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A very well-known traditional approach in discriminant analysis s to use some linear {or nonlinear)
combination of measurement variables which can enhance class separability, For instance, a linear (or
a quadratic) classifier finds the linear projection (or the quadratic function) of the measurement
variables that will maximize the separation between the classes. These techniques are very useful in
obtaining good lower dimensional view of class separability. Fishers discriminant analysis, which is
primarily motivated by the multivariate normal distribution, uses the first- and second-order moments
of the training sample to build such classifiers. These estimates, however, are highly sensitive to
outliers, and they are not reliable for heavy-tailed distributions. This paper investipates two
distribution-free methods for linear classification, which are based on the notions of statistical depth
functions. One of these classifiers is closely related to Tukev half-space depth, while the other is
based on the concept of regression depth. Both these methods can be peneralized for constructing
nonlinear surfaces to discriminate among competing classes. These depth-based methods assume some
finite-dimensional parametric form of the discriminating surface and use the distributional geometry of
the data cloud to build the classifier We use a few simulated and real data sets to examine the
performance of these discriminant analysis tools and study their asymptotic properties under
appropriate regularity conditions.

Kevwords: Bayes risk: elliptic symmetry; generalized U-statistic; half-space depth; linear discriminant
analysis; location-shift models; misclassification rates; optimal Bayes classifier; quadratic discriminant
analysis, regression depth; robustness; Vapnik-Chervonenkis dimension

1. Introduction

The aim of discriminant analysis 15 to find an approprate function f(x) of the measurement
vector X = (X, X2, ..., %) that contains the maximum information about class separability.
In a two-class problem, this function f can be wsed to construct the separating surface
&= {x: fix) =0} between the two classes. For instance, i linear classification one tnes
i determine a separating hyperplane § = {x : a@"x + 5 = 0} based on the training sample
observations. Several methods for choosing the projection vector e and the constant § from
the training sample are available in the literature (see, for example, Fukunaga 1990
McLachlan 1992; Duda er af. 2000; Hastie er af. 2001). Similarly, in quadratic
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classification, one uses a quadratic separating surface S = {x : x"Tx 4+ a"x + 8 = 0}, where
I' is a symmewic mawix to be chosen from the tminimg sample i addition to e and S,
Fisher’s original approach in linear and quadmtic discriminant analysis (LDA and QDA)
{sece Fisher 1936) was prnmanly motivated by multivanate normal distnbution of  the
measurement vector X, and his estimates of e, § and ' were constructed using the mean
vectors and the dispersion matrices of the trammg samples. Under the assumption of
multivariate normally distnbuted data, LDA and QDA twrn out to be the optimal Bayes
classifiers. However, smee such methods require the estimation of e, # and T' using the
first- and second-order moments of the tmining samples, these procedures are not very
robust and happen to be highly sensitive to extreme values and outliers if they are present
in the trmining sample. When the assumption of nomally distributed data is violated, LDA
and QDA may lead to a rather poor classification, especially if the observations follow
some distnbution with heavy tails.

In this paper, we will study some linear and nonlinear classification methods that are based on
the notions of half-space depth (Tukey 1975) and regression depth (Roussecuw and Hubert
19995, Over the last decade, various notions of data depth have emerged as powerful explomtory
and inferential tools for nonparametric multivariate analysis (see, for example, Liu 1990; Lin ef
al. 1999; Vardi and Zhang 2000; Zuo and Serfling 2000a; Serfling 2002; Mosler 2002). Recently,
Chrstmann ef af. (2002) used regression depth to construct linear classifiers in two-class
problems and investigated their statistical performance. They also carried out some comparative
studies of such linear classifiers with the classifiers built using support vector machines (see, for
example, Vapmk 1998; Hastie ef af. 2001). Since the discriminant analysis tools investigated in
this paper are based on halfspace and regression-depth functions, they are completely
distnbution-free m nature. These classifiers use the distributional geometry of the multivariate
data cloud formed by the training sample to minimize the empirical misclassification rtes, and
they are not dependent on any specific model for the underlying population distributions.

2. Description of the methodology

The half-space depth of a point in multidimensional space measures the centrality of that point
with respect to a multivariate disribution or a given multivanate data cloud. Regression depth,
on the other hand, is a concept of depth of a regression fit (i.c, a line or a hyperplane).
Hyperplanes are the simplest form of separating surface, which lead to Imear discrimimation
among the classes. We now describe how these two different depth-based linear classification
tools are built using a given traimimg sample with two classes. Subsequently, we will generalize
these technigues to nonlinear classification as well as to multiclass diserimination problems.

2.1. Linear classification using half-space depth
The half-space depth (see, for example, Tukey 1975; Donoho and Gasko 1992) of a d-

dimensional observation x with respeet to a multivariate distrbution £ is defined as the
minimum probability of a closed half~space containing x:
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HD(x, F) = inf Pe{H : H is a closed half-space and x € H}.
H

The sample version of this depth function is obtained by replacing £ with the empirical
distribution function F,. The half-space depth is affine mvadant, and its sample version
uniformly converges to the population depth function when F s continuous. Different
properties of this depth function have been studied extensively i the literature (see, for
example, Nolan 1992; Donoho and Gasko 1992; He and Wang 1997; Zuo and Serdling
2000b).

Suppose that we have a two-class problem with univariate data. 1f the classes are well
separated, we would expect that most of the observed differences xp; — %, (%) and x3;
belong to two different classes for 1 =i=n;, | = j=n) will have the same sign
(positive or negative). This idea can be easily extended to multivariate situations, where 1f
the two classes can be well discriminated by a linear discriminant function, we would
expect to have a linear projection e’ x for which most of the differences a'
the same sign. We propose to estimate @ by maximizing
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where n = (ny, m) 15 the vector of sample sizes for the two classes, and f(-) is the usual
mdicator function. Clearly, this maximization problem can be restricted to the set
{ee - Jlee|| =1}, It can also be shown that this 1s actually a maximization problem over a
finite set (see, for example, Chaudhurt and Sengupta 1993), and the estimated linear
projection is orthogonal to the hyperplane, which defines the half-space depth of the ongin
with respect o the data cloud formed by the differences xi; — X3, in the d-dimensional space.
This generalized U-statistic Uy(ee) 15 a measure of linear separability between the two classes
along the direction e, and its maxomum value over different possible choices of & can be
viewed as a multivadate analogue of the well-known Mann—Whitney U-statistic (or
Wilcoxon's two-sample rank statistic). The maximizer of Uy(e), denoted by & 4. can be used
to construct a linear classifier of the form &';x + 8 = 0 for some suitably chosen constant 3.
The classification rule and, consequently, the comesponding misclassification probabilities
depend on the choice of this constant. After obtaining the estimate &y, Sy can be found by
minimizing with respect to @ the average raining set misclassification error Ay(@ g, ) given
by the expression

iy Lk
T JTa

An(itn, f) = H—Z Habx, +f <0} + = > Hajxa+f = 0},

1= i=1

where o and 5 are the prior probabilities for the two classes.
2.2, Linear classification using regression depth
Regression depth (see, for example, Roussceuw and Hubert 1999; Bai and He 1999) gives

the depth of a “fit’ determined by a vector g, = (41, ..., §a. o) € B4 of coefficients in a
linear regression framework. Given a data cloud £, = [{x; = (x5, 22, ..., Xii)ds ¥i ki
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i=1,2, ....n], g, 5 called a ‘non-fit" to §, if and only if there exists an affine
hyperplane ¥ m the x-space such that no x; belongs to F, and the residuals
r,-{i}+]|=_1-',-—iﬂ'_{x,-, 1) are all positive in one open half-space (ie., one side of F) in
the x-space and all negative in the complementary open half-space (i.e., the other side of
F). The regression depth of a “fit’ g, s defined as the minimum number of observations
that need to be removed to make it a ‘non-fit".

Recently, Chrastmann and Rousseeuw (2001) and Chrstmann ef af. (2002) used this
noton of regression depth in a binary regression context to construct linear classifiers for
two-class problems. If we take the class labels (*07 or “17) as the values of the response
vanable y, and consider a “ft" g = (0, 0,..., 0, .5), g+ will be a non-fit to &, if and
only 1f there exists in the x-space a hyperplane ¥, which completely separates the data
pomnts from the two classes. Hence, the regression depth of the “fit” § can be viewed as
the mmimum number of misclassifications that can be achieved by a sepamting the
hyperplane ¥V in the x-space.

Since Christmann ef af. (2002) considered only the problem of determining the separating
hyperplane by minimizing the total count of misclassified observations, their lincar classifier
is empincally optimal when the two competing classes have prior probabilities proportional to
their trining sample sizes. In the general case, one can properdy adjust the weights for the
different observations and define the weighted regression depth of a “fit” e as the minimum
amount of weights that need to be removed to make it a ‘non-fit". If the sepamting
hyperplane ¥ is of the form ¥ = {x: @' x + # =0}, the weighted regression depth of 1,
eventually tums out to be the average training sample misclassification probability

n iy
ﬂﬂ{a.ﬁ}=x—'2f{a"x“+ﬁ{{]} +H—‘ZZI{&T1_:;+,|‘3 =0}
" =1 2 =1
Here, the minimization of Ay(e, B) with respect to & and 8 gives the estimates g, and Sg
defining the separating hyperplane to be used for classification. Onee again, it is clear that the
above minimization problem can be restricted to {{e, 5 |[{e, )| =1} It 1s also
straightforward to verify that the mmimization of Ayle, §) actally turns out to be an
optimization problem over a finite set (see, for example, Rousseeuw and Struyf 1998),

Chnstmann ef al (2002) discussed the fact that the maximum hkelihood estimate mnoa
logistic regression problem exists only when there is some overdap in the covariate space
{the x-space) between the data points from the two classes corresponding to the values 0
and 1 of the response vartable (see, for example, Albert and Anderson 1984; Santner and
Dufly, 1986). In completely separable cases, there exists no finite maximum likelihood
estimate for the regression coefficient vector 1f the observations from the two classes are
completely separable, it is fairdy easy to sce that (g, ﬁx} is a minimizer of Aglee, 5) if and
only if &y maximizes Uylee), and hence this &g 15 also an &y,

2.3. Depth-based classification using nonlinear surfaces

In practice, lincar classifiers may be inadequate when the class boundaries are more
complex 1 nature. In such situations, one has to depend on nonlinear separating surfaces
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for discriminating among the classes. To construet such surfaces, we can project the
observations X; = (X, X2, ... . Xig) into a higher-dimensional space to have the new vector
of measurement vanables #; = (f1(x;), f2(x;), ..., fu(x)), and perform a lincar classifica-
tion on that m-dimensional space. For stance, if we project the observations to the space
of quadratic functions, it can be viewed as a linear classification with m = d + (¢)
measurement vanables, which eventually give nse to a quadratic separation in the onginal
d-dimensional space. The quantities Ugler) and Ay(ee, 5) can be optimized as before to give
approprate estimates of & (g € B") and 5, which are to be used to form the discriminating
surface 1in a two-class problem.

As we have already mentioned, traditional methods of LDA and QDA are primarly
motivated by multovanate normal distributions. As a matter of fact, in a two-population
problem, the moment-based linear discriminant function is closely related to Hotelling’s T2
or the Mahalanobis distance, which are well known to be sensitive to possible outliers
present in the data. On the other hand, the distribution-free depth-based classifiers discussed
ahove are quite robust against such outliers, and we will now illustrate this usmg a small
example. We consider a bmary classification problem  where both  the population
distributions are bivanate normal with mean vectors gy = (0, 0) and g» =2, 2), and they
have a common dispersion matnx £ = L. A modom sample of size 50 1s generated from
cach of the classes to form the training sample. As the optimal Bayes rule is linear for this
problem, a good linear classifier 1s expected to give a good separation of the data from the
two populations. Here the traditional (shown as LDA) and the two depth-based linear
classifiers (shown as H-depth and R-depth) performed quite well in discnminating between
the two populations (see Figure 2.1(a)). But the scenano changes completely when five of
the class-1 observations are replaced by outhiers generated from N 10, 10, 1, 1, 0). In the
presence of this contamination, the performance of the traditional moment-based linear
discriminant function deteniorates drastically (see Figure 2.1(b)} but the two depth-based
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Figure 2.1. Different linear classifiers for (a2) normal and (b} perturbed normal distributions.
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distribution-free classifiers remain more or less unaffected. For such a bivanate example, the
outliers are clearly visible in the scatter-plot, but for multivariate data in higher dimensions
that may not be the case. So, it is important to have classifiers that have some automatic
safeguards against such outliers which may or may not be easily identified using any
avaialable diagnostic tool.

3. Large-sample properties of depth-based classifiers

We will now discuss the asymptotic behaviour of the classifiers based on half-space and
regression depths as the swe of the training sample grows to infinity. As before, suppose
that we have a two class problem, and X, x5, ..., x5, and %2, X», ..., X3, are two
independent sets of d-dimensional independent and identically distributed observations from
two d-dimensional competing populations. Let 2y, #j2, ..., #1,, and #, Z. ..., Z2,, be
their transformations into the m-dimensional space as deseribed in Section 23; &y s a
maximmizer of Uyla) while é@g, Bp are mmimizers of Ayle, 5 as before.

Theorem 3.1. Asswme that as N =ny +nr2 — oo, n/N — A0 <A <1} Define Ula) =
Pria"(z;; — z,;) = 0} and Aa, 8)= 7 Pr{e’z;+ § < 0} + 7,Pr{a’z,, + § = 0}. Then
as N — oo, we have

(1) |Un(@y) — max, Ula)] =0 as well as |U(ay) — maxy U(a) =0, and
(i) |An(@p. Br) — ming g Aee, B)| =50 as well as |A@g, Br) — min, 5 Ae, f)] = 0.

Further, when there exist unigue optimizers aj, and (e, f3) for Ule) and Ala, §)
respectively, and U and A are continuous functions of their arguments, @y converges 1o
a’y, and (&g, Br) converges to (e, fy) almost surely as N — oo

Here, Uiee) 15 a measure of lincarnonlnear sepambility between two  competing
multivariate distributions along the direction @, and max, (e) measures the maximum
lincarnonlinear separability between two multivariate populations. Note also that Afe, 3) 1s
the average misclassification probability when the surface a'z 48 =0 is used to
disciminate between the two competing populations, and ming g Alee, ) is the best average
misclassification probability achievable using such linear/non-linear classifiers. It will be
appropriate to pomnt out here that Alefg. fg) can be viewed as the conditional average
misclassification probability given the training sample, when the surface ahz + Bg =0 is
used to classify a future observation coming from one of the two competing populations. A
proof of this theorem will be given in the Appendix. We state below some interesting and
useful results for depth-based hnear and nonlinear classifiers that follow from this theorem.

Corollary 3.1. The average misclassification probabifity of the regression depth-based linear
{or nonlinear) classifier asymptotically  converges to  the best  possible  average
misclassification rate that can be obtained wsing a linear (or nonlinear) classifier as the
trraining sample size tends to infinity. Further, when the best finear (or nonlinear) classifier is



Data depth and distribution-free discriminant analysis 7

wnigue, the regression depth-based linear (or nonlinear) classifier itself” converges fo that
aptimal discriminating hvperplane (or nonlinear surface) almost surely.

Corollary 3.2. Suppose that the population densities {1 and 3 of the two competing classes
are elliptically  symmetric with a common scatter matriv E. Also  assume  that
filx) =gix —p)i=1,2) for some [ocation parameters g; and g2 aond a common
elliptically symmetric density function g satisfving g(kx) = g(x) for every x and 0 < k=< 1.
Then, under the conditions assumed in Theorem 3.1, the average misclassification probability
Jfor the regression depth-based linear cfassifier converges to the optimal Baves ervor as the
training sample size tends to infinity, provided that the prior probabilities of the two classes
are equal. Further, in the equal priov case, if the Baves classifier is unigue and Ulef) has a
wnigue maximizer, the same holds for the half<space depth-based classifier, and in this case
both of these depth-based classifiers themselves converge almost surefy to that Bayves
classifier. When the prior probabifities are unequal, the above convergence results for depth-
based finear classifiers remain true for normally distributed populations with a common
dispersion matrix but different mean vectors.

Corollary 3.3. Suppose that the population disiributions f| and f3 both belong 1o the class
of efliptically symmetric multivariate normal or Pearson type VI distributions, and they are
of the same form, except possibly for their location and scatter parameters. Then the average
misclassification mte of the guadratic classifier constructed using regression depth converges
o the optimal Baves error, and the guadratic classifier itself converges almost surely to the
optimal Baves classifier as the training sample sice grows o infinity

Recall that the probability density function of a d-dimensional elliptically symmetric
Pearson type VII distnbution 1s given by

I
g —d/2)

where g and £ are location and scatter parameters, + = 0 and ¢ = 4/2 (see, for example,
Fang ef af. 1989). When € = (v + &)/2 and v s an mteger, the corresponding distabution is
known as the muliivanate ¢ distribution with + degrees of freedom. In the special case v =1,
we obtain the multivanate Cauchy distribution. Because of the heavy tails of such
multivariate distributions, the traditional LDA and QDA would not perform satisfactorily in

J(x) = {rv) 4> B2 {1+ v @ — )" (x — )},

diseriminating among such distributions. However, the above theorem and corollaries imply
that the depth-based linear and quadratic classifiers can achieve good misclassification rates
for distnbutions with exponential tails such as the multivadate nommal as well as for
multivariate Cavchy and other distibutions with heavy polynomial tals,

We conclude this section by pointing out an mmportant fact related to the asymptotic
convergence results stated in this section. All of these results have been stated for the case
where the dimension m of the projection space does not vary with the sample size V. On
the other hand, in some nonparametric discniminant analysis methods, such as those based
on support vector machines (Vapnik 1998) or neural nets (Ripley 1996), the dimension of
the projection space usually grows with the sample size. For the depth-based method also
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one may allow this kind of flexibility with respect to the choice of the discriminating
surface. It will be clear from the proofs given in the Appendix that if m grows with & in
such a way that, for all positive values of ¢, we have Z-"-"ﬂl Nimp—eN = oo, the convergence
results in (1) and (1) in Theorem 3.1 hold good. For mstance, if m grows at the mte of N7
for any 0= p = 1, these convergence results remain valid.

4. Data-analytic implementation

As we have already observed in Section 2, maximization of Ug{a) with respect o @
requires the computation of the half-space depth of the origin with respect to the data cloud
formed by the me-dimensional vectors of differences zj;—#(i= 1,2, ..., 0;7=1,
o — na). It 15 a finite maximization problem (see, for example, Chaudhun and Sengupta
1993); however, maximization by complete enumeration would lead to computational
complexity of order (X n2") where n. = max{n;, na}. An algorithm due to Rousseeuw and
Ruts (1996} can reduce the computational complexity o order (){n‘um_” log n-). Similarly,
maximization of Ay(e, 5) with respect to @ and § has computational complexity
Nn"logn.). Roussecuw and Struyf (1998) provided some algonthms for computing
location depth and regression depth. Other optimization algonthms for regression depth are
also available in Rousseeuw and Hubert (1999) and in Chnstmann ef al. (2002).

4.1. Optimization of U («) and A, (o, [3)

Recall from Sections 2.1 and 2.2 that the maximization of U,(e) can be mestneted to é with
|e]| =1 and the minimization of Afe, 3) can be restricted to (e, #) with |[(e, #)] = 1.
However, since the order of the computational complexity increases rmapidly with the
dimension m, exact optimization of Uy (a) and A (e, 3) 15 not feasible for high-dimensional
problems, and all one can do is resort to some approximate optimization. In this paper, we
have wsed a procedure in which the indicator functions appearing in the expressions for L
and Ay are approximated by suitably chosen smooth functions. This approximation allows
us to use the dervatives to find out the direction of steepest ascent/descent of the objective
function to be optimized. A very simple approximation for the indicator function f{x = 0) is
the logistic function 1/{1 + ¢ %) with large positive ¢ Clearly, an insufficiently large value
of ¢ will render the approximation inaccurate. On the other hand, a very large value of
will make the approximation quite accurate but will make the numerical optimization using
steepest ascent'descent numencally rather unstable. We have observed that a greater degree
of numerical stability in the optimization algorithm can be achieved even for fairdy large
vilues of ¢ if all measurement variables are standardized before the approximations are
done. In all our numerical studies reported in the next two sections, we have found that if
we use 5 = ¢ = 10 after standardizing the measurement variables, the average misclassifica-
tion errors for the resulting procedures remain more or less the same, and they are faidy
low. Consequently, we have reported the best values obtamed in that range. For linear
classification in the bivanate case, where exact computation of Uyfe) and Ay(er, () 15 casy,
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we have compared the performance of the exact and the approximate versions of these
depth-based  classification methods and found them to achieve fairly similar average
misclassification rates. In order to cope with the problem of possible presence of several
local minima, we have always run our approximate versions of the optimization algorithms
a few times starting from different random initial points.

In the case of classifiers based on half-space depth, after estimating e, we need to
estimate § from the training sample. This s done by enumerating the order statistics of the
projected  data points &"E.rz” and &':fzz,- (l=i=mn, | =j=ny) along the estimated
direction @ y. Fortunately, since we use linear projections, the computational complexity in
obtaining the estimate §y does not merease with the dimension m.

4.2. Generalization of the procedure for multiclass problems

In a k-class (& = 2) problem, to arrive at the final decision, one can wse the method of
majority voting (see, for example, Friedman 1996), where binary classification is performed
for cach of the (§) pairs of classes, and then an observation is assigned to the population
which has the maximum number of votes. However, this voting method may lead to some
regions of uncertainty where more than one population can have the maximum number of
votes. For stance, i a three-class problem we may have a circular situation where each of
the classes can have exactly one vote. When such situations occur, we can use the method
of pairwise coupling as given i Hastie and Tibshimm (1998). Pairwise coupling is a
method for combinimg the posterior weights of different populations obtained in different
parwise classifications. Recall that i our case, for any pairwise classification, an
chservation x is classified depending on the sign of a'z+ 3. So. if g is some
monotonically increasing function on the real line satisfying 0 = gix)= 1, g(0) = 0.5 and
g(—x) = 1 — gi{x) for every x € B, we can use gla'z + 5 as a measure of the strength in
favour of the class determined by the inequality &'z + 8 = (. This can be taken as some
kind of estimate for the posterior weight in favour of that elass in our pairwise companson.
Similarly, 1 — g{a"z + ) can be used as an estimate for the posterior weight for the class
determined by the inequality e'z+ 8 < 0. Having obtained these posterior weights from
pairwise comparisons, coupling can be conveniently used to obtain the combined weights
for each of the & populations, and the observation can be classified to the population having
highest combimed posterior weight. However, we have applied pairwise coupling only for
those mare observations which were not classified uniquely by the method of majority
voting. In all our numerical studies reported in the following two sections, for coupling we
have taken g to be the simple logistic function, g(x)= 1/{1 +¢ ). This choice is
subjective and many other cholces may possibly lead to similar results. Note that the
logistic function used in approximate computation of depth as described in Section 4.1 has
nothing to do with the chowke of gix) here.
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5. Results on simulated examples

In this section, we report our findings from some simulation studies that illustrate the
performance of depth-based classifiers as compared with traditional LDA and QDA In all
our simulated examples, we have restricted ourselves to two-class problems in which the
priors for both populations are taken to be equal.

We first consider sphencally symmetric multivanate normal and Cauchy distnbutions
{with £ = I}, which differ only m their locatnon parameters. To make our examples simpler,
we choose the location parameters gy = (0,0, ..., 0) and g2 = (g, g, ..., 1), where u
takes the values 1 and 2 in our experiments. For each of these examples, we generated 100
sets of training samples, taking equal numbers of observations (either 30 or 100) from both
the classes, and we used 2000 observations (1000 from ecach class) to form cach test-set
Average test-set misclassification probabilities and their standard erors over these 100
simulation runs are reported in Tables 5.1 and 5.2, Optimal Bayes errors are also given to
facilitate the comparison. For two-dimensional problems, we present the results for the
depth-based classifiers based on the exact and the approximate computation of the linear
classifiers, and they do not seem to have significantly different performance. This 1s very
encouraging as the approximate algorthms mun very fast even for faidy high-dimensional
problems. Henceforth we will write H-depth to denote the half-space depth and R-depth to
denote the regression depth in all the tables and subsequent discussion.

As the optimal Bayes rules are linear in the case of the above-mentioned sphercally
symmetric populations, good lincar classifiers are expected to have error rates very close to
the optimal Bayes risk. When the underlying distibutions are multivanate normal, the
tradittonal LDA performed very well, as one would expect. However, the depth-based
methods also had a decent and comparable performance. But, in the case of the multivariate
Cauchy distobution, the depth-based classifiers clearly outperdformed LDA, and  their
performance was far closer to the optimal Bayes classifier than that of LDA.

Further, the performance of LDA was observed to detenorate drastically when we added
a small perturbation to the nomally distnbuted data. We tred examples in which data in
class 2 were taken to be normally distnbuted as before, and 10% of the observations in
class 1 were replaced by observations having N(10g2, 1) distributions. LDA in this case
performed very poorly compared to both of the depth-based classification technigues. Notice
that the optimal Bayes rule is not linear in this case. Hence, none of the linear classifiers
could achieve the accuracy of the optimal Bayes classifier.

The results obtained in the case of quadratic diserimination are reported in Table 5.3, and here
too we found similar behaviour of the competing classifiers as in the case of linear ¢ lassification.
We used the same mean vectors as before but took two different scatter matrices for the two
competing populations (with distributions normal or Cauchy), namely £j= 1 and £y = 41 The
traditional QDA performed well in diseriminating multivanate normal populations, but its
performance turned out to be very poor in the case of multivanate Cauchy populations as well as
multivariate perturbed normal populations. The two depth-based quadratic classifiers, on the
other hand, showed decent performance in the case of normally distributed data, and had
average misclassification rmates much closer to the optimal Bayes risks than the error rates of
QDA in the case of multivariate Cauchy and perturbed normmal distributions.



Table 5.1 Results on linear discrimination: average misclassification rates (percentages) with standard errors (dimension 2)

H-depth R-depth
Baves
risk it LDA Exact Approx. Exact Approx.
Mormal 23.0% 50 24.40 (0.10) 2521 (0.14) 25.19 {.15) 2544 (0.15) 2542 (0.13)
100 24.21 (0.10) 24.80 {0.10) 2472 (0.13) 25.11 {0.12) 2488 {0.13)
787 50 823 (0.07) 896 (0.11) 891 (0.11) 9.15 (0.15) 899 (0.11)
100 811 (0.07) .56 (0.11) 848 (0.11) 862 (0.09) 8.57 (0.09)
Cauchy 3040 50 43.81 (0.95) 32.45 (026) 32 51 (0.24) 32.45 (0.25) 32.50 {(0.27)
100 41.95 (0.98) 31.78 {0.15) 31.80 (0.15) 3177 {0.15) 31.59 {0.14)
19.58 50 32.02 (1.34) 2111 {0.19) 2122 (0.1%) 21.01 {0.16) 2092 {0.15)
100 33.19 (131) 2083 (0.15) 20.77 (0.14) 20,60 (0.13) 2043 (0.11)
Perturbed 2271 50 50.75 (0.53) 29,15 {0.15) 28 96 (0.15) 2921 {0.16) 2920 {0.16)
normal 100 50.28 (0.53) 2855 (0.12) 28 65 (0.13) 2866 (0.13) 2870 (0.12)
7 46 50 49.69 (0.25) 1339 (0.10) 13.33 (0.11) 13.52 (0.11) 13.29 (0.09)
100 50.41 (0.36) 12.9% (0.09) 12.97 (0.09) 13.02 {0.09) 12.87 (0.08)
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Table 5.2. Results on linear discrimination: average misclassification rates (percentages) with standard
errors (dimensions 3 and 4)

d=3 d=4
p=1 =2 p=1 po=12
MNormal Bayes risk 19.32 4.16 1587 228
LDA 2065 (0.16) 476 (0.07) 1732 {(0.15)  2.72 {0.06)

=750 H-depth 2100 (0.15) 500 (0.10)  17.57 (0.15)  3.59 (0.10)
R-depth 2122 (0.16)  5.18 (0.10) 1804 (0.18) 331 (0.08)
LDA 19.64 (0.09) 428 (0.05) 1633 (009  2.42 (0.03)
n=100  H-depth 2005 (0.12) 475 (0.07) 1678 (0.12)  3.06 (0.07)
R-depth 2037 (0.12) 473 (0.07) 1714 (013}  2.90 (0.06)
Cauchy Bayes risk 2729 16.67 2498 14.73
LDA 4015 (D87} 2696 (1.14) 3736 (0.81) 2385 (0.79)
=750 H-depth 3003 (0.26) 1879 (0.19) 2850 (0.25)  17.43 (0.19)
R-depth 2968 (0.23) 1838 (0.19)  27.59 (0.23)  16.87 (0.18)
LA 3921 (D90)  27.67 (0.98) 3721 (087 2698 (1.19)
n=100  H-depth 2922 (0.18) 18.03 (0.14) 2735 (0.22) 1665 (0.13)
R-depth 2887 (0.15) 1761 (0.12) 2693 (0.16) 1625 (0.11)
Perturbed  Bayes risk 18.32 3.95 15.04 215
normal LDOA 5028 (0.23) 5014 (0.15) 4999 (0.15)  50.00 {0.12)
n=750 H-depth 2460 (0.13) 1008 (D.11) 2187 (0.15)  8.52 (0.12)
R-depth 2480 (0.17) 999 (0D.09) 2228 (0.17) 846 (0.11)
LDA 4971 (0.27) 5004 (0.15) 4998 {(0.13) 4996 (0.11)
n=100  H-depth 2423 (.11} 965 (0.08) 2102 (0.11)  B.00 (0.06)
R-depth 2452 (0.12) 948 (0.06) 2126 (0.12)  7.85 (0.07)

In all these simulated examples, the two depth-based classifiers performed faidy similardy
except for quadratic classification in the perturbed normal distribution case, where the H-
depth based classifier had a small edge over the R-depth based classifier for all sample sizes
and all dimensions.

6. Results from the analysis of benchmark data sets

We will now investigate the performance of the depth-based classifiers on six well-known data
sets, all but the first of which are available from http:/www stathib.emuedu. In the case of the
first two data sets (the vowel data and the synthetic data), there are well-defined trainmg and test-
sets. For them, we have reported the performance of different competing classifiers on those test-
sets. In each of the remaming four cases, we have divided the data randomly into two parts to
form tramming and test samples. This random division is carried out 1000 times to generate 1000
different partitions for each data set. Average test-set misclassification errors over these 1000



Table 5.3. Results on quadratic discrimination: average misclassification rates (percentages) with standard errors

d=2 d=1 d=4
p=1 p =2 p =1 p =1 p =1 p=2

Baves risk 22.03 13.31 16.62 B34 12.589 337
QDA 2307 (0.10) 1375 (009 1797 (0.10) 913 {007y 14.80 {0.13) 641 (0.08)
Mormal n= 30 H-depth 2508 (0201 1499 (028) 2040 (022)  1LIB (0.19) 1713 (0.235) B.65 (0.20)
R-depth 2500 (0.200 1535 (018} 2030 (0200 1099 (008) 1699 (D.21) B.30 (0.17)
(01BN 2255 (0.10p 1353 {007y 1736 (0.09) B.67 (0.06) 1386 (0.09) 5.80 (0.06)
= 104 H-depth 2361 (0.14) 1424 (0.11) 1869 (0.15) 1005 (0.13)  1522(0.13) 7.32 (0.13)
R-depth 2385 (0014 1458 {001y 1RT3 (0.14) 9894 (0.02) 1518 (0.13) T.17 {0.11)

Bayes risk 30.492 2297 2836 14954 2644 17.76
QDA 46.63 (0.39) 4586 (0.55)  46.13 (043) 4359 (0.58) 4508 (D44) 4347 (0.65)
Cauchy n=50 H-depth 3470 (0.24) 2612 (019 3258 (022) 2343 (021) 3017 (023) 2136 (0.24)
R-depth 3429 (0.26)  26.11 {0200 3348 (027) 2345 (0.20) 3105 (023) 2212 (0.25)
QDA 48.08 (0.32) 4690 (034) 4750 (0.32) 4689 (0.39) 4629 (030) 4484 (0.41)
n= 100 H-depth 3324 (0.16) 2502 (0.14)  3L00 (0018) 2222 (0.16) 2936 (019 2049 (0.14)
R-depth 3330 (019 2496 (017) 3135 (019 2247 (0.17) 2952 (0200 2055 (0.14)

Baves risk 21.36 1250 16.10 8.6 12.46 520
(0] Y 38.42 (049 2862 (057) 2895 (031) 1780 (D35) 2361 (0.23)  13.50 (0.26)
Perturbed n= 350 H-depth 2585 (0.24)  15.00 (006 2275 (0300 1271 (026) 2088 (D28) 10177 {0.24)
novmal R-depth 28.23 (0.28) 1681 (026) 2470 (024) 1458 (0.19) 2126 (D200 1234 (0.20)
QDA 3008 (0.33) 2971 (042)  2R3Z (0.19) 1770 (022)  22TR (0.16) 1273 (0.21)
=104 H-depth 2485 (0,19 14.43 (0.15) 20076 (0.23) 1069 (0.19) 1873 (D21) 9.49 {0.23)
R-depth 26.88 (0.22) 1566 (023) 2261 (0.18) 1233 (023) 1982 (0.18) 11.02 (0.16)
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Table 6.1. Results on benchmark data sets: average misclassification rates (percentages) with standard errors

Linear classification

Quadratic classification

LDA H-depth R-depth QDA H-depth R-depth
vowel data 2526 (2.38) 20,72 (222) 19.83 (2.18) 19.83 (2.18) 19.22 (2.16) 19.53 (2.17)
Synthetic data  10.80 (0.98) 10.70 {0.98) 10.30 (0.96) 10.20 (0.96) 10.70 (0.98) 11.00 (0.99)
Diabetes data 11.12 (0.07) 5.49 {0.06) 6.12 (0.06) 9,32 (0.06) 6.57 (0.06) 7.09 (0.06)
Biomedical data 1596 (0.07) 10.87 (0.07) 11.03 (0.07) 12.68 (0.06) 11.61 (0.07) 11.76 (0.06)
Crab data 5.20 (0.06) 4.85 (0.06) 447 (0.06) 5.89 {0.06) 437 (0.06) 4.26 (0.06)
Iris data 2.18 (0.07) 3.92 (0.10) 3.56 (0.10) 2.75 (0.09) 3.99 (0.11) 3.43 (0.10)
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Figure 6.1. Scatter—plots for vowel data.

rmndom partitions and their comresponding standard emrors have been reported in Table 6.1, In all
the examples, sample proportions for different classes have been used as their prior probabilities.

6.1. Vowel data

We begin with a fairly well-known data set related to a vowel recognition problem, m which
there are two measurement variables for each observation from one of ten classes. This data
set was created by Peterson and Barney (1932) by a spectrographic analysis of vowels in
words formed by “h* followed by a vowel and then followed by “d’. Sixty-seven persons
spoke these words, and the first two format frequencies (the two lowest frequencies of a
speakers vocal tract) for 10 vowels were split mto a training set consisting of 338 cases and
a test set consisting of 333 cbservations. A scatter-plot of this data set i1s given in Figure
6.1, This figure shows some significant overdaps among the competing classes, and this
makes the data set a challenging one for any classification procedure.

For this data set, traditonal LDA gave a test-set error rate of 25.26% (with a standard
error (S.E) of 238%), but using depth-based lincar classifiers we were able to achieve
significantly better results. The hnear classifiers based on H-depth and R-depth reduced the
average misclassification probability to 20.72% (with S8 E. = 2.22%) and 19.83% (with
S.E. = 2.18%) respectively. Interestingly, as reported in Table 6.1, in the case of quadmtic
classifiers, the perdformance of the two depth-based classification rules and that of the
traditional QDA applied to the test set turned out to be farly similar for this data set.
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Figure 6.2. Different linear and quadratic classifiers for synthetic data.

6.2. Synthetic data

This bivanate data set was used by Ripley (1994). It consists of bivanate observations from
two competing populations. Both the populations are bimodal in nature, being equal
mixtures of bivanate normal populations which differ only in their location parmameters. In
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this data set, the sizes of the training and test sets are 250 and 1000, respectively. We report
i Table 6.1 the average misclassification rates obtained by different methods applied to the
test set. We found that in linear as well as quadratic classification, the error rates of the
traditional and the depth-based methods were faidy similar. Figue 6.2 shows the
performance of these linear and quadratic classifiers on the trmining and test sets. For
both of the lmear and the quadratic classification, the estimated class boundaries for the
traditional and the depth-based classifiers were found to be almost identical.

6.3. Diabetes data

This data set contains measurements on five variables (fasting plasma glucose level, steady-
state plasma glucose level, glucose area, msulin area and relative weight) and three classes
{*overt diabetic’, “‘chemical diabetic’ and “normal’) as reported in Reaven and Miller (1979).
There are 145 individuals, with 33, 36 and 76 in these three classes according to some
clinical classification. Unlike the vowel data and the synthetic data, this data set does not
have separate training and test sets; we formed these sets by randomly partitioning the data.
We formed traiming samples of size 100, taking 25 observations from cach of the first two
populations and 50 observations from the third. The rest of the observations were used to
form the corresponding test sets.

In this data set, the depth-based classification methods clearly outpedormed  traditional
LDA and QDA. While LDA had an average misclassification rat of 11.12% (5.E. = 0.07%),
those for the H-depth and the R-depth based linear classifiers were 5.49% (5.E. = 0.06%)
and 6.12% (S.E. = 0.06%), respectively. It 1s quite transparent from the figures reported in
Table 6.1 that depth-based guadratic classifiers performed significantly better than traditional
QDA

6.4. Biomedical data

This data set was generated by Larry Cox and used by Cox ef af. (1982). This data set
contains information on four different measurements on each of 209 blood samples (134 for
‘normals’ and 75 for ‘carriers’). Out of the 209 observations, 15 have missing values, and
we have removed these observations and applied the classification methods on the
remaining 194 cases (127 for ‘normals’ and 67 for “carriers’). One hundred observations
from the first group and 30 from the second were chosen randomly to form each training
sample, while the remaining observations were used as the corresponding test cases.

Here also the depth-based linear classifiers outperformed traditional LDA. As shown in
Table 6.1, LDA had an error rate of 15.96% (5.E.= (.07%), while the H-depth and the R-
depth based classifiers reduced it to 10.87% (8. E= 0.07%) and 11.03% (S.E.= 0.07%)
respectively. Figures reported m Table 6.1 indicate that depth-based quadrmatic classifiers also
have a slight edge over traditional QDA for this data set.
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6.5. Crab data

Campbell and Mahon (1974) used this data set for morphological study of rock crabs of the
genus Lepiograpsus. One species had been split into two new species, which were
previously marked by colours *orange’ and “blue’. As the preserved specimens had lost their
colour, it was hoped that the morphological study would help m ther classification. This
data set contams information on 50 specimens of each sex of cach of the species. For each
specimen there are measurements on five different vanables (body depth and four other
carapace measurcments). We mndomly took 40 observations from each of the four classes
to form a traming set, using the remaining observations as the corresponding test sample.
For this data set, the results reported in Table 6.1 show that the depth-based classifiers and
traditional LDA and QDA have comparable performance, with depth-based methods having
a slight edge over the traditional techniques.

6.6. Iris data

As the last example of this section, we consider the famous ris data (Fisher 1936), which
contains measurements on four different features (sepal length, sepal width, petal length and
petal width) on each of 150 observations from three different types of ins plant: [ setosa,
L wvirginica and [ versicofor. We randomly chose 40 observations from cach class to
construct a training sample, and used the remaining 30 observations to form the test set. It
is quite well known that traditional LDA and QDA perform very well for this data set, and
depth-based classifiers are not expected to beat them in this case. However, the error mtes
reported in Table 6.1 show that both the linear and the quadratic versions of the depth-
based methods produced a decent and comparable performance.

7. Concluding remarks

The use of data depth in discriminant analysis was first proposed by Liu (1990), who
suggested classifying an observation using its relative centre-outward rank with respect to
different populations obtained using some depth  function. Jornsten er af (2002) and
Jornsten (2004) used this idea to develop nonparmmetric methods for clustering  and
classification based on an L depth {also known as spatial depth) function (see, for example,
Vardt and Zhang 2000; Serfling 2002). Along with L) depth, Ghosh and Chaudhurt (2004
used other depth functions to construct theirr maximum depth classifiers. However, to
classify a new observation, these classifiers need to calculate its depth with respect to
different competing populations, and for that the full tmining sample has to be stored.
Moreover, 1t 1s difficult to generalize these classifiers for unequal prior cases (see Ghosh
and Chaudhun 2004). On the other hand, the depth-based classifiers proposed m this paper
require less storage and computing time to classify future observations, and at the same
time they provide a good, lower-dimensional view of class separabiltiy.

Traditional LDA and QDA are both motwvated by the assumption of normality of the
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data, and, as we have amply demonstrated in preceding  sections, violations in this
assumption may lead to rather poor performance of these traditional methods. More recent
methods such as regularzed diseriminant analysis (due to Friedman 1989) and logistic
discriminant analysis (see, for example, Hand 1981; Hastic er al. 2001) are also motivated
by specific distnibutional models for the data. The depth-based classifiers, on the other hand,
are totally distribution-free n nature, and they use only the empirical geometry of the data
cloud to estimate the optimal separating surface for the competing classes. Traditional LDA
and QDA, as well as regulanzed discriminant analysis, use the first- and second-order
moments of the training sample o construct the discnmination rule. This makes these
methods highly sensitive to outhiers and extreme values. On the other hand, use of half-
space and regression depths in the construction of the classifiers makes the diseniminant
functions more wbust to the presence of possible outliers i the case of heavy-tailed
distributions.

For nonlinear classification, the depth-based methods project the observations mto a
higher dimensional space of functions in order to find a separating hyperplane. Well-known
nonparametric methods like those based on neural nets (Ripley 1996) and support vector
machines (Vapnik 1998) also adopt a similar strategy for nonlinear classification. However,
mstead of minimizing the empirical misclassification rates, as 15 done in the case of depth-
based methods, these classifiers are formed by minimizing some smooth penalty functions.
Other technigues such as flexible disenminant analysis due to Hastie ef al. (1994) and the
classifier recently proposed by Zhu and Haste (2003) also optimize some smooth cost or
likelihood type functions to determine the discrimmant function.

We conclude this section with an illustrative example taken from Christmann (2002). This
15 a simulated example on a four-class problem where the classes are completely separmted
{see Figure 7.1). An observation (x;, %) in the square [—1, 1] % [—1, 1] is assigned to class
1iaf & —x = 0.75 and to class 2 if 1—: +.1j; = (115, An observation (x, x) satisfying
x3—x; = 0.75 and x7 + x5 = 0.15 is assigned to class 3 or class 4 depending on whether
1—: +x3 = 0.60 or = 0.60, respectively.

Christmann (2002) penerated 250 different training samples cach of size 700 and test

n*

Lra

Figure 7.1. A four-class problem for comparing different classifiers.
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samples each of size 300 to compare the performance of support vector machines with that
of taditional QDA, In this example, support vector machines (with radial basis function)
produced a much higher average error rate of 36% than QDA, with its average
misclassification rate of 20.9%. We generated 250 samples of the same sizes as used by
Chrstmann (2002) to compare the performance of the depth-based classifiers. In our
experiment, QDA produced similar performance (error rate = 20.72%) to that reported by
Chrstmann (2002} but the quadratic versions of both of the depth-based classifiers
performed quite well. H-depth and R-depth based classifiers on this example led t©o an
average test-set error rte of 1.58% (SE = 003%) and 281% (SE. = 0.17%),
respectively.

Appendix. Proofs

In order to prove Theorem 3.1, we will need the following result, which follows directly
from the proof of Lemma A of Serdfling (1980, p. 200).

Result A1 Jf Y is a hounded random variahle with E(¥Y) =g and P(0 = Y = 1) =1, then

2

E{etf—#] =< /8 Jor any s = 0.

Proof af Theorem 3.1. (1) Uyler) 15 a generalzed U-statistic (see, Serfling 1980) with
bounded kemel function hie'z, a'z:)= Ha'z) = a'z:} (0= h=1). Without loss of
generality, let us assume that »y = ny and define

Ll

L (e - R jm] = r'il_I Z h{'ﬂlzl_.h arz.h'.-}
/=1

for some permutation (i), f2, ..., iy, ) of ny objects from {1, 2, ..., n2}. For this defimition of
W, Uyle) can be expressed as

oF ]
V) =2 ST e

iy i) _I.J.....].ﬂl e

where P denotes the set of all possible permutations (7, &, ..., i, ) of the elements of the
set {1,2, ..., ma}.
Now, using Jensen’ inequality on the convex function e, we obtain

4 (na —m ) p—
L.,.‘-I:..l:l!:l = it E L..-.JHH.J_,.... [ for every s =)

na! : .
2 :J|,JJ,.....1.1|_|¢_P

= E{L,.'\.i.'.h!j} = E{E.\ll"l:n i JO j} = I:E{L"mm:"“'arﬁl i m }-: A
{using the fact that the terms in the sum defining W are independent and identically
distnbuted)
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o E{tﬁ-[u.m—um:i} = [E{cﬁ-u.eah...alzz.3—.!;:.nl.-'u.}"!“'E {pals/n)} ™,
say. Now it 1s quite casy to see that
E{Un@} = E{W(i1, iz, ... in)} =E{hla'z. a'z)} = Pla'z) > a2} = Ula),
and, using Result A1, we obtain, for any ¢ = (0
P{Un(@) — Ula) = 1} < E{efle@-U@-1} < =5t fy, (s/n))} s g9+ 8m

Minimizing the above expression  with  respect to s, we obtan P{U,la) —
Ule) = 1} = ¢2"", Using similar arguments, it can be shown that, for any positive r,
PlUG(er) — Ulee) = —t} = ¢ 2" Combining these two results, we obtain

PllUn(a) — Ula)| = 1] = 2¢72m e for every ¢ = 0.

Now the set of hyperplanes in ¥ = {y : &'y = 0} in B, which pass through the ongin
has Vapnik—Chervonenkis dimension m (see, for example, Pollard 1984; Vapnik 1998). So
sets of the form {y : &'y = 0} have a polynomial discrimination with m being the degree
of the polynomial. Therefore, using the results on probability inequalities on such sets
{(Vapnik and Chervonenkis 1971; Pollard 1984; Vapnik 1998), we obtain

P{suph’_."“{a}— Uee) = f} <= 2{n,n2}”’1:'2"'r\ for every 1 = (.
[

Now, using the fact that n /N — A0 <A=1) as N — oo, and ¥ y=) Nimg—eN o nr for
any ¢ =0, it follows from the Borel —Cantelli lemma that sup,|Uyle) — Ule)| — 0 almost
surely as N — oo,

Let @y be a maximizer of Uyla) and e, be that of Ufa) (not necessanly unique). Now
we have

|Uni@r)— U@ =0 and |Unlah)— U@h) S0  as N — oca

Again, from the definition of &y and &b, Ulal) = U{ag} and Ul@y) = Uylecy,) for
every o Henee, |L",.{aH}— max, U{e) = |Lf,.{a”} - L'{ﬁ‘H}| — 0 as N — oo, Consequently,
| L@ ) — max, Ufee)| =0 as N — .

(ii) For some fixed e and 8, n;'S°7 Hea'z);+ § < 0} is an average of independent and
identically distributed bounded randum variables. Therefore, from Hoeffding’s inequality
{sce Hoeffding 1963), we have

I =1

1 &, R .
P{‘- - Ha"zi+ <0} — Pla"z, +5 {{}}‘ }c,fz} <2 for every ¢ > 0.
n
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= P{|A(er, 8) — Mo, )] = ¢} < P{‘%if{d'z”+ﬁ <0} - Pla'z,+ 8 < {}}‘ = ;.Iz}

+F{‘izf{ﬂTIzj-+ﬁ =0} — Pla'z +§ = {]}‘ = ‘.’Q}
Ha i

=1
- 2{1_‘_ med )2 4o et 2 ::I.

Now, using similar arguments on the Vapnik—Chervonenkis dimension of hyperplanes in B™
as before and using results (Pollard, 1984) on sets with polynomial discrimination, we obtain

P{S”Plﬂn{a, B) —Aa, B) = ‘} < 2m + m)" (e " 4o,
i

Then, using the fact that 3 yw N ™He™Y < oo for any ¢ > ( it follows from the Borel—
Cantelli lemma that sup, g|Agle, ) — Alee, #)] — 0 almost surely as N — oo, Following
similar arguments to those used at the end of the proof of (i), it is now easy to venty that
|Aletg, Br) —ming g Ale, §)] — 0 and |Ay(etg, Br) — ming g Aler, )| — 0 almost surely as
N — oo

Let us next assume that the maximizer e, of Ufe) is unique. We have already shown
that Uie ) COnVErges to U{a:}} as N — oo on a set of probability one. Consequently, on
the same set, if &y converges, it has to converge to a}; in view of the uniqueness of a7,
and the continuity of the function Uje). Since &5 always lies in the compact surface of the
unit ball in B™ (see Sections 2.1 and 4.1), any subsequence of the sequence of this estimate
will have a further convergent subsequence converging to aj; on that set of probability one.
Hence, & must converge to .r:it’:f almost surely.

Next, let (e, #%) be the unigue minimizer of Afe, ). Since we have already shown that
A g, ,E;'R} converges to ﬂ{a;, ﬁﬁ} almost surely, using arguments which are virtually same
as those above, it follows that as N — oc, (@, Bg) — (eh. 53 O

Proof of Corollary 3.1. In Theorem 3.1, we proved that |A(@g. Br)— min,, 3 Afe, §)| — 0
almost surcly as N — ~o. Note that Aletg. Sy) 1s the conditional average misclassification
probability for a future observation given the current traiming sample. Taking the expectation
of Al g, ) over the current training sample, the proof of this corollary follows by a simple
application of the dominated convergence theorem using the fact that A 1s a function bounded
between 0 and 1. O

Lemma A.L Suppose that the population denmsities f) and f3 of the two competing classes
are elliptically  symmetric with a common  scatter matrix E. Also  assume  that
Jix) = gix —u)i=1,2) for some location parameters p; and a common ellipticalfy
symmetric density function g safisfring g(kx) = g(x) for every x and 0 < k< 1. Further,
assume that the prior probabilities of the two competing classes are egual. Then,

(1) there exisis an optimal Baves classifier which is linear, and
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(il) & =X @y — p2) is a maximizer of Ulet) as well as a minimizer of Alee. 8) for a
proper choice of .

Proof. (1) Because of elliptic symmetry with location shift, the density functions f; and f5
can be expressed as

f1(x) = CalZ 72 h{(x — p )'E- N x — )} and fa(x) = CyE|72h{ix — u2)"E-N(x —pa) ],

where O, 15 a constant (depending on dimension &) and £ 15 a monotonically decreasing
function on [0, oc).

Now, in the equal prior case, an optimum Bayes rule assigns an observation to class 1 af
and only if

Fix) = fx) & (x—p )'ENx — ) = (x— p2) "7 (x — )
“(m—u)'E x = Up(E - )2 ).

This proves that an optimal linear classifier is a Bayes classifier and @ =X ' gy —p2) 15 2
minimizer of Afee, §) with a proper choice of §.

(i) As the distobutions have a common elliptically symmetric form with location
parameters gy and g» and common scatter matrix X their chametenstic functions are of the
form

dalt) = el (t"Et) and dalth = eit'h it E for some common scalar function 4.

Now define ¥ =a" {(X; —Xa)— (g —p2) (e Za)'?, where X ~ f; and X3 ~ f3. It
is easy to see that the characteristic function of ¥ is given by gp(f) = {yp(r*)}2 Clearly,
the distribution of ¥ is symmetric about 0, and it is free of population parameters like the
., ps and E. Therefore, Pla' (X, —Xo) = 0} can be expressed as

Pla’ (X1 —X2) > 0} = Fy([{a" (a1 - p)} [a"2a)'?),

where Fy is the edf of the distribution of ¥. So P{a"(X, — X;3) = 0} is maximized for some
a if that @& maximizes {o"( g, — g2))" ja"Ea. This implies that @ =X (g —p2) is a
maximizer of L), O

Proof of Corollary 3.2. Lemma ALl mplies that, under the given conditions, the linear
classifier with ¢ =X ' () —p2) and F= (wiZ g —pTE',)/2 is a Bayes classifier.
Consequently, it follows from Comllary 3.1 that the average misclassification error of the
regression depth-based lnear classifier converges to the optimal Bayes risk. Further, when
this Bayes classifier is unique, it follows from the second half of Theorem 3.1 that the
regression depth-based linear classifier itself converges almost surely to that Bayes classifier.

When U{e) has a unique maximizer af, = E7'(@) — g2) (e.g., when the distribution
function Fy in the proof of Lemma ALl 1s strictly increasing), it follows from Theorem 3.1
that & converges almost surely o @™ as n — oo,

Let us now consider two independent random wvectors X ~ /7 and X ~ f5, both of
which are completely independent of the current trainmng sample (ie., they are like future
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observations). Using these random vectors, define ¥, =&};X|, Yan=85Xs, ¥ = a X,
and ¥; =& "X:. Then, in view of almost sure convergence of @y to a®, we obtain
(Yips Yau) —(¥, ¥2) almost surely as N — oo, Sinee both ¥ and ¥ are continuously
distnbuted, and weak convergence to a continuous distribution implies uniform convergence,
we have supg|Alay, §) — Ala”, f)] — 0 almost surely as N — oc.

On the other hand, from the proof of (i) i Theorem 3.1, 1t 15 quite clear that
supg| Al #) — Alegy. f)) — 0 almost surely as N — oo, Hence, supg|Aniésn. f)
—Aa’, B)] — 0 almost surely as N — oc.

It now follows from arguments similar to those used in the proof of Theorem 3.1 that
[An(@ s, Brr) — ming Afer , §)] = |An(@ s, ﬁ;f}—mlna‘.; Aa, 7)) =0 almost  surely  as
N — oo, Also, we must have |A&y, By)— Aldty, By)l — 0 almost surely as N — oo
Hence, ﬂ{&ﬂ,ﬁ”} converges almost surely to ming gAfe, 3), which is the Bayes risk in
this case.

Onee agam, note that ﬂ{&”,ﬁ”} 15 the conditional average misclassification probability
for a future observation given the current training sample. Taking the expectation of
&{&_“‘,B_H} over the current traiming  sample, we obtian  the unconditional  average
misclassification probability of the lmear classifier based on half-space depth. The proof
of the convergence 1s now complete by a simple application of the dommated convergence
theorem, using the fact that A is a function bounded between 0 and 1.

Now, to prove the almost sure convergence of the linear classifier based on half-space
depth, we only need to show that 8 converges almost surely to an appropriate constant. In
order to prove this, let us first recall a simple fact about the optimal Bayes classifier. In the
equal prior case with two competing populations, it 15 casy to verify that the optimal Bayes
nsk 15 strictly smaller than 0.5 unless the two populations are statistically indistmguishable
in the sense that they have identical distributions. We have already shown that :'}.{&”,,éﬂ}
converges to the Bayes risk and &y converges to @® as N — oo on a set with probability
one. So on this set Ay must remain bounded, as otherwise, in view of the convergence
of @y to a*, Meay. By) will converge to (L5 in a subsequence for which |fy| — oo as
N — o0, On thL‘ other hand, whenever Sy converges to a real number 8 (say), in view of
the continuity of A, Aley;, ,E;'“‘J must converge to Afee™, #) on that set of probability one.
Since any bounded sequence must have a convergent subsequence, it 1s now obvious that
,E;'” must converge to ﬁ*, where Afa™, %) = ming gy Met, 3). which is same as the Bayes
nsk m this case.

For prior probabilities 1y and 72 (717 not necessanly equal to x3), and for two competing
normmally distributed populations with parameters ( g, ) and { g2, ),

T > Tafs(x) 6 [ B2 CRIE A2 o g 3 1 2B )2
= (X —,t.'_s}"E"{x —pa) —(x —p.}‘E"{x - = C, where C = 2log(m/m),
& 2X'E7 N —pa) = (i — 2 ) + C
Therefore, the optimum Bayes rule s indeed unigque, and 1t is linear in nature. Finally, as U

and A are both continuous functions m this case of multivanate normal distnbution, the proof
of the corollary is complete. O
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Proaf of Corollary 3.3. It suffices to show that under the given conditions, the optimum
quadratic classifier 15 the unique Bayes classifier. When the two competing population
distributions are multivariate normal with location and scatter parameters (g, ) and

(pea, Es),

: : By TR | I /3 )T 3
mf1(X) > mafo(X) & m (B | R CAIETEROR o g iy |1 2t P E7 R

T — ) 5 = ) — (X — ) B (=) > O,
where
] B |12
=2op| ==L __1.
{]f:_ (.7:, |E_:| 2

Therefore, the optimum Bayes rule is mdeed unique and quadratic in nature.

The probability density function fix) of a d-dimensional clliptically symmetnce Pearson
type VI distribution is given by

fx) = CEM2{1 +v 7z — )"E x — )} 2,

where g oand X are the location and scatter pammeters, v =0, 0> 4/2 and Cy =
()40 T — d /2). Now consider two Pearson type VII distributions, which are of the
same form except possibly for their location and scatter parameters. Let g; and X; be the
location parameter and the scatter matrix for the ith (i=1.2) population, and 7; be its prior
probability. Then
m f1(x) = w2 fa(x)

& m|E T2l v =) B =)} S e — )T B ) )Y

e Ty—le, o e p—12
RS w)E N x—py) 5 ﬁ}FK=:r_:IEz| _’
14 1= (x — 2 ) TES (x — paa) m [Ey |12

s 1:+{1—F|}::'EE:{1—F|} e C= K-M9
(X — ) ES (X — p2)
=) E T x—p) — Cx— ) B (x — ) —(C = Dy < 0.

Clearly, the left-hand side of the last mequality above is a quadratic function of x. Therefore
once again the optimum Baves rule 1 unique, and it turns out to be a gquadratic classifier.
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