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1. Introduction and main results

Let £ be a continuous distribution. Let (X, X5,...} be 1.1d. observations from £ Let
Ly=inf{n= L, X%, =Xy |}1 L =1.

Then {X;, :n =1} is called the sequence of (upper) records. Thus &; 15 a record if
X, = max{ X, X, .. X} and X, is taken to be a record by convention.

The study of records has been of much interest since the time of Gnedenko (1943). See
Amold et al. (1998) for an extensive bibliography and many interesting results. A crucial
observation in the study of record wvalues is the following: Let {¥} be iid. with
exponential disribution having mean one and let o be defined as:

Pix) = g (1 —exp(—x)). (1)
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Then, the joint di‘-:trihul:iﬂn of X . X, ., A b ois same as that of ¥,
YY1+ ¥ ), w3 [see, for example, Resnick (1964)]. So in particular,

X = ZJ__ 'HZ;—I ), in distribution.
Resnick (1964) has hhuwn that the limiting distribution function, if it exists, of the

propery centered and scaled sequence of records (Xp — b)) /a, (where a, and b, are
suitable sequences of constants) must be one of the following three distributions. Define
MNix) to be the standard normal distnbution function. Then

o Case (1) The limiting distrbution is M(x). In this case, it tums out that
b“ ™= 'F_I ':.1 T L"‘P'::_”:':' = 1'['1'::”:"
and
dy = 1;"::” + ﬁ:l = 1.';1{”:"

e Case (i1) The limiting distribution is

: 0 x <0,
Nia(x) = {N{mg,f-j e

e Case (ii1) The hmiting distribution is

vt = {008 =<

On the other hand, Arnold and Villasenor ( 1999) obtained the following results on the
asymptotic normality of partial sums of records:

e If 10 (x) =x,

=1

—— = N0, 1].
= (0.1)

< |T

o If 9y (x) = log x,

Zq(z }’,) —{n+1lilogn+n
=1 J=l
V2n

They conjectured that these hold for a wider class of 1@ functions. Bose et al. (2003)
extended the above results to a class of functions ¢ satisfying some technical growth
conditions.

= N(0,1).
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It may be noted that there 15 a lot of similanty between the limiting behavior of
records and the sequence of maxima. Resnick (1987) made a thorough investigation
of record values and maxima. Define M, = max {X;:1 =i < n} forn = 1. Resnick
proved that there exists a continuous time extremal process {¥(f) :f> 0} so that
IMy:n = 1Y 2{¥(n):n= 1}, He studied {¥(H : ¢ > 0} and his investigation throws
light on the properties of {M,:n = 1}, In particular, he showed that if the underdying
distribution £ 15 1n the domam of attraction of an extreme-value distnbution, then the
sequence of maxima converges (in a stochastic process sense) to a limiting extremal
process generated by the same extreme-value distribution. He uses point process based
methods o obtain his results.

Our purpose m this article is to establish a functional limit theorem for the process
obtained by the partial sums of records. Hence, considenng case (1), for ¢ € (0,1], define

o(30) -t

ﬂll

Z,(1) = (2)
where a, = vin + n) — in).

Point process based techniques do not seem to apply in case of records. Nevertheless,
i case (1) holds, then in Theorem 1 we show that the process 2, converges under mild
restrictions on .

As a consequence of the above result, we show that under minor restrictions on ),
Ry:=3% w"‘(Z, ¥ ].-"I:mz,,:l is asymptotically nommal. The results of Arnold and
Villas«cnnr {1999, antmnud above, then follow as special cases.

Let us now look at cases (i1) and (1), By Resnick (1964) case (i) holds if and only if
P x) = ($logx + bog L(x) ]2 where Lix) 15 a slowly varying funLtinn._Mﬂru{}vcr, b, =0
and a, = 1(nr). So in I:his case, 1'{ x) ~ Cexp(24/x/a). Now, Y - VEo Yo I where

% _ W) wlal
a log W~ N(0.1). But ' ‘I'}" bl L '_]}— ["'"'.':-' }Wand"'”"—r{} forall ¢ < 1.
So m this case Z-); as dLﬁnL‘d canmnot u}erj:L WL&H} to a valid pr process. Similarly, in

case (iii), éﬂ——rﬂ for all r < 1 where a,, denotes the appropriate scaling (Resnick, 1964)
and no nontrvial limit 1s possible.

So suppose that we are in case (1), that is, the records are in the domain of attraction of
normal distribution and let £, be as defined in (2). Then {Z,(6) - € (0, 1]} 15 a D0, 1]
valued process. Also let for all x = 0,

alx) = ¥ix + vx) —v(x).
We shall write o, for a(n). Resnick {1964) proved that case (1) holds if and only if

i, D) YR LxeR (3)

o — 0 ﬂﬂ

This condinon is used crucially in our proof.
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Theorem 1:  Asswme (3) and al-) is regularly varving fumction with index 3 € B Then
Z, = Z in D((0,1]) asn — = where Z(f) = *~V2B(t) for t € (0,1] and B is a standard
Brownian motion.

Remark 1: 1f 3= 0, then the above convergence actually holds on [0, 1]. 1f the parent
distribution £ 1s standard nommal, then 3 =0 [see Arnold et al. (1998), p. 19]. So in this
case, Z,(t) = B(f)/+ on (0, 1].

Remark 2: 1t should be noted that there are examples of functions, ¢ which satisfy the
condition (3), but @ 15 not a regulady varying function. One such example is given by

X

expl2,5) cxp [“U‘E -T:I "r] dx
Wy = f T,

where (0 < 3 < 1. In these cases, though the records will have an asymptotically nonmal
distribution, the process version does not converge to any process.

As a consequence of Theorem 1, we obtain

Theorem 2:  Assime (3) and that a(x) = Vix + /&) — (x) is a regularly varing
Sfunction with exponent 3 = —1. Then

R, = oo | [11(; }J) - 1_.11}]] = N0, g(3))

i=

where g(3) == f‘++l[l+ﬂ

Remark 3: Routine but tedious calculations show that if we set o (x) = P (x) P, (log x)
where Py and Ps are polynomials, then all the required conditions in the above Theorems
are satisfied. This in particular yields the asymptotic normality results of Amold and
Villasenor (1999).

2. Proofs

In this section we shall give all the proofs.

Proof of Theorem 1: For any process U-), let U0 )|, 5 denote its restriction to [a, b].
Suppose (U, cn = 1} and U are IN(0, =«)) valued processes. Then U, = Uin D0, =)
il and only if Uylje, ) = Ul & in D{[a, b]), for all 0 <a < b < o such that B{U{a) =
Ua—) and Ulh) = Ulh—)) = 1 [see Proposition 4.18 of Resnick (1987), page 205].

In our case, it 15 enough to consider the restriction of the processes to [e. 1] for every
0 <& < 1 and prove that Z,||. = Z|}. in Di[e.1]). Here is the brief outline of our
approach.

We fix 0 < e = 1 for the rest of this proof. First we define processes Vit and ple)
such that ¥ = V¥ on [e,1]. Next, we define functions g, g : D([e, 1]) — D([e, 1])
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such that Z, |1 = ga(Va"') and Z|, | = g(V'*)). Further, we will show that the func-
tions g, and g and the limiting process ! satisfy the condition of Theorem 5.5 of
Billingsley (1968), thereby enabling us to conclude that Zaljey) = g.,f_ir’,,[‘ =P =
2|, 1) We now proceed to do this:

Let S, =Y., ¥i—n. Fort € [e, 1], define

FJ::"I{-F:' = S|J|I|.I'IIV'IIW
VINE) = Bl (1)

where B, |, is the restriction of the standard Brownian motion on [e, 1].
Mext, we define functions g, g : D{[e, 1]) — D([e, 1]) as follows: for any [ € D{[e, 1]),

gl f)lt) = 1III.1R[M]1,';:H\M-{;[H:E IIU—:I :Iq.;r:;!':["f] )

and
g( () = 1.

It 15 clear that we can write
Zili=en(¥,?) and Z|joy=g(V").

Now, V() = [ya/\/Inf]] x (S /+/n]. Since Su/yn = B|,, as n — oo and
Wi/ /Tnt] — =12 uniformly in f € [¢, 1], we have, by Exercise 1, Iiillingslcy (1968),
page 28,
Vi = Pl as n— oo
Finally to verify the condition of Theorem 5.5 of Billingsley (1968), we define
E={fe€D(e1]) : gl ) — gl f) fails to hold for some sequence { f, :n = 1}
C D([e, 1]) such that f, — f in D([e, 1]) }.
To conclude our result, we need to show that,
B(Kle e E) =0
Since the paths of ¥/ (= Bl () 172} are almost surely continuous, ¥ has support
only on C([e, 1]). Therefore, it is enough to prove that £ C D{[e, 1))\ C([e, 1]).
In other words, it is enough to show that—for any f € C{[e, 1]) and any sequence
{fx :n =1} C D([e,1]) such that £, — f in D{[e, 1]},
gn(fu)(1) = g(f)(1) uniformly int € [¢,1].

To prove this, fixany 0 < & < 1. For any f € C([e, 1]) and £, € D{[e, 1]}, such that
fu —f in D([e,1]), we must have f,(r) — f(t) uniformly in ¢ € [¢, 1] [see Billingsley
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(1968), page 112]. Therefore, there exists N, such that sup{| £,(f) — f(1)| ;1 € [e, 1]} < &
for all n = Ny. Thus, we have sup{|f,(f)| 1t € [e, 1]} < S+ sup{fi{r) : 1 € [e, 1]} = M,
(say) for all n = Ny

Let My :=sup{t’: t € [, 1]}. Since ajy/a, — ' uniformly in f € [e, 1], we may
choose N, so that, for all n = N3, we have

a, .
sup{ﬂ—ff :IE[E,1|} < §
aﬂr
and
a .
sup{ bl . e (e, 1]} < &+ My =: M;(say).
a“

Further for any positive integer n, [v(n + /nx) — 1(n)|/a, is non-decreasing in x, we
must have that [(n + /nx) — (n)|/a, converges to x uniformly on compact sets.
Therefore, we can choose N5 so that for all # = N, we have

: {|1_.":{n + +/nx) — 1(n)
sup

| a,

—X

:|.t|£M|} < &

MNow, for all n = max{N|, N2, N3/e} and 7 € [e, 1], we have

lgal fa)(t) — gl )0

1. " |
< 2 90 BN = WD _ )4 o2 - |+ 110 =10
| o] a

< My sup {'«-‘xlﬁ[m‘l + Tt} = fme])

|
x| x| <My b+ ME+ Mod
) I

= I:;'G’ﬁ + M> + J"f}}ﬁ
Thus, g, ( f,) converges to g /) umformly in [e, 1]. This proves the result. O

To prove Theorem 2 we need the following three lemmas. Fix any 0 < & < 1 and
consider the integral function on D([&, 1]), 1.e, [ : D{[8,1]) — R defined by,

|
10f) = f o

This is well defined for all € D([#, 1]}, since f is bounded and right continuous. The
first lemma is a straightforward consequence of weak convergence in Skorokhod topology.

Lemma 1:  The mapping [ is continuous at every | € C{ |6, 1]) under Skorokhod topology.
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Proof: Supposethatf, € D([6, 1)) and f € C([#,1]) such that f, — f in D{[,1]). Now,
we know that in such a case f, (1) — /(1) uniformly in u € [8, 1] [see Billingsley (1968),
page 112]. Therefore DCT applies to show that I{ £ — I ). O

MNext we require two lemmas on regularly varying functions. The following lemma is
essentially part (i) of Lemma 0.8 of Resnick (1987), page 22, We state it here in the
form we require.

Lemma 2: [ wis a function taking strictly positive values and is regularly varving with
index 3, then for any o = 0, there exists Ny = 1 such that

H-ex
(7] ut.rjl =0 2 forall x =y = Ny
Hl:' V :I ¥
f [F—ex
(i) :::12' <G (;) Jorally =2x = N

where O, Ca = () are constants, depending on o

MNext, we dedve a bound on the behavior of 4 using the regular vanation of
alx) = (x + /%) —ao{x). This result may be known in the literature on regulary
varying functions. We mclude a proof since we could not find it in the lierature.

Lemma 3:  Let alx) = (x + /%) — W{x) be regularly varving with index 3. Then for
any 0 < o < 1/2, there exisis Ny = 0 and C; = 0, such that for all n = Ny, and for x| < n",

¥in +xy/n) — (n)
win+y/n) — in)

< Go(1 + [«]).

We postpone the proof of Lemma 3 for the time being and prove Theorem 2 assuming
the above Lemmas. The main idea is to consider the partial sum as the integral of the
process {2, and use Theorem | and continuity of the integral function. However, this
cannot be done directly as the convergence in Theorem 1 is only on (0, 1]. Therefore, we
need to consider the terms near 0 separately. The Lemmas 2 and 3 will be used to
estimate those terms, while Lemma 1 along with Theorem 1, will be applied on the
remainimg part to give us the limiting random variable.

Proof of Theorem 2: Let A, be a fixed positive integer. The exact choice of Ny will be
specified shortly. Also, fix & = 0. Now, we can split £, into three sums as follows:

R, {Z[(Zr)q b il(Zr){]

+m1{n;. Z l (Zf) —wr] =: R {n) + R™)(n) + Ry(n).

i=|mé]+1
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The third ferm Rs(n): This is the main teon. It s easy to see that Rq(n) can be written
a_‘; Rsln) = f:'. Zy(1)dr . Using, the notations used in the proof of Theorem 1, we can write
f Zy(t)dt = I(Z,] ;) where T'is the integral function on IN[#, 1]), defined in Lemma 1
and Z,[;; ) 1s the restriction of Z, to [&, 1]. By Theorem 1, we have Z, = Z on (0, 1]
th‘rLﬁl'Lf:I = 712 B ) for t = 0. Using the converse part ﬂf Pmp-n‘iltmn 4.18 of Resnick
(1987), page 205, we have, 7, 8.1 = Z|y . for every 6 > By Lemma 1, the
dlSLuntmmty points of [ is a ‘-:uh‘-:Lt of D{[&, 1]\C([8,1]). Sincu the paths of

-I<'- y(=#""12B(1)) are almost surely continuous, the measure of the set of disconti-
nuities of /, under £|; ) is zero. Therefore, using Theorem 5.1 of Billingsley (1968), we
conclude that R:(n) = I{Z,,|i‘.,_||:| = 1{Z] ;) =: Rs (say).

Before we consider the two remaining terms, we brefly explore the behaviour of R,
Since Ry = 1(Z]j5)) = [} #7128 (1) dr, Rs follows a normal distribution with mean 0 and
variance given by gi(3) where

4 fo ﬂ;2+21 2ﬁ3-’2+ r“ |.n'2+ I:I
gﬂ{;ﬂ = 34 28 2 + 24 = 1+ 2;}

if 34£—1/2

2(1—8) +26log & if 3=—1/2.

Clearly, for 7 = -1, gs{ 3) — g(3) as § — 0. Therefore, we have that R; = R where R
follows a nommal distribution with mean 0 and vanance g 7).

To consider the terms B (n) and R'*!(n), we have to make a formal choice of Ny In
order to do so, we first choose ~ = 0 so that 3 —~ > — 1. Applying Lemma 2, we choose
Ny such that,

5 sa()”

forally =x =N,
Now, fix any 0 < o < 1/2. Applying Lemma 3, we choose N> so that

win +xy/n) — (n)
Win+v/n) — ¥in)
for all n = N2,

Further, set P, =} ' ¥; and fix any e > 0. Define the sequence of events 4, =
1P, —nl < n"*+9) We want to show that all but finitely many of 4, s must occur. In
order to show that, Lhﬂﬂ‘vl_ K so large that Ko = 1. Now, by Markov mbquallti we have
P(AS) <E(|(P, —n) /A" )/nf < G, fn"“' where Cs = sup{E(|(P, — n)/ /A J:n = 1}
< oo. Hence, F(lim sup, ___A4%) = 0, i.e, P{lim inf,_..4,) = 1. So, LhnmL M |t'lrf:_L
that B{B{N3)) = | — e where B(N;) = I"],,.}_a-,,.. N

The first term R"n): Let Ny = max{f'il.;'|,f"l.-'2.f"l.-'3}. Since the function x — alx) =
ix + /%) — vx) is regulady varying with index 3 = —1, we get that the function
¥ — xalx) is also regularly varying with index 1 + 3 = (. Hence, na(n) — oo asn — oo,
Since B'" (n) is the ratio of a sum comprsing of finitely many fixed terms and na(n), we
have that R'"(n) converges to () in probability.

< Gyl + |x]) for [x] < a"
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The second term R™(n): For this term, we have to work a little bit more. We will
estimate the probability that it is bounded away from 0. For n = N, we have

P(|R2(m)| = ¢)
= n:(g.:,m A {IRD(n)]| > r.}) +P((B())")

= ( BV [ ) +
E(lﬂ[-"-fﬂ )
< (5)

+ £
Now, the above expectation 15 estimated i the following way:
1
B Lagw;)|——
nRan
]

(n) A
{IE.( —— 3" Ly [9(Pr) — ()
= Bl 0(P) — #0)
) =)

|:nd]
Z [ P;) —

m|

naln) Fomy

£

[W(Ps) — (i)

nd]

[1(P;) — (i)

—

H_,-

Ji |
naln oy
{ i=Ng

|14]

J—J’h

as B(N;) C A, foralln = Ny
For the expectation inside the summation in equation (6), we will use the bound given
by Lemma 3. We have
Bl (¥ Pn) — ¥(n))| = f fulx) [po(n + xy/) — (n)|dx
< Crafw) [ fte)(1 + b
< Cualn) [~ @)1 + s

= Cya(n) (M

where f, is the density function of the random wvariable (P, —n)/yn and 3 =
Cy sup{l + E(|(P, —n)//A]):n =1} < oo
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Now, putting together (3), (6) and (7), we have

y ||
P(|R® (n)| =€) < mi;ﬂj E alil + €
. oy

CsCa L4 7\ A
E ( ) +e using equation (4)
n

R =N,

|

[

CsCy [*
hae dfy'j_"dy+£ 45 0 — 20
1]

= — Coly SHE-T g,
el + 3 —~)

We are now 1n a position to tackle 8, completely: Note that for x € B and & = 0, we
have

F(R, <x) <P(R"(n)| = ) + F(|R* (n)] = €) + F(Rs(n) < x + 2e).

Letting n — oo, we have

lim supP(R, <x) < e +——8C4_§148-1 | P(R; < x+ 2¢).

H—+ 0 E{ 1+ ‘r-j o F:":I

Letting & — 0, we have

lim supP(R, <x) < ¢ +P(R < x+ 2¢). (8)

H—20

Conversely, for x € B and & = 0, we have

P(Rs(n) < x — 2¢) < B(IR" (n)] = €) + B(|R™(n)| = €) + P(R, < x).

Letting n — oo, we have

CC
P(Rs < x—2¢) <+ ﬁé'”"‘ + lim infP(R, <x).
Letting & — 0, we have,
P(R < x—2€) < € +lim inf P(R, < x). (9)

Now, letting € — 0 in (8) and (9), we conclude,
lim BR, < x) = PR <x)

H—+00

for all x £ E. This proves the result. O

Finally we prove Lemma 3.
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Proof of Lemma 3: We divide the range of x into three separate regions:

Region A: —n" < x < 0, Region B: 0 < x < 1 and Region C: 1 < x < »". It is enough
to obtain separate bounds for each of these three regions.

Region B: This is the easiest to handle. On the set 0 < x < 1, we have that [10(n + /hx)—
win)| = (n + mx) — (n) < bln+ R) — (n) using the fact that + is non-
decreasing. Therefore, we have 1 as the upper bound for this region.

Region C: In this region, the idea 1s o write 10(n + /mx) —10(n) as a telescoping sum of
tenms of the form o + /i) — () and then estimate each of these terms using
Lemma 2.

Let My be a fixed positve integer. We will specily it shortly. Fix n = Ay and x = 1 and
define a sequence as follows: #(1; n) = nand for j = 1,
Fj+ Lin) =rljin) + +/r(jin).
Define further,

Rix;n) = min{j: 1 jin) = n+ xvn}.
We have
4b(n + x/m) — 3i(n)|
= 1in +xy/n) — 1(n)
< (r{R(x;n)in)) — 3(n)
= (r{R{x;n):n)) — {r{l;n))

Rixm)—1
= Z e j+ Lin)) — (e jin))
=1
Rixm)—1
= Y wle(isn) + VA — (r(jim)). (10)

=l

Mext, we estimate the mdividual terms as well as the number of s in the above summa-
tion in equation { 10). To do this, we first choose a constant NV, using Lemma 2, so large that

alx)
alv)

#+1
«-_:ca(ij forallx > y > N (11
v

and N,, so that i~ '/2 < 1/2 forall n = Ny, Fix n = Ny == max {N|, N2},

Estimate of Rix; n): Note that r{j+ lin) Zr{jin) for all j= 1 and W j+ Lin)—
rijin) = +/r(jin) = \/r(l:n) = /n. Therefore, H{j+ 1;n) = n+jy/n for all j=1.
Henee, Rix; n) must be finite and, m fact,

Rixn) <24+ =(2+%) (12}

where [u] is the largest integer smaller or equal to .
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Estimation of the summands in (10): Since cach of these terms 5 non-negative, we
can estimate them separately. Using the estimate in (11) and the fact that #{ jin) =
n = Ny, we have

1,.{n+1.,-"'_.—1, . aln)

If 7+ 1 <0, cach of these terms is bounded by 1. In case 3+ 1 = 0, we note that for
all j=1,2,...,Rix:n) — 1, we must have r{jin) < n+xy/n . Thus, for all n = Na,
rijin)/n < 1+x/yn<1+na""? <32 So, cach of the terms are bounded by
(3/2)"". Therefore, using (12) and the above bound, we have that

n

Yrism) + VE) — i) _alrism) _ . [ﬂu ”3'] e (13)

Rix; =1 %
Y(n +xv/n) — in a(ri jin)) _ .
L"l:-!'!+v"{_ _1} JZI ﬂl:ﬂj E EH':,]. +.T:|

where Cy = max{Cy, C7(3/2)"""}.

Region A: For this region, we employ a similar method, ie., write down
[vi(n + xy/m) —a(n)| as a elescoping sum and then estimate the number of terms in
the summation and each of these terms in the summation.

Again assume that V), be a fixed positive integer, to be specified later. Let n = N and
—n" < x < (). Define, s{l;n) =nand forj =1

2e(im) + 1 — \,-“'T'-'{j:n:l +1
3 ;

s{j+ Lin) =

Note that, by definition of s( j 4+ 1:#n), we have
s(7+ Lin) + /5(j + Lin) = s( jsn)
for all j = (. Define,
S(x;n) =min{ j :5( jin) < n+x/nk
As cardier, using the fact that  is non-decreasing, we can write,
[1{n +x4/n) — 1b(n
= 1f(n) — tin +x1.f_
= ¥ln) — Y(s(S(x:n);n))
= ¥(s(1;n)) — ¥(s(S(x;n); n))

Slxm)—1
= > wls(im) — (st + Lim)
4=l
Hlxm)
= 3 sl iin) + VG —d(s(ism). (14)

=2
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As carhier, we have to estimate the number of terms in the above summation and cach
of these terms.
Fix, using Lemma 2, Ay = 1 so that
alx) _ . (r) 2
------- - = Oy = forall y =x = N;. (15)
aly) v
Nextnote that s(j + Lin) —s(fin) = (1 — /4s(jin) +1)/2 forall j = 1. Choose N
so large that —3/2 < (1 —n +1)/(24/n) < —1/2 for all n = Ny. Further, choose N},
so large that n —n'/2+ = n/2 and n — (0 +3/2)n"? = max{N;, Ny} and (n" + 3/2)/
v < 1/2foralln = N,
Estimate of S(x; n): Fix n > Ny Forj < S{x;n), we must have s(j:in) = n + x/n =
n — n*tY2 = Ny Therefore, by choice of Ny, we get

3 3 s+ l:n_:L— s( jin) ” 1 — o/ ds(jin) +1 i 1
257 G 2/5Gim) 2
Hence, we have
SV < oo+ tym) = s(jym) < — L) (16)

n—n*t2 = pi2 . Se, from (16),
n) < s(1:m) — jy/i/(2V2) = n—
\,-"{_ltll n) = n+x,/n. Thus, we

Further, for all j < S(x;n), we have s jin) =
s(j+ lin) —s(fin) < —/n/(2v2). Hence, s(j+1
Jf/(24/2). Using this, it is easy to see that 5(2 + |
have the bound,

Slxn) <2+ V2| <2 4+ 242 (17)

where [u] 15 the largest mteger smaller or equal to w.

Estimation of the summands in (14): Since cach of the sumand 15 non-negative, so we
estimate [1(s( fin) + /s(fin))—(s( i n))] /fr(n+ /i) — p(n)] for j=2,..., S{xyn).
Now, for terms j = 2,3,....8(x:n) — 1, we have s{j;n) = n+ /nx = n— a2 = Ny,
by our choice. So, we can apply equation (15) for each of these tenms. For the term,
J=58[x:n), we note that

1 — /4s(S{x;n) — Lin) 4+ 1
2
s(8(x;n) — 1in)
= 2

3va
A

s(8(xn)in) —s(S{xn) — 1in) =

using (16

So, we have s(S{x:n)in) = 5(8(xn) — 1;n) —3/0/2 = n+ (x — 3/2)4/n ., since by
definition of S{x:n), 5(8{x;n) —1:n) = n + xy/n. Therefore, we obtain that for all



56 BOSE ET AL

F<8xnlsiin) 2+ (x—3/2)n=n— (" +3/2)/n = Ny Thus, for j=2.3,...,
S{x;n), we get

P m) + ST = slism) _ als(jim)) _ . aﬁ:n))""
T T == - L] .
[14(n + /1) — 1(n)] aln) i
If 3—1 =0, each of the terms are bounded by 1. If 3—1 < O, s jin)/n = 1+
(x—3/2)/vrn=1—(n"+3/2)/n = 1/2. Thus, (s(j; n]l.-"n:lj ' < 2-#1 Therefore,
using {17) and the above bound, we have that

Nl

= ; % < Col1 +2v2x]) < Ci(1 + |])

win +xy/n) — 1(n)
win+y/n) — 1in)

where Cig = max{C, 0277} and Ty, = C102v2. This completes the proof of the
Lemma. O
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