites 26,
34, 41, 43, 50, 54, 57, 58, and 61 with a frequency of 19 (39.5%)
among individuals of African descent, and a completely contrast-
ing motif CCGACCCAT occurs at these sites with a frequency of
34 (73.9%) among individuals of European descent. The degree
of association in the corresponding 2 = 2 table is statistically
significant at a level =0.001. Both of these motifs were statisti-
cally significant with estimated p-values = 10 7. (To test the sig-
nificance of the discovered motif among Europeans, we gener-
ated 10,000 random data sets of a structure similar to that of
African-descent individuals, and vice-versa for testing the signifi-
cance of the discovered motif among individuals of African de-
scent. )

Mitochondrial DNA haplogroups M and U

Extensive sequence data on the hyvpervariable segment 1 (HVS1)
of the mitochondrial DNA (mtDMNA) have been generated (Handt
et al. 1998) and analvzed (Macaulay et al. 1999) in various global
populations (http:/ fwww. hvrbase.org). Based on the presence or
absence of specific restriction sites outside of the HVS1 in the
mtDMA, two of the major haplogroups (HGs) identified are M
and U (Wallace 1995). Within these haplogroups, specific motifs
have been found in the HVS1, some of which are in contrast to
those found in the CRS (Anderson etal. 1981). These motifs have
been used to define haplogroups within the HGs (Kivisild et al.
1999), We have used data of 528 individuals from various ethnic
populations of India (Basu et al. 2003). The total number of poly-
morphic sites in this data set was 153, and the numbers of indi-
viduals belonging to HGs M and U were, respectively, 338 and
115. We applied the motif-finding algorithm (with ¢ = 100) sepa-
rately on the HVS1 sequence data of HGs M and U. An objective
function, (315, that gives considerable weightage to the number
of mismatches was used, that is,

GiS,) = maxif/'").

For HG-M, G[.’SP] attained a maximum value with m, =4, for all
values of p = 4. For m,; = 4, the sites at which nucleotides
differed from the CRS were § = (16223, 16270, 16319, 16352).
The frequency of this string, f, was 21 (= 6.21% of the total
number of samples), and the nucleotides at the relevant posi-
tions were T, T, A, and C, respectivelv. The next most frequent

string was (16223[T], 16274[A], 16319[A], and 16320[C]) with a
frequency of 17 (5.03%). These two motifs belong to known sub-
haplogroups M* (defined by C—T transition at the site 16223)
and M2 (defined by C—T transition at the site 16223 and a G—T
transition at the site 16319), which are prevalent in Indian popu-
lations (Bamshad et al. 2001).

For HG-U also, the objective function, coincidentally, at-
tained a maximum at m, =4, and the maotif identified was
(16051 [G], 16206[C], 16230[G], 16311[C]), with a frequency
of 18 (=15.65% of the total number of samples). The vast major-
ity of HG-U individuals in India belong to HG-U2i and U7,
The UZi is the Indian-specific subcluster of U, as opposed to
the Western-Eurasian subcluster UZe (Kivisild et al. 1999). In-
terestingly, the motif GCGC at nps 16051, 16206, 16230,
and 16311, respectively, has heen found on the U2i background,
which is present in 18 of the 115 individuals. This motif is
found almost exclusively among tribal, middle- and lower-
caste populations, but not among the upper-caste populations
or the Muslims (of Uttar Pradesh). This motif is also pres-
ent in many of the Pakistani samples screened by Kivisild et
al. (1999). Our bootstrap procedure for testing statistical sig-
nificance of a motif indicated that in all of the abhove cases,
the identified motifs were statistically significant at level
<0.05.

These examples demonstrate that the proposed algorithm
was able to identify previously discovered maotifs, and therefore,
can he profitably wsed in evolutionary studies to dentify new
maotifs. The anthropological implications of our findings on HGs
M and U presented above have already been described in Basu et
al. (2003).

The 'Kungs of Botswana, Africa

We have also applied our algorithm (with ¢= 100) on mtDNA
HWVS-1 data sets (Handt et al. 1998) of various African popula-
tions. The algorithm identified a motif of length 5 in the
[Kung population of Botswana, which contrasts with the
CRS. The motif is constituted by the sites 16129, 16223, 16230,
16294, and 16311. The nucleotides in the respective sites in
the CRS are G, C, A, C, and T respectively, while in the
Kung population, the motif is ATGTC. The motif is present
in 17 (68.08%) of 25 Kung sequences. Using the procedure
suggested earlier, with 10,000 replications, no variant motif
of length 5 with a frequency higher than that of the iden-
tified motif was found, indicating that the statistical signifi-
cance of the identified motif is very high. The uniqueness of
the motif is not only characterized by its difference from
that present in the CRS, but also because this motif is not pres-
ent in any other African population (Table 4), and has probably
risen to the present high frequency among the [Kungs by genetic
drift.

Discussion

The problem of identifying motifs in genetic data arises com-
monly in human genetical research. Such data include DNA se-
quence data, haplotype data, and genotype data. Motif identifi-
cation is necessary to draw inferences on evolutionary histories
of populations or lineages, to examine assoclations in case-
control studies, etc. More recently, with the initiation of the Hap-
Map project (Couzin 2002), the problem of finding motifs within
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Table 4. Motifs in mtDNA HVS1 discovered in various African
populations using the proposed algorithm

Frequency of the
Sample maost frequent

Population size sequence (%) Mo if =
Egypt (Assiut) 23 B (35.8) CG=C=A-C-T
Eqgypt (Caira) 10 3{30.0) G-C=-A-C-T
Egypt {Manasoura) 46 13 {28.3) CG=C=A-C-T
Sudan {Kerma) 42 12 (28.6) C=C=A=-C~-T
Sudan Ba 23 (26.7) G-T-A-C-C
Ethiopia 10 3 (30,00 G-T-A-C-T

CG-T-A-C-C
Somali 27 7259 G-T-A-T-T
somali (Kenya) 15 4(26.7) G-T-A-T-T
Turkana (Kenya) 37 9(24.3) CG-T-A-C-C
Kikuyu (Kenya) 25 B{32.00 G=-T-A-C-C
Tanzania 17 10 {58.8) CG-T-A-T-C
IKung {Botswana) 25 17 (68.0) A-T-G-T-C
“Mucleatides denoted in boldface are different from the nucleotides in the

CRS at the corresponding sites.

haplotype blocks, which probably occur hecause of variation in
recombination rates across the human genome, arise naturally.
In most of these applications, it is pertinent to identify maotifs of
nucleotides at a set of polvmorphic sites, which mayv not be con-
tiguous. For example, in research on complex diseases, often data
are generated on multiple unlinked genes, and if, indeed, geno-
tvpes or haplotvpes at a subset of these genes determine the
susceptibility to the disease, then motifs will exist at a set of
noncontiguous polymorphic sites. A search based on complete
enumeration for such motifs can be computationally extremely
time consuming and inefficient—it might not even be feasible in
practice for large data sets. To the best of our knowledge, no
computationally efficient algorithms exist for finding maotifs at
noncontiguous polvmaor phic sites. We have, therefore, devised a
set of computationally fast and efficient algorithms based on
probabilistic methods, We have first devised a search algorithm
when the length of the motif is specified a priori, and have then
extended it to take into account the possibility of the motif
length not heing known a priorl. The specific unctions (e.g., B,
Hi5)) used by us were chosen not only to satisfv the criteria re-
quired for convergence of this class of probabilistic search algo-
rithms (Winkler and Lutz 2003), but also because of their sim-
plicity and intuitive appeal. Our algorithms are not tied to these
specific cholces of functions; users may try other functions sat-
isfving the general conditions required for convergence. For a
given motif length, we have proposed a statistical criterion of
assessing the significance of the motif discovery using a boot-
strap procedure. When the maotif length is not specified, we
have devised a statistical criterion for determining the motif
length from the data simultaneously with the search for a maotif.
We have proposed an alternative criterion of assessing statistical
significance when the motif length is extended by sequential
addition of sites and nucleotides. Finally, we have proposed
methods for assessment of statistical significance of a discovered
motif in a real data set, in relation to a random data set of similar
structure. Using various synthetic data sets to mimic real-life ap-
plications, we have demonstrated that the proposed methods
work well. We have also applied these methods to several real
data sets—pertaining to case-control data on complex pheno-
types and evolutionary data—and obtained many useful infer-
Ences.

Through our simulations, we have discovered some of limi-
tations of our algorithm as well. In particular, when we assessed
(Supplemental text 4) whether our algorith m converges correctly
in a search space that contains exactly one global maximum,
and also a large number of local maxima with values not very
different from the global maximum, our algorithm failed to
converge to the global maximum. This limitation is, of course,
inherent to all numerical search procedures that do not use
complete enumeration. Further, in simulated case-control
data, our algorithm failed to identify the correct motif, especially
when the relative risk attributable to a site included in the
motif was small (Table 2). For a small relative risk, the ldentified
motif was also statistically nonsignificant (Table 2). However, in
most simulation runs, the dentified motif shared several sites
in commaon with the planted motif. The reason for noncon-
vergence to the correct motif was due to the fact that in realistic
case-control data sets, there may be multiple maotifs with high
haplotype (motif) relative risks just by chance, especially
when individual sites (SNPs) do not confer a large relative risk
to the disease. This finding is consistent with published oh-
servations (e.g., Cardon and Bell 2001) that significant find-
ings of haplotvpe assoclations from case-control studies are
often not replicable. Our simulation results also underscore the
need for replication of findings of case-control assoclation stud-
les,

We would finallv like to emphasize that the convergence
properties of the proposed algorithms are critically dependent on
the control parameter, ¢. While from the user's point of view it is
desirable to be able to prescribe some universal and objective
guidelines for the choice of ¢, this is not possible. In specific
applications like those presented here, onecan identify a range of
values of ¢ that makes the algorithm computationally feasible,
with a high probability of convergence to the true optimum. In
practice, this range of ¢ needs to be identified by trial and error.
We first note that the speed of convergence is directly propor-
tional to the value of ¢. Further, the probability of convergence to
the true optimum for a specific choice of ¢ is more dependent on
the value of L than on N. Using these two facts, the user should
make a judicious cholce of ¢ but try with multiple values. We
strongly recommend that some experimentation on the conver-
gence behavior of the algorithm with respect to ¢ in multiparam-
eter settings be done to make a judicious choice of ¢ We have
found that with N in the range of from 200 to 500 and L in the
range of from 200 to 500, any value of ¢ in the range of from 50
to 100 works very well.

Although we have formulated our algorithms keeping hap-
lotvpe or haploid DNA sequence data in mind, there is no inher-
ent limitation to use these methods on genotype data. Genoty pe
data need only be recoded in order to apply these algorithms. For
example, at a biallelic locus, with alleles A and a, the genotypes
AA, Aa, and aa may be recoded as 1, 2, and 3. We finally note that
there are other classes of probahilistic search algorithms—such as
genetic algorithm (Goldberg 1989), Gibbsean annealing (Winkler
and Lutz 2003), and evolutionary Monte Carlo (Liang and Wong
2001 )—that may also be applicable to the problem considered in
this study. We have not explored these classes of algorithms in
any detail, and therefore, make no claim that the algorithms pro-
posed by us will outperform other probabilistic search algorithms.

We have developed a computer program, MOTIFIND,
implementing these algorithms. This program is written in C,
and can be obtained by writing to the authors. This program can
handle both haploid and diploid genotvpe data.
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Supplementary Text — 1

Details of Implementation of the Algorithm for Finding *Variant™ Motifs,

with Special Reference to Case-Control Data

Consider data matrices ({ag) ) aor and ({) ) a r. where ag; denotes anueleotide (AT,G
or C) at the ™ polymorphic site [ = 1.2, L) for the &% individual (§ = 1,2, ... &)
among the eases and b;; denotes the same for the #* individual (3 — 1,2,.... N among
normal controls. These data matrices are generated from aligned DNA sequences of a
specific homologous genomie segment of 28 individuals [V cases and N controls}, [rom
which all monomorphic sites have been removed. For simplicity we have considered
Lthe sample gize (8) Lo be same lor cases and countrols, bul these can be dillerent in
practice. For genotype data, we can numerically recode genotypes, eg. AA as 0, AG
a8 1ol GG oas 2 (assuming vhal vhere are lwo vacianl nucleotides A and G oal the locus
under consideration) or we can estimate haplotypes and carry out analyses where a,,
denoles the mucleotide (A1,G or ) al the 5% polvmorphice sive (7 = 1,2, ..., L) for

the 4% haplotype (i =1.2,..., N} among the cases or among controls. We also note
that 0 digjoint segments of DNA ave to be simultaneously cxamined for motil find-
ing, then appropriate segments may be separately aligned and the aligned segments

comeateratod in the data meatrix

As before. let V' = {1,2,..., L} denote the set of all I polymorphic sites in the
dila, Lol 1, denowe the set ol all possible combinations of p siles in Vo Inogeneral,
o, = {V}i I = 1,2,,.,,(;') and VI = {zF.25,...,2% 1 2F ¢ V}. Tor a fixed I,
wie deline Lhe wediad seguernes among cases on !r‘j;:" as Lhal parlicular combinalion ol
micleotides at the sites {2F,2%,... 25} included in VP, £ = 1,2,.... (i) which has
the highest fregueney (fee) among the eases. T the data matrix of Supplementary
Table 1. the modal sequence, for example, on V3 — {1,2} is AG with [requency 2. on
Vi ={1.3} is AT with frequency 3, enc.

Alnce our goal i3 to simultancously look for a scquence that occurs with a high

frequency amomg contrals and s variant to that occurring at a large frequency among



the cases, we evaluate the following:

Given a specilic siring, Sy, of length p, we lirst [ind the modal sequence among ecases
[Eease) and ing frequency fou... et us denote that sequence by S, Then we enumerate
[rom the control data all possible sequences &, (I — 1, 2,...) of nucleotides, au the sites
inchaded v 5, For each such sequence &, we calenlate its fregquency fi,. We then
calculale the number of mismaiches, my . of each of these sequences &, (T — 1,2,
with the reference sequence.  Since we are interested in identifying a motif that is
diflerent from the relerence sequence (in Lhis case £...), we need w lake vhese gy
values into account. ¥e provide a greater weightage to a sequence that has a larger
uunber of mismalehes with Lthe relerence sequence. o vhis problem., therelore, we
have used a modified objective function of the form G050 — gl fr, fo, m), where f1, fo
ad roodenote. espectively, the [requeneies of Lhe string of nueleotides al che siles in
S, among cases and contrals, Tespectively, and m denotes the number of mismatches

belween Lhese two mucleolide sequences among cases and conlrols, The specilics of Che

use of such an ahjective function are explained below with the help of an example.

I the data matriz of Supplementary Table 1, the modal sequence among cases
(£ngse)y 00 VE = {14} i AT with frequency 3. Tor this set of sites Vi = {1,3] there
are: 2 dlistinet sequences, AU and GC.in the control data set with frequeneies 3 and
L. respectively. The number of mismatches of these two sequences with £.pp0. 011 1? =
{1,3} are, vespectively, 0 and 2. Henee the walue of the objective function for this choiee
of two candidate sites is: maximum of {{0.754+11{0.754+1)(0) and (0.754+13(0.25+1)(2)].
Therefore, althongh the sequence AT among controls ocenr at a high frequency, it is not
chozen ag a candidate sequenee because ol ivs smaller number of mismatches with £, ...
AT among cases and GO among the coutrols are the preferved candidates for variant
molils if these Lwo siles are chosen, We then use the Metropolis-ITastings algorithim 1o

choose the set of sites which globally maximizes the objective function.



Supplementary Table 1 An Fasnple of g Cose Cowtrol Data Matrsx

Sequence! Varian. Slie No,
Individual Mo. | 2 3 4 3 6 7
i A A T T GO C
Crses 2 A G T ¢ G C T
3 A 4 T T A ¢ T
4 G G C oA T
1 A G T T G © C
{lontrols i A T T ¢ G O T
3 A T T T A ¢ T
4 5 G C T A T T




supplementary Text 2
Detailz on the Method of Generating Synthetic Data Set 1

Our synthetie Dala Sel 1, comprises aodala-maleix of stee ¥ x L) corresponding Lo
data on N Individuals al L binary polyvmorphic sites. At cach site, lor cach individual,
we assigned a binary digit {0 or 1) with probability 0.5, (However, as noted in the
Introduciion, the assumpiion of cach polyvimorphic site being binary 18 ool crucial Lo
this algorithm.) A motif of length p was planted in a fraction « of the & individuals.
To do this, we seleeted p sites randomly from the £ ogites; that 12, we chose p columns
of the & x L data-matrix randomly. Then, [N % «| rows were randomly chosen (where
i denoles the largest inleger comlained in ), and he elements of each of ihe p chosen
columns corresponding to each of these chosen rows were replaced by 1. For a given
sol ol values of (v, L, and p). 1000 independent synthetie dala malrices were thas

generated.



Supplementary Table 2. Performance of the algorithm on Synthetic Data Set 1 with N=200 for different values of the variables L (number of
segregating sites) and u (proportion of the planted motif among N), and for different values of the control parameter ¢. (The mean and s.d. of the
number of sweeps to convergence and the % of simulation runs in which the planted motif was correctly identified are based on 1000 independent
simulation runs for each combination of values of the variables and the parameter. The minimum and maximum values of the significance level as
the motif length was increased from 9 to 10 and from 10 to 11 were also calculated over 1000 simulation runs.)

=50 =100 =200
No. of Sweeps Sig. Level® No. of Sweeps Sig. Level® No. of Sweeps Sig. Level®
L i Yo {min,max) Y {min,max) Y {min,max)
Mean sal. correct | p: 9— | p: 10— Mean s, correct | p: 9 — | p: 1™ Mean s.d. corvect | p: 9— | p: 10—
10 11 10 11 10 11
S0 03 130.13 5734 100 | 024, 027 | 529 532 7252 48.71 100 | 024, 027 | 529 532 6626 49 29 100 | 024, 027 529 532
0.4 0574 4344 1000 A5,.17 527, 530 7242 15 /0 1000 15,17 527, 530 (1072 41.62 100 15,17 527, 530
0.5 B1.41 34 88 100 | 20,22 526, 528 7068 39.15 100 | 20,22 | 526 528 63.08 39.06 100} 20, 22 526, 528
0.6 77.10 47.42 100 | 41,45 526, 527 7088 42.77 100 | .41, 45 | 526 527 6273 43,35 100 AL 45 526, 527
0.7 71.85 1555 1000 1.1,01.5 527, 527 6272 3023 100 1.1, 1.5 527,527 6208 43178 100 1.1, 1.5 57,827
100 03 TIRE8 | 315203 100 | 024, 027 | 524, 532 21663 00 0& 100 | 024, 027 | 529, 532 127.69 100,62 53 024, 027 529, 532
04 36397 | 149.04 100 | 16,17 527, 530 20023 | 123.80 100 [ 16,17 | 527,530 14326 87.27 83 16, .17 527, 530
0.5 28840 | 12422 100 | 20,22 526, 528 15720 | 96.93 100 | 20,22 | 524 528 14327 91.69 95 20, 212 526, 528
0.6 24602 | 12007 100 | 4L 45 526, 527 161.04 9310 100 | 41, 45 | 526 527 141.54 B8.79 98 A1, A5 526, 527
07 21392 | 10483 100 | LILLS 527, 527 16130 | 90.30 o0 | w1, s | 527, 527 139.05 90,39 100 1.1, 1.5 527, 527
150 | 03 19086 | 97.07 100 | 024, 027 | 529 532 43549 | 202.93 100 | 024, 027 | 5249 532 | 173432 90N, 54 32 | 02, 027 | 529 532
0.4 14952 6788 100 15,.17 527, 530 33185 | 173.77 100 A5, .17 527, 530 934,16 497 .42 40 A15,.17 527, 530
0.5 18940 | 117.54 100 0, 22 526, 528 28793 | 133.55 100 20, 22 526, 528 620,00 250.47 35 20, 22 520, 528
0.6 22816 | 13053 100 | 4L 45 526, 527 25056 | 163.36 100 | 41,45 | 526 527 461 .06 190.07 74 A1, 45 526, 527
0.7 21761 | 13881 100 | LLLS 527, 527 23962 | 13098 100 | 11,15 | 527 527 436.14 227.85 b L1 L5 527, 527
200 | 03 36950 | 20010 100 | 024, 027 [ 529,52 72090 | 294,71 100 | 024, 027 | 529,532 ( 2032 18 | 1218.12 4 [ 024, 027 | 529, 532
0.4 30117 | 14012 100 | 1517 527, 530 61035 | 264.93 100 | 1507 | 527530 | 202886 | 986.43 14 15,17 527, 530
0.5 20658 | 13576 100 | 20,22 526, 528 4163 | 231.80 100 | 20,22 | 526 528 | 125238 474.05 22 20, 12 526, 528
0.6 22483 | 12604 100 | 41, .45 526, 527 404.4 | 194,50 100 | 41,45 | 526 527 81795 203,28 46 A1, 45 526, 527
0.7 28326 | 18331 100 | LLLS 527, 527 41552 | 242,10 100 | UL L5 | 527 5% 721,78 263.08 &2 LL L5 52X, 57

* All values are multiplied by 10~



supplementary Text 3
Validation and Performance of the Proposed Method of Assessment of Sta-
tistical Significance of Motif Thscovery

Gelore proceeding luriher, we provide some gencral reaulis pertaining Lo the proposed
method of assessing the statistical significance of a motit discovered by our algorvithm.
To estimale the stavistical signilicance of a motil discovered by owr algorittun in relation
to a random data set of “similar” structure, we created a data set with V=20, 1.=10
and planted a mouil of length p=5 {=1,1,1,1,1} at 5 randomly-chosen sites from among
the 10 sites with o frequency u (among &) Three values of ¢ were nsed; these were
0.3, (.5 and 0.7, The remaining cells o the &N x L dala malrix were [lled with | or
0, each with probability 0.5, We shall refer to this data set as the *real” data set. We
Lhen used our algorithon Lo discover 2 moudl 1o vhis “real” data sel. Nexl, we creatoed
OO0 N = L replicate data matrices in which the 1's and the (s in cells in column
¢ owere randomly permuied o thal vhe tolal wamber of 15 and s ocenrring in the
column remain same as that in the “real” data. Tn each of the 10,000 replicate random
ditha matrices, we searched for the “best™ motif of length 3 by complete enameration.
The large-deviation probakility, that is, the probability that the best or the discovered
motif ocenrs inoa random data set with o frequency that s greater than or cqual to
that of the motif discovered by our algorithin in the “real” data set, is < 0.0001, for all

ralues of o (Supplanentary Table 3). These findings further indicate that our algoritlon
performs well.

Since for a large dala sel, i is nol possible Lo seacch for the “hest™ modil by complede
enumeration. we additionally sought to evaluate our algorithm by the above statistical-
significance eriteria using an approximalte method. In this approxiimate method, the
anly change that, was made is that instead of scarching for the best”™ motil by compleie
enumeration in a random data set, we applied our algorithm to discover the “best”
maotif. The “real” data sets were generated in the same way as tho Synthetic Data Set

1. with N=200. £.=50 and 200, and p=10. Three values of u were used 0.3, 0.5 and



0.7, Motif search was performed using e=100 in both the “real® and the random data
sota. In all cases, the estimated probahility of existence of a motif in a random data

set with a higher frequency than the motif discovered in the real data set was < 1077,



Supplementary Table 3. Probabilities that the best motif discovered in a random data
set has a frequency (f*) greater than the frequency (/) of the motif discovered in the real

data set of size 203 10, for different values of u '~

1 Prob (/* = f)
0.3 = (.L.00001
0.5 0.0001
0.7 =0.00001

' Results are based on 1000 real data sets for each value of w and 10000 random data
sets for each real data set.

* Ineach case, the motif discovered in the real data set coincided with the planted motif,
and its proporation was also close to w.



supplementary Text 4

Performance of the Algorithm in the Presence of a Large Number of Lacal
Optima

We senerated gyvnuhetic dava matrices of structures similar Lo that siven in Supple-
mentaty Higure 1. The motivation for analyzing these synthetic data sets was to
agsess Lhe performance of owr aleorithm when the search space comprises a laree nim-
ber of local optima. In this data matrix of sige 1000 =< 50, 10 colmmns were ran-
domly chosen. Each chosen column, was filled with 900 1s and 100 0s. In other
words, the first 900 elemerts of each chosen columm were 1, and the remaining 100
were (0 OF the remaining A0 eolumns of the data maleix, 20 were randomly chosen,
and each chosen column was filled with 700 1s and 300 s, Fach of the remaining
20 eolumns, was Olled with 500 1z and 500 0z For the cxample dala malrix pre-
sented in Supplementary Figure 1, the set of columns, 5. filled with 900 15 and 100
0s ie: 5 = {4,8,0.12,17,21, 26, 30,31, 11}, Thus, this sel of sites comprises Lhe motil

(1.1.....7) of length p = 10, with (5] = 900. However, this motif is clearly almaost

1“) pessibilitios. Among

impaossible Lo find, becanse there 8 exactly one such among (ﬁ“
these (E%) paoints in the search space, there are [(15) — (?g] li-site combinations at
which the sequence will be (1)) .00 with a freguency of 300, and H:::) 1] 1(site
combinations at which the sequence will be [(1]}.n with a frequency of 700, Thus,
the set of 10 out of 30 sites versus the frequency distribution of individuals has o very
discrete structure: there is only one element in this set with 900 individuals, a very large
nurnher of elements with 700 individuals and a simnilarly large nurnber of elements with
o) individuals, Clearly, therelore, Lo flind the clemend with 900 individuals is nearly
impossible. In 1000 runs of our algorithm with p=10 and different initial values of ¢,
wrr wore never able Lo diseover the correct mouil, Invariably, the convergence was 1o
a string with fregquency either 500 or 700, However, when (misg, fin. Meng ), Where
iy denowes the number of columng in cach of which there are # 1s and (1000 — &) (s

(¢ = DO0. 700, 900; sy + Weqw + 1ggn = 30), was changed from (20,20 10) to other sets



of values, the proportions of runy in which the correct motif of length 10 was discovered
increased. In other words, when the structure of the search space was slighily changed
g0 that there were multiple - not just one - elements in the space with 300 individuals,
the alzarithm eonverged correctly and identilied the motil, Simulation experinenus
were performed with various values of the control parameter ¢, the results of which are

presenled o Supplementary Table 40 Besl results wore oblained winh e=2010.



1 4 809 12 17 24 26 30 31 41 50

]

700

Q00

Supplementary Figure 1. Model structure of the synthetic data sets with multiple local optima. [Dark boxes are filled with 1; white boxes are
filled with 0. Ten columns have 900 1s and 100 Os. Expected motifis (1,1,1,1,1,1,1,1,1,1) at sites (4, 8, 9, 12, 17, 24, 26, 30, 31, 41).]



Supplementary Table 4. Results of 1000 Simulation Runs for Different Structures of
Synthetic Data Set 2 as Specified by (m154q, 7174, Mggg ) for Different Values of the

Control Parameter ¢'

(1155 M 5005 Mogq) c % runs in | Meants.d. of the
which the number of
motif was sweeps to
correctly convergence
identified

(17,17,16) 10 36.8 1101.44+540.73
30 50.8 086.43+574.89

50 51.0 976.62+538.11

100 52.0 926.69+589.32

[ 200 | 550 | 896.77+57140

(16,16,18) 10 84.5 823.33+504.37
30 02.0 627.87+489.17

50 03.9 590.74+489.17

100 02.5 638.92+503.21

200 03.6 621.96+489.63

(15,15,20) 10 09.4 458.32+354.85
30 09.8 270.20+237.87

50 09.9 205.04+268.50

100 100 203.07+268.81

200 100 288.2(0+267.71

' The significance level of the motif, when correctly identified, was 2 10~ " when
assessed by the “drop™ procedure, and was = 0 when assessed by the bootstrap procedure
{indicating that no motif “better” than that identified by the algorithm existed in the data).



supplementary Text 5

Performance of the Algorithm when the Motif Proportion or Sample Size
is Small

We eenerated muliuiple svnihetic Data Sets 1 with w—00.1; that is, only 105 of indi-
viduals carry a known motit of size p=10. Further, we genenerated multiple synthetic
Drata Scis 1 with Y =530; that is, data sels with =mall sample sizes, Allhoush, both
these scenarios are somewhat unrealistic, we carvied out these gimulation experiments
to examine the limits to which our algorithim can be pushed. The results are given in
Supplementary Table 3(a) and (b}, We have used relatively small values of ¢, which is
what be prescribe should be used when the moul [requeney or Lthe sample size is small.

We find that even in these extreme cases, our algorithm performs well.



Supplementary Table 5. Performance of the algorithm on Synthetic Data Set | with (a) N=200 for different values of the variables L (number of

segregating sites) and u (proportion of the planted motif among N) = 0.1; and, (b) N=50, L=200 and various values of SuS. (The mean and s.d. of
the number of sweeps to convergence and the % of simulation runs in which the planted motif was correctly identified are based on 1000
independent simulation runs for each combination of values of the variables and the parameter.)

(a)
=50 =100
No. of Sweeps No. of Sweeps
L Mean s, Yo Mean sa. Yo
correet correet
50 1203.67 | 57549 100 | 20836 | 9430 100
100 | 366030 | 1157.10 100 | 99004 | 494 44 87
(b)
=50 c=100
No. of Sweeps No. of Sweeps
i Mean s.d. Yo Mean s.d. Yo
I R R correct correct |
03 | 206720 | 1847.40 74 835
19832 | 1541.6
1 0
0.5 55136 | 275.80 100 | 657.20 | 301.60 100
0.7 398.60 | 22380 100 | 382.10 | 212.50 100




supplementary Text 6
Method of Creating Synthetic Data Set 2

Two separale dala malrices, cach ol sise N = L, corresponding Lo the cases wud
conirols, woere ercated. Flemends of each column of cach mairix were randomly [lled
with 1 or 0; the proportion of 1s ocewrring in any columm was taken to be 0030 Then
p columns (polymorphic slies) were chosen au random. In vhe Grst dava malrix corre-
sponding to the cases. o set of [V x 4| rows were randomly chosen, where 0 < uy <
L. In cach of those rows, the cloments corresponding 1o the p chosen columng were ro-
Placed with 1. Thus, we planted, in the case data matrix, a motif (1.7,....1} of length
i a propoction of o) individaals, Under the common-disease, common-variant model
[Colling et al. 1998), each of the p sites {SNDPs) carries a small relative risk, RIL, to
Lhe discaze, thal collectively resulls in o large haplotvpe (twotil) relaiive risk, 1w and
w; denote, respectively, the number of 1s (that is. the specific nueleotide that confers
a higher risk) al the & sile (1 < i < p), among cases and controls, then BR = o fus.
[We have assumed that the site-specific relative risk is the same for sach of the psites.)
Henee, i the data matrix correspouding to the conteols, for the i ol the posites (tha
is. the i column), we placed 1s in [N % w,], where w, — v,/ 'R, randomly chosen rows,

and illed the remaining clements in that () colunn with Os.



supplementary Text 7
Method of Creating Synthetic Data Set 3

For conslrucling the dala sel, we lirst crealod a dala maleix of sige 1000 = B0, and
agsigned a value of (Vor 1 Lo each coll with probability 005, Then, we randomly sclecued
10 sites (that is, 10 columms of the data matrix) from the set (1) of 50 sites, and
chanped the Us 1o 18 au each site (colwnn) so that al each of these sives the proportion
of 1s among the 1000 individuals was = 0.8, This resulted in the data matvix, 2y, of
the ancesiral population which expectedly has a motif of length 10 comprising the set
of the 10 randomly selected sites, which we shall denote as 1T, We shen created two
davnghier populaiions of vhis ancesizal populations. The dala malrix, of size LOO0 x
aly, corresponding to the first daughter population was initially created by sampling
L0 rows (each wilh 50 columns}, wilh replacement, [rom the dala matrix of the
ancestral population. We then selected a set (I} of 3 sites randomly from 41T, and
il Lhese selecied sites we randomly replaced Os by 1s In the inial data matrix of the
first danghter population such that the proportions of 15 amaong the 1000 indivicduals at
each of these 3 sites was = (L&, This yiclded the Goal data matrvix, 225, corvesponding Lo
the first danghter population in which the motif expectedly comprises sites belonging
to 1 Lo Hg of length 150 For the second davghter population, the initial data matrix
wag similarly created. A set (ITy) of 3 sites were chosen from IT%(IT; U IT) and the
final data matrix, ;. was similarly created. In the second danghter population, the

expected motif of length 15 has sites belonging to I1; J I,



Supplementary Table 6. Mean + s.d. of the Number of Sweeps to
Convergenco in 1000 Independent Simulation Runs

for Syntheric Data Set 3

Fopulaiion Mean £ s, of the
(Data Mairix)  number of sweeps (0 convergence
Population 1 {F4) 45.76 1 52.15
Population 2 {72,) 33.25 | 12.96
Population 3 {Ix) 32.86 L+ 1307
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