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GRACEFUL SIGNED GRAPHS: II. THE CASE OF SIGNED CYCLES
WITH CONNECTED NEGATIVE SECTIONS
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Abstract. In our earlier paper 9], generalizing the well known notion of graceful graphs,
a (pom,n)-signed graph S of order p, with m positive edges and n negative edges, is
called graceful if there exists an injective function f that assigns to its p vertices inte-
gers 0.1,..., g = m + n such that when to each edge uv of 5 one assigns the absolute
difference | fiu) — f{v)| the set of integers received by the positive edges of 8 is {1,2,...,m}
and the set of integers received by the negative edges of S s {1,2,..., n}. Considering
the conjecture therein that all signed cycles 2., of admissible length & = 3 and signed
structures, are graceful, we establish in this paper its truth for all pessible signed cycles of
lengths 0,2 or 3 (mod 4) in which the set of negative edges forms a connected subsigraph.
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(. INTRODUCTION

For terminology in graph theory we follow (18] and for that of signed praphs
{(henceforth abbreviated as sigraphs) we refer the reader to [12], [13], [17], [21], [26].
Additional terms will be defined as and when necessary.

An ordered pair § = (5%, s) where 5% = (V) E) is a graph called the underlying
graph of § and 5: £ — {4+, —} is a function from the edge set E into {+,—}, is
called a signed graph (or sigraph in short). We let EH(S) = {e € E: s(e) = +}
and E-(8) = E— ET(S). Then the set E(S) = ET(§)0 E~(5) is called the edge
set of 5. The elements of ET(8) (respectively, E~(5)) are called positive (negative)
edpes of 5. We shall regard graphs as sigraphs in which all the edpes are positive
{or, all-positive sipraphs; all-negative sigraphs are defined similarly). A sigraph is

said to be homogeneous if it is either all-positive or all-negative and heterogeneous
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otherwise. Given a subsigraph H of §, by a negative ( positive) section of H we mean
a maximal connected all-negative (all-positive) subsipraph of H.

Sigraphs were invoked by F. Harary [16] as appropriate prototype modeks to rep-
resent structures of cognitively dichotomic interrelationships in a social proup. Ever
since, sipraphs have received much attention in social psychology (where they are
called sociograms) becanse of their extensive use in modelling a variety of cognition-
based social processes (e.g., see (1], [5], [13], [17], [21]).

Further intensive study of the topic has been due to their subsequently discovered
strong connections with many classical mathematical systems (2], [5], [10], [20], [21],
[25], [26] used in solving a variety of problems of theoretical and practical mterest
(e.g., see [27]).

The notion of graceful graphs n graph theory (see [3], [4], [6], [7], [11], [14], [15],
[19], [22]-[24]) was recently extended to the class of sigraphs (see (8], [9]) as follows:

By a (p,q)-graph we mean a graph with p vertices and g edges. By a (p,m,n)-
sigraph  we mean a sigraph § = (5% s) where 5% = (V] E) is a (p,q)-graph,
|E(8) =m and [E~(5)] = nso that m +n = q. If fis a function assigning
distinct labels to the vertices of S from the set {0, 1,2,...,q} such that when each
edge ur € E is assigned gy(uv) = s{uv)| flu) — f{v)| the g edges receive all the inte-
gers from the set {1,2,...,m,—1,—2,..., —n}; such a labelling f is called a graceful
labelling of 5. A sigraph which admits such a labelling & called a graceful sigraph
(see [9]). If E—(S) = @ in the above definition one obtains the standard notion of
graceful graphs and graceful mumberings of a graph (see [14], (15, [22]). In Fig. 1 we
depict some examples of graceful graphs and sigraphs.

Theorem 1 [9]. Let 5 = (5", s) be any (p.m,n)-sigraph such that 5" is an
eulerian graph. If § is graceful, then m” +n° + m +n =0 (mod 4).

Corollary 1.1 [9]. If a signed cyecle Zp, m +n =k = 3, is graceful then k= 0,2

or 3 (mod 4).

It was conjectured in (9] that the converse of Corollary 1.1 must ako hold for all
i z 3. Further, the following result was obtained.

Theorem 2A (9], If a heterogeneous signed cycle Zy, of length k = 0 (maod 4) is
graceful then the number of negative sections of odd lengths in 2, is even.

In this paper, not only we shall establish the sufficiency part of Theorem 2A
when 7, contains exactly one nepative section of any even length but also show
that 7. 3 € & = 2 (mod 4) {or = 3 (mod 4)), is graceful when it has exactly
one negative section of odd length (respectively, of any length), thus settling the
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Figure 1.

above mentioned original conjecture in the special case when cycle contains exactly
one negative section. The case of determining praceful heterogeneows sipned cycles
with more than one negative section appears rather imvolved and will be attempted

elsewhere.



1. Resurrs

Everywhere in what follows and whenever mentioned, a sipned cycle 2, of length
i 2 3 & assumed to be imbedded in the Euclidean plane as a polygon without any of
its edges crossing another at any point including its corners that represent vertices of
the sigraph. Hence, first of all, we shall establish the following partial result towards
the sufficiency part of Theorem 24,

Theorem 2B. If £, 4 =< & =0 (mod 4), is a signed cyele consisting of just one
negative section of even length then Zy is graceful.

Proof. It & enough to provide a graceful labelling of 2y whose sign structure
iz as laid down in the hypothesis, with m and n denoting respectively the lenpths of
positive and negative sections in Z;. To this aim, we define a graceful labelling 4
of 7 as follows: Let the vertices of Z; be labelled consecutively as 1wy, uwa, ..., up
along any one of the two directions of traversing its edges (ie., clockwise or anti-
clockwise), with 1; appearing as the second vertex of the negative section along the

chosen direction of traversing the edpes of 2.

Case I n = %F.'.. In this case, we let

Plw) =3(i—1)fori e {1,3,5,...,n— 1}

) =n %7. foriec {2,4,... ﬂ.};

Ylw) =k —gm+1+[3(i —n—23)] for odd integersi € {n +1,n +3,... . k—1};
Pilu) =k ém+l—[§ i—n)+ 1| for even integers i € {n+2,n+4,... .k — 2},
and
Pl = n.

Then, the induced edge function g, yields the edge labels

{goluag 1) = sluwaeip )|(w) — Pl
= sluayp)n—il: ie {L,2,....n—-1}}={-1,-2,...,—(n—1)}
1gelasi 1) = slwae g

|1(aes) — 9 (atig1))]
|L%{F—TI—EJ+L§1— :I+lJ|
=slugyp)li—nl:ie{n+1ln+2,...,k—2}} ={1,2,..., 1&—2}

)
)
= slug )
( )
Go (tnttnt1) = stnttnt1 )|$(wn) — P (ttn41)|

= slu ,,11\.,+1:||F.,+l— i + |_} n—n—21—n+ §n| = ﬁk
Fulttptip_1) = s{upree_1) il (ug) —luwe_1)|

( )

=-'§“-k“-k'|_|ﬂ-—li|+].—§m+|_§ —n—4 |—%Iiu—].
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and

gyl ) = —n.

Case 2: nis even aml 2 £ n < %k. In this case, let

(i) = 3(i —1) for i € {1,3,5,...,n—1};
1,.'}{?1,-]=n—%tfur1t€{2,:1,..., h

(w;) =k —3m+4+ 14 |3(i —n—1)] for odd integers i € {n +1,n +3,... .k - 1};
() =k — dm+ 1 | 3 — )]

for even integers i € {n+ 2,n +4,...,.k —t} where m —n = 2f;
Ylw)=k—gm+1—3(i —n)+1]
for even integers i € {(k—#)+ 2, (k—#)+4,....k -2},

and
Wy = n.

Then, the induced edge function g, yields the edge labels

{gg (i) = s(waipn) |[P() — ()|
slwgti)|3(i — 1) —n+ 3(i + 1)
=s(mup)n—i: e {l,2,....n—-1}} ={-1,-2,.. ., —(n—- 1)}
{gelwaripr) = s{ugu ) ib(u) — 1,:{?1,+1:|| = ﬁ:{u )| [5(E —n)] + LE i—mn)l|
=s(mump)li—-nlrie{n+1ln+2,. —f}}={l,2,...~m—f};
{goluatiy ) = s ) {a) — bl = s{uwiang |L.3 i—n)+ 1]+ 3 —11]”
(

s )i—n+1|:ie{k—t+Lk—t+2,...,k—2}}
={u—f+2 m—f+d,...,m—l};

ol ttntty 1) = s{ttp g1 ) i (1 ) — U tt41 )|
='B|[ 11.,,+1:||F.,+l—-.!m—§n|—§|i.+l
Gttt ) = §(up_ g )| (up—1) — ()|
=s(upup )|k +1—gm +[5(i —n—1)] —n
= slugp_qup )|k —n| =m,
and
gulwjug) = —mn.
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In each of the above cases, the injectivity of ¢ is straightforward to see by its very
definition. Also, in each case, we have seen separately above that the induced edge

labelling g, & ako injective, thus completing the proof. O

The above theorem is illustrated in Fig. 2.
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Theorem 3. Let 2, be a heterogeneons signed cyele of length b =2 (mod 4). If
Zy 15 graceful then the number of negative sections of odd lengths in £y is odd.

Pruut.

{mod 4) possessing a praceful numbering f and let [, [s

—

Let 2y be any heterogeneous sipned cycle of length & = 2, k= 2
1. be the lenpths of the

negative sections, v = 1. Suppose that the number of the nepgative sections of odd
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lengths in 7y is even, say 2z for some positive integer . Without loss of generality,
we may assume [y, [a,..., 2, to bethe odd ones. Let I; = 2a;+1 fori e {1,2,...,2z}
and [; = 2b; for i € {2 + 1,22 4+ 2,...,r} where a; is nonnegative integer and b; is
a positive integer. Then

n= z L+ z li=2u

ie{1.2,... 2x} e 241 242, ., r}

and hence m = k—n = (da+ 2) — 2u = 2(2a — u + 1) where @ and u are positive
intepers. Then

mit+nftmtn=(k-nl+n+(k—n)+n
= ((4a+2) — 2u)? +4u” 4 4a 4 2
(da +2)% + 4u”® — 8u(2a + 1) + 4u” +4a +2
= 16a® + 20a + 6 + 8u® — 16au — 8u =2 (mod 4),

a contradiction to the hypothesis. Therefore, the mmber of negative sections of odd
lengths in & must be odd as claimed. O

Since we are considering heterogeneous signed cycles having exactly one negative
section in this paper, in the case of signed cycles whose lengths are congruent to
2 (mod 4) integers, Theorem 3 implies that if such a sipped cycle is graceful then
its only negative section must have an odd length. The following result shows that
every such signed cycle is indeed graceful.

Theorem 4. Let 2 be a heterogeneous signed cyele of length k= 2 (mod 4)
having exactly one negative section of odd length. Then, Z, is graceful.

Proof. It & enough to provide a graceful labelling of 2y whose sign structure
is as laid down in the hypothesis, with m and n denoting respectively the lengths of
the positive and negative sections in 2. To this aim, we define a praceful labelling 4
of 7 as follows: Let the vertices of Z; be labelled consecutively as 1wy, uwa, ..., up
along any one of the two directions of traversing its edges (ie., clockwise or anti-

clockwise), with 1us as the first edge of the negative section.

Case 1: n = 1. In this case, we let

()
(w;) = 3(i + 2) for even integers i € {3k + 1,3k +3,... k};
() =k — é{a — 3) for odd integers i € {3,5, ...,k —1}.
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Then, the induced edge function g, yields the edge labels

go(uruz) = s(urua)b(ur) —luz)| = =13
{go(uativ) = s(uatin )|k — 3(i —2) — 4
sluay )|k —i+ 1) e {2,3,..., 5k —1}}
{3k+2,3k+3,...,k—1}
{gulwitir) = sfuaip )|k — (i —2) — 3(i +2)|
sl )|k —il: i€ {%Fc, %Fz + 1wk =1} =412 00 ék},

gy (urug ) = sluyug) [(ug) — vl )| = 3k + 1.

Case 2: n = %Fz. In this case, without loss of generality we assume wjuy as the first

negative edge of the negative section and we let

(i—1)forie{1,3,....nk
ziforiec {2,4,. -1}k
—3(m—1)— §|[1L—n+l:| for even integers i € {n+ 1L,n+3,.... &k},

(m—1)+ 4(i —n—2) for odd integers i € {n +2n+4,... . k—1}.

bS]

P{wy) =k —
Then, the induced edge function g, yields the edge labels

foh(aes ) — (g )|

jn—if: i€ {1,2,....,n—1}} ={-1,-2,...,—(n— 1)}

l(a) —(uipa)| = suittia)|3(i —n — 2]' + 3 —n+2)
i—nl:ie{n+l,n+2,... . k—1}}={L2,....(m— 1)}

{gyluatiy ) = s(uiuin

Sl

T 41

L e

= Sluii4

(
(
{golwaip) = s
(
Gy tnttni1) = $(tnttni1 ) 0(tn ) — Yttt )|
= s(ntins1)[3(n— 1)~k + §m—1) + 1 = 3,
and

gultgug ) = slugug) () — lug)| = slugug )|k —m| = —n.

Case 3: n is odd and 1 < n < 3k In this case also without loss of generality, we
assume 11y a5 the first negative edge of the negative section and we let

Pry) = %{7. -1 forie{1,3,....nk
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1,"1{11:|—11—1?;{'{.11'1'.E{.a!,il,...._ﬂ—l};
) =k - Hm—1) = y(i—n—1)

for even integers i € {n+ 1L,n+3,...,.k —t}, where m —n = 2f;
Ylw)=k—3(m—1)— 3(i —n+1)

for even integers 1 € {(k — )+ 2, (k— ) +4,....k},

Yuw) =k —5(m—1)+ 3(i —n)
for odd integers i € {n+2,n+4,... . k—1}

Then, the induced edpe function g, yields the edge labels

{1 (wati1) = s{uaig )Jb() — i)

= s(wagq)n—il: i€ {L,2,...,n-1}}={-1,-2,...,—(n—- 1)}
{9y (a1 = slwanip)fi(u) — 1#{“&+1:||

=slwayp)li—-n:ie{n+Ln+2,.. . k—t}}={12.....m—th
{9y (waip1) = s{wap )] — ¥l

= s(ugap)i—-n+1l:ie{k—t+1,k—t+2,....k—1}}

= {m—l‘.+2~m—|‘.+3,...~m};
Gy (nttnt1) = s{utattnpr )[U(1tn) — (2|

= sl 41 :||,_,_ in—11—-k+ %{m -1 = %k + 1,

anl

ge gt ) = s{uwqgug ) {uy) — @l )| = s{ugug )|k —m| = —n.

The injectivity of ¢ is straightforward to see by its very definition of the above in
each case. Alo, in each case, we have seen separately above that the induced edge
labelling g, & ako injective, thus completing the proof. O

Fig. 3 illustrates the findings of Theorem 4.

In the theory of graceful graphs, it & well known (e.g., see [14]) that the cycle Oy is
graceful for all values of & =3 (mod 4). This conchision can be extended to certain
sipned graphs on 'y as found in our next result.
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Theorem 5. If a signed cyvele 2, k= 3 (mod 4), contains exactly one negative

section then it is graceful.

Proof. It & enough to provide a graceful labelling of 23 whose sign structure
is as laid down in the hypothesis, with m and n denoting respectively the lengths of
the positive and negative sections in 3. To this aim, we define a praceful labelling 4
of 7 as follows: Let the vertices of Z; be labelled comnsecutively as g, o, ..., up
along any one of the two directions of traversing its edges (ie., clockwise or anti-
clockwise), with 1; appearing as the second vertex of the negative section along the

chosen direction of traversing the edpes of 2 so that the edpe wyuy is negative.
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Case I: k& = 7Tand n = 1. In this case, we let

) =0 and iug) = 1;
Yluy) = k— [ §(m— J+% {# —2) for even mtegers i € {2,4,... .k —1};

Ply) =k — L%{ 1)] — 5(i — 1) for odd integers i € {3,5, %{R + 31}

amd

Ylu)=k—[5(m—1)| —3(F-2)—-1
for odd integers i € {3(k+7), 3(k+11),. .., k—2}

Then the induced edge function g, yields the edge labels

golugug ) = s{wgug ) i{ug) — g )| = s{ugug)|0 — 1] = —1;
{g¢ (i) = s{uwatipa)Jv(a) — Pl
a1y 1L,+1:|| (i—114 %{7. — 1]
slugu )i —1): i€ {2,3,...,3( + 3)}}
= {1,285 EF 1TE
{go (wari1) = s{uwasip)|9(w) — Pluwig)| = s(waripa)| 30 — 2) + 30 + 2)|
= s{way )i i € {3(k+5),3(k+7),....k—2}}
= {30k +5),3(k+7),....k—2}
gyolwug) = s(wgug)|v(ug) — Plug )| = s(uguz )|k — | 1(m — 1) ||,

and

gulup_qug) = s{ug_p o) gy ) — (g |
=slugw)|k— [3im -1+ 3(k-3)-1=k-1=m.

Case 2: k = 3 and n = | 3k|. In this case, we let

Priy) = %{7. -1l forie{1,3,....nkL

P) =n— %1{ fori e {2,4,..., n—1}
Ylw) =k—|3(m—1)] + | 5(i —n—3)]

for even integersi € {n+1,n+3,....k -1}
Ylw)=k—[3(m—1)] — |3(i —n+2)]

for odd integers i € {n+2,n+4,....k -2},
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Y] = n.
Then the induced edpe function g, yvields the edge labels

(wiaign )|e(a) — (2t )|

(i )n—i: 1€ {1,2,...,n-1}}={-1,-2,....,—(n -1}
{gy (i) = sl (u) — ()|

51y NalE—n+2)] + [5G —n—2)]

51y li—nl:ie{n+ln+2,....k—2}}
={ ,2,+5,...~m—2};

{ge(wtini) = 5

=35

Fulttnttni1) = s(tnttni1) | (en) — Plttnt)|

(2 )
= s(tptter1)|z(n —1) —k+ |z(m—1)] + 1] =
s Jlak—1 ) — ()|

( )

= s(up_qup)|(k — |3(m—1)] + |3k —n—4)|) —n|=m— 1,

Folttp_1uty) = &{up_1up

and

gulugug) = —n.

Case 3: nisodd and 1 < n < L%F.,J Then, we let
Py = %{7. — 1l forie {1,3,....n}k
n—éif{}r'éé{lrl‘...,n—l};
Pluw) = k—(gm—1)+ 36 —n—1)]
for even integers i € {n + L,n+3,....k—1};
Plw) =k —(3m—1)— §(i —n) for odd integers i € {n +2,n+4,... .k -t}

and

Plw)=k—(3m—1)—3{i—n+2)
for odd integers i € {k+2—t.k+4—¢,... k}, where t = 3(m —n—1).

In this case, the induced edge function g, yields the edge labeks

{go (i) = slugrip ) () — (g )|
= sl —i: ie{l,2,...,n—-1}} ={-1,-2,....—(n — 1)}



{ge (i) = s ) W) — (i )| = s(wga)|3(i — n) + 3(i — n)|

(

=s(mymplfi—nlrice{n+ln+2,...k—t}}={1,2,3,...,m—th

Gl ttn 1) = S{tn g 1)1 (10 ) — V{2041 )|

= s(tpttnpi|gin —1) —(k—gm +1)|=m—t4+1;

{ge (i) = sl ) o(u) — ()|
=s(mmplfi—-n+ll:ie{k—t+1Lk—t+2,...,k—1}}
={m—f.+2~m—f.+3._....,m}._

amd

gulugug) = s(ugug )|k —m| = —n.

Case §: nis even and 2 < n < | 3k|. In this case, we let

Plu) = (i —1) for i € {1,3,. -1}
Plw) =n— gtfur?.E{J:l..qn};
Plw)=k—3(m—-1)—3(i-n—-1)
for odd integers i€ {n+1L,n+3,... . k—f—2}
t,&l[u,-]l=F.:—%{m—l:|—%{i—n+l:|
furu-[ldiJ.rteger:HEE{F;—E.,k+2—f.,....,k}~whf:mf=%{m—n—3:|,

and

{wy) =k — %{m— 1)+ %{i —n) for even integers i € {n+2,n+4,...,k—1}.

In this case, the induced edge function g, yields the edge labeks

{g¢(tiia) = sl ) (u) — ¥wia)|
=s(mu)n—d:ie{l,2,...,n—-1}}={-1,-2,....,—(n—-1)};
{ge (i) = sl )l (u) — ()|
=s{wup)i—nl:ie{n+1ln+2,. —t—2}}
={1,2,3,...,m—1—12};
Fo(ttnttnt1) = $(tnttnt1 )|t (itn) — ¥(itny1)|
= s(upttnpi|k —3(m—1) — gn| = (b +1);
{gy (i) = sl (u) — ()|
=slmup)i—-n+1:ie{k—t—1k—t,....k—1}}
={m—f,m—f.+ ].,.....m},
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and
Gl ) = s{ugug )|k —m| = —n.

The injectivity of 1» can be seen straightforwardly by its very definition, in each of
the above cases. Also, in each case, the induced edge labelling g, has been verified
to be injective, which completes the proof. O

We illustrate the findings of Theorem 5 in Fig. 4.
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2. CONCLUDING REMARKS

Thus, we have determined all the possible graceful signed cycles 2y for all integers
kz3, k=0, 2 or 3 (mod 4), each consisting of just one negative section. However,
the problem is open for such cycles containing more than one negative sections.

In general, determining praceful sigraphs in which more than one negative sections
exist seems to be a hard problem. Graceful labelling of signed graphs provide an
insight mto more general problem of finding a unified model for automatic contimons

coding of monochromatic factors in an edge-packing of a graph as mentioned in [8].
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