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Abstract

In this note, some probabilisiic models for replication of character sirings are considered. These
replication processes involve random mutations, deletions and insertions of characters. We investigate
invariance of certain probabilistic properties of replicating character strings under the proposed stochastic
models for the replication process. It is shown that some well-known types of hidden Markov models with
finite state spaces arise as special cases of our stochastic replication models. We also introduce the notion of
a hidden mixed Markov model for a character string that arises in a situation where the replication process
satisfies exchangeability conditions.
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1. Introduction

Suppose that we have observed a random character string [ ¥y, ¥2,...), where Y; € o/ =a
finite alphabet of symbols (= {ax),%2,..., 2 ). say). We assume that this observed sequence is
generated by a random replication process operating on an (possibly unobserved) ancestor string
{X1, X2, ...) of characters from the same alphabet .«/. Such replication of character strings arise in
molecular evolution of DNA, RNA and protein sequences. Several stochastic models for
biological sequences (i.e., DNA, RNA and protein sequences) have been considered in the
literature, and their biological significance has been investigated by several authors (see e.g.,
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Churchill, 1989; Durbin et al., 1998; Ewens and Grant, 2001; Krogh et al., 1994; Pevzner, 1992;
Pevener et al.,, 1989, b; Phillips et al., 1987a, b; Schbath et al., 1995 Waterman, 1995). Among
those models, Markov and hidden Markov models are possibly the most extensively studied
maodels for biological sequences. Let us assume that { Y, Y,, ¥4,...) 15 obtained by replicating
[X,, X5, ...}, where the replication process i1s subject to random mutations, insertions and dele tions
of characters at various positions. A natural question that arises now i1s what are the properties or
features (e.g., Markov property, hidden Markov property, exchangeability) of a stochastic
sequence that one can expect to hold for the descendant Y-sequence given similar properties of the
ancestor X-sequence under appropriate random replication models.

If we view random replication as a stochastic transformation on the space of sequences
equipped with a probability measure governing the probability law for the ancestor chain, the
questions raised in the preceding paragraph translate into invariance or non-invariance of that
probability measure or some specific features of that probability measure under such a random
transformation. These fundamental issues for character strings that undergo replication subject to
random alterations will be investigated in detail in this paper. In course of this investigation,
it will be shown that the random replication model considered here is more general than some
standard hidden Markov models with finite state spaces considered in the literature (see e.g.,
Churchill, 1982; Ewens and Grant, 2001; Krogh et al., 1994; Waterman, 1995) in the sense that
those latter models can be derived under special probabilistic conditions imposed on the
replication process.

2. A model for random replication

We begin by describing a model for the random replication or copying mechanism, which
operates on the (possibly unobserved) ancestor sequence of the X"s to produce the observed
sequence of the ¥'s, using a stochastic process { £, £2, 21, .. .}. We will assume that the Z-process
has state space [D, [, M}. In state D, the replication process Z will delete the character in the
X-sequence that it encounters. In state [, the process Z will insert one letter from the alphabet .+ into
a position in the X-sequence that it encounters by rdndumly selecting that letter Fru:rrn 4/ according
to the probability distribution P{*‘Inserted letter is )= n; (m;=0,1 =ik, z _1 I = 1), which
depends neither on the X-sequence nor on the Z-process. In state M, the process £ will mutate the
character in the X-sequence that it encounters according to a k x k stochastic matrix ((6;;)), which
will be assumed to be independent of the Z-process. Here for 1<i,j<k, 6;; = the conditional
probability P(*The Ietter 15 mutdted into «; in the descendent chain™ | “The letter was = in the
ancestor chain™), and z iy = 1 for all 1 <i<k. Note that the term “mutation™ here does not
necessarily mean dllEl’dlan of a character in the X-sequence as we do allow for the possibility of
;=0 for some or all the /'s.

Let T be the time of the fth visit of the Z-process to the state [ or the state M. The following
random variable can be used to keep track of the index (ie. the position of a letter) in the
X-sequence on which Z; operates.

¥=1 if Z; e {M,D},
=0if Z; = I. (1)
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Also, let us define S, = 3_;_, 7¢- Then a character in the observed Y-chain, which is obtained by
copying the ancestor X-chain using the Z-process, can be written as

¥;=ua, with probability =, if Zy =1,
=z, with probability 0, if Z3 = M and Xs, =t (2)

As we will see in the forthcoming section, if the X-process 1s Markov, the ¥-sequence may not
be Markov even if the Z-process is i.i.d in nature. However, in this case, the ¥-sequence will be a
stochastic function of a Markov sequence.

Let us note at this point that if Z,=Zy=..-=Z, =1, we will have
Sr,=8r=---= 85, =0. Since the X-chain starts from X, one has to define Xgp =---=
X5, = Xy by introducing Xy. This Xy is never operated upon by the Z-sequence because the
effect of insertions at the beginning is to shift the { X', X5, - - -} part to the right, and as soon as we
have the first D or M according to the above notation, that acts on X' ;. Consequently, we may
consider the sequence { Xy, X1, -- -}, whose [ X, X4, - --} part is to be replicated by the {£,, Z5,---}.
Without loss of generality for all our subsequent mathematical results, we will assume that
[Xo, X1, ---} 15 a sequence with the same probabilistic features (to be imposed in the following
sections) as the sequence {X', X2,---).

2.1, Hidden Markov models

The following results demonstrate how some standard hidden Markov models with all state
spaces finite (see e.g., Churchill, 1989; Ewens and Grant, 2001; Krogh et al., 1994; Waterman,
1995) may arise as special cases of our random replication model described above.

Theorem 2.1. Suppose that {X | X, Xa, o) and |2, 25, 24, ..} are independent Markov chains
with stationary transition probabilities, and define (Xg, ,Zy)=H; Then {H|,Hs Hy, ...} is a
Markov chain with stationary transition probahility. In this case, the Y-sequence satisfies the hidden
Markov model in the sense that the Y.'s are conditionally independent given the H;s, and the
conditional distribution of ¥Y; depends only on H; for all i = 1.
Proof. We want to show that the conditional distnbution of

{X'H;T'«-l \ZT“.L} gi\-‘f:[l {X_\'r.“, ZT«" faay X'H'-r'l 5 ZTL}
is same as the conditional distnibution of

(X5, 2 2Z1.,) given (X5, , Zr,).
In the following, the summations (> ) are over the values of T;'s and S+,°s, and instead of writing
X, =, Zy, =M (or 1) etc., we simply write X, ,Z . Then, we have the following by the
independence of the X-process and the Z-process,

P[Xh'r-l 3y X.Hfr-“_.l'uz'f'“- - &ZT“_l}
= 3" P gy, iy Xwe YTy 05 Tori Smisi s S mags Zaysocces Zrge)

Notice that given Zr , the chain {Z+ 1,27 42, ...} is an independent Markov chain (depending
on the initial state Z¢ ), with the same transition probabilities as the original {Z,, 2, ...} chain
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with state space [/, M, D}, which we notationally distinguish by using primes. Further, using the
Markov property of the X-chain and the Z-chain, the above can be written as

¥ BT is Tas Bryicces B0 Zapawes ZT I X syavvsiXsg,)

]

where the second sum is over the values of the primed random variables. Since Zy and X, are
fixed, the inner sum is independent of Z¢, ..., £y | as wellas G & ERTET & Eg and the outer sum
is equal to

P[Xﬁr-l_'u-- - -.XH.':..-“-. ZTL'\- sas &ZT“}-

This completes the proof of the Markov property.
The proof of the Theorem is now complete in view of the description of the Y-sequence in terms
of the X-sequence and the Z-sequence given in (2). O

Theorem 2.2. Suppose that the ancestor seguence | X |, X2, X1, ..} itself satisfies a hidden Markov
model such that there exists a Markov chain denoted by | Q,, Q5, Q4. . ..} with a finite state space and
stationary transition probability and the X /'s are conditionally independent given the O-process with
the conditional distribution of X; depending only on Q.. Assume also that the replication process
[ £, 22,24, . .} isa Markov chain, with stationary transition probability, which is independent of the
[O: - and the |X}-chains. Then the observed Y-chain satisfies a hidden Markov model with an
underlving Markov chain that too has a finite state space and stationary transition probability
mairix.

Proof. Using the arguments used in the proof of the preceding proposition, we get that the
sequence {(Qg, ,Zr,):i=1,2,3,...} is a Markov chain with stationary transition probability.
Further, in the case when both of the (- and Z-sequences have transition probability matrices
with all their entries positive, the same is true for the Markov chain underlying the Y-sequence.
The proof of the Theorem is now complete by observing that the ¥,'s are conditionally
independent given this Markov chain, and the conditional distribution of ¥; depends only on
[QHJAI ) as follows. If Z4 =1, we have P[Y =a, |{Q5_~ ) =m. On the other hand, if
Zy =M, we have P(Y; =, HQH 7)) = EJ  P(X sy, = %|Qs, }ﬂ“ O

An important implication of the preceding Theorem 1s that when the ancestor chain satisfies a
hidden Markov model with an underlyving Markov chain having finite state space and stationary
transition probability and the replication process is Markov, the descendant sequence also
satisfies a similar hidden Markov model. In other words, such hidden Markov property for a
character sequence 1s preserved when it is subject to replication by a Markov replication process.
However, the state space of the underlying (i.e., the hidden) chain for the ancestor string of
characters might be smaller than the state space of the underlying Markov chain for the
descendant string though both of the ancestor and the descendant strings are generated from the
same alphabet of characters. Hence, the number of parameters needed for the hidden Markov
maodel describing the ¥Y-sequence may be more than the number of parameters needed for the
hidden Markov model describing the X-sequence. It also follows from Theorem 2.2 that after
repeated replication we stll have a hidden Markov model, i.e. if the same chain is copied » times
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by independent (across copies) Z-chains, the nth copy satisfies a hidden Markov model, and the
number of hidden states in the model in this formulation will grow geometrically with the number
of replications n.

2.2 Exchangeable processes and hidden mixed Markov models

Let us now consider a situation where the Z-chain 15 an exchangeable sequence. This is
equivalent to assuming that different positions of the replication chain are stochastically
indistinguishable. In such a situation, it can be shown that the (Xs, , Z+) chain is not necessarily
Markov, but it will be conditionally Markov given some appropriate s-field. This now motivates
us to introduce another family of models for character stongs and explore how it remains
invariant under exchangeable replication processes. We will call a stochastic process a mixed
Markov chain if it is a Markov chain with a random stationary transition probability matrix.
In other words, the process is Markov given that transition probability matrix, and the term
‘mixed’ here refers to the integration with respect to the distribution of the random transition
probability matrix in obtaining the unconditional distribution of the chain. Note that a
usual Markov chain with a stationary transition probability matrix is a special type of mixed
Markov process.

Then a character sequence (e.g., the X-chain) will be said to satisfy a hidden mixed Markov
maodel if it 1s conditionally independent given an underdying mixed Markov process (e.g., the
(-chain—here the X;'s will be independently distributed given the @,’s with the conditional
distribution of X; depending only on ), as before). The following theorem then follows.

Theorem 2.3. Suppose that the X-process is hidden mived Markov in nature with the wnderlying
O-chain having a finite state space. Asswme that the Z-process is exchangeable, and it is independent
of the | O:)- and the | X }-chains. Then the Y-process is also hidden mixed Markov in nature with an
underlving chain having a finite state space.

Proof. Since exchangeability is equivalent to being conditionally 1.1.d given the tail o-fields of the
respective processes (see e.g., Feller, 1971), the Z-sequence is conditionally i.1.d. Also, the O-
sequence is conditionally Markov given its transition probability matrix. Then, in view of
Theorem 2.1, (Qg, , Z7,) 1s conditionally Markov given the o-field that is generated by the tail o-
field of the Z-process and the random transition probability matrix of the (-chain. Hence, the
(Qg, . Zr,) sequence will be unconditionally mixed Markov with the desired properties. Clearly,
the Y-sequence is conditionally independent given the (O, ,Zr,) sequence, and the conditional
distribution of ¥; depends only on (Qg, , Zy,). This completes the proof. [

A straight-forward implication of Theorem 2.3 is that after repeated replication of a hidden
mixed Markov sequence by independent exchangeable replication processes, we still have a hidden
mixed Markov process. In other words, if the same hidden Markov sequence X is copied » times
by independent (across copies) exchangeable Z-chains, the nth copy satisfies a hidden mixed
Markov model, and the number of hidden states in the model in this formulation will grow
geometrically with the number of replications n.
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3. Concluding remarks

Let us now try to summarise our main findings in this paper. We have observed at the beginning
that simple Markov property of a character string is not necessanly preserved under stochastic
replication even if the replication process is Li.d. in nature. Subsequently we have established that
when the replication process is Markov in nature, certain hidden Markov properties of the
ancestor string with an underlying finite stationary Markov chain is preserved in the descendant
string. We have also introduced the notions of mixed Markov and hidden mixed Markov
processes and indicated how these properties can be preserved under exchangeable stochastic
replication.

Of course, the actual replication of a biological sequence and the changes that gradually occur
there leading to biological evolution are extremely complex in nature. It is a simplistic approach to
model such replications by our Z-process involving random mutations, deletions and insertions.
Mevertheless, when a family of stochastic models (e.g., Markov or hidden Markov) is used for
character strings that undergo random replication, the invariance of that family of models under
appropriate probabilistic conditions on the replication process is a fundamental requirement.
Unless such an invariance holds, there will be an intrinsic inconsistency in view of the fact that the
ancestor string itself is created by replication of its predecessor. Hence, the ancestor and the
descendant sequences cannot be driven by two completely different tyvpes of probability laws.

It is easy to see that in Theorem 2.2, if the stationary transition probability matrices of the
(-sequence and the Z-sequence have all their entries positive, the same will hold for the Markov
chain underlying the ¥-sequence. In this the underdying Markov chain will be ergodic and the
Y-sequence will possess the z-mixing property with geometric decay. Readers are referred to
Chaudhun and Dasgupta (2005) for an extensive study of stationarity and mixing properties of
replicating character strings. In the case of Theorem 2.3, if the mixed Markov chain @ underlying
the X-sequence has a random stationary transition probability matrix with all its entries positive
with probability one, the mixed Markov chain underlying the Y-sequence will also have the same
property. This would imply conditional ergodicity and conditional alpha-mixing properties when
one conditions on appropriate transition probability matrices.
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