FARTHEST POINTS AND THE FARTHEST DISTANCE MAP

FRADIPTA BANDYOPADHYAY AND S DUTTA

ApTRACT. Inthis paper. we consider farthest points amd the farthest distance
map of & closed bounded set in & Banach space. We show, infer alia, that
a strictly convex Bansch space has the Mazur-like intersection property for
weakly compact sets if amd only if every such set is the closed convex hull of
its farthest points, amnd recapture a classical result of Lau in a brosder set-up.
We obtain an expression for the subdifferential of the farthest distance map in
the spirit of Preiss' Theorem which in turn extends a recent result of West phal
amd Schwartz, showing that the subdifferential of the farthest distance map
is the unique maxima monotone extension of a densely defined monotone

operator involving the duality map and the farthest point map.

1. INTRODUCTION

We work with real scalars. The closed unit ball and the wnit sphere of a Ba-
nach space X will be denoted by B{X) and 5{X) respectively. Our notations are
otherwise standard. Any unexplained terminology can be found in [3].

For a closed and bounded set K in a Banach space X the farthest distance
map v is defined as ri(z) = sup{|lz —z| : 2z e K}, z € X. Foz € X, we
define the farthest point map as Qr(z) = {z € K : |z —z| = rr(z)}, te,
the set of points of K farthest from z. Note that this set may be empty. Let
D(K) = {r € X : Qx{z) # 0}. The set of farthest points of K will be denoted
by far(K), t.e., far(K) = U{Qx(z) : x € D(K)}. Call a closed and bounded set K
densely remotal if D{K) is norm dense in X,

We say that a Banach space X has the Masur Intersection Property (MIP) if
every closed bounded convex set in X is the intersection of closed balls containing
it. The MIP is a well studied notion in geometry of Banach space and several au-
thors have studied Mazur-like intersection properties for different families of closed
bounded convex sets. See [1, 2| and references thereof for a survey and unified
treatments. However, no complete characterization is awailable, in particular, for

every weakly compact convex set in X to be intersection of balls.
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Lau |7, Theorem 3.3] had shown that a reflexive Banach space X has the MIP
if and only if every closed bounded convex set in X is the closed convex hull of
its farthest points. In Section 2, we show that in a strictly convex Banach space
X, every weakly compact convex set is intersection of balls if and only if every
such set is the closed convex holl of its farthest points. Similar conclusions hold
for compact convex sets, compact convex sets of finite affine dimension. And f X
has the Radon-Nikodym Property (RNP), then similar result holds for w*-compact
convex sets in X",

For a closed and boumded set K C X, ¢ € X and o = 1), a crescent of K
determined by z and a is the set C(K,z,a)={z e K: |z —z| > ri(z) —a}.

The simple but crucial observation in proving the main result in our next section
is that for each of the above mentioned families of sets, every crescent of such a set
contains a farthest point of the set. This also gives Lau’s result in [7, Theorem 3.3]
as an obvious corollary.

Recall that the subdifferential of a convex function ¢ : X R atz € X is
dp(z)={r" e X" :z%(y—z) € o(y) — ¢(z) for all y € X}.

The subdifferential of the function ¢(z) = 3|z|? is referred to as the duality map
on X and is denoted by T

Since rg is a contimouns convex function, dry is 4 maximal monotone operator
defined on X. In [, Proposition 4.3], the authars showed that if X is a reflexive
Banach space with X* Fréchet smooth, then for a closed bounded set K, vy is

the mmique maximal monotone extension of DJ-T;_EK and for each z € X,

W dru(z) = DI=2E () : |y — =] < 3.

-
&0 K

Note that this is actually the Preiss’ Theorem (see [8]) for drg.

For a nonreflexive space, such a statement needs qualification as D‘%i{yj iy
be empty for some y. Nonetheless, even in nonreflexive spaces, for a densely remotal
set K (e.g., K weakly compact), Df—_rfi is a well-defined monotone operator with
dense domain. We show that if X is LUR, then rg remains the unigque maximal
monotone extension of D‘f—:_Ei and an analogue of (1) is awailable where we need to
take the w¥-closure and choose y from the set D) { K') defined below. We believe this
provides with the only version of the Preis’ Theorem for dr g is the non reflexive
case.

Let 2 € X and k € Qg (x). Wesay x € Dy(K) if & is contained in crescents of K|
determined by x of arbitrarily small diameter. It is easy to note that if z € Dy (K,

then (g (x) is nevessarily singleton.



FARTHEST POINTS AND THE FARTHEST DISTAMCE MAP 3

2. INTERSECTION OF BALLS AND FArRTHEST PoinTs

Here s the main theorem of this section. As mentioned in the introduction, this,
in particular, pives the only known characterization of when every weakly compact

convex set in X 15 intersection of balls.

Theorem 2.1. (a) If X is a strictly conver Banach space and C is one of

the following families of sets,
(i) K = {all compact conver sets in X }.
(#t) F = {all compact conver sets in X with finite affine dimension}.
{#1i) W = {all weakly compact conver set in X }.
then every K € C is intersection of balls if and only if every K € C is the
closed conver hull of its farthest points.

(h) If X has the BNP, then X* has the w*MIP if and only if every w*
compiact conver set in X* is the wclosed conver hull of its farthest points.

() [7] If X is reflexive, then X has the MIP if and only if every closed

bounded conver set in X is the closed convex hull of its farthest points.

Proof. (a) We give the proof for the family W of weakly compact sets. The same
proof works in the other cases too.

Necessity : Let K € W and thus by [7, Theorem 2.3], K is densely remotal. We
claim every crescent of K contains a farthest point of K.

To see this, let C{K, z, o) be any crescent of K, Choose £ such that () < za /2
and then take 3 such that 0 < 3 < a — 220 Since K is densely remotal, there
exists y € D{K) such that |z — gyl < 2. Then C(K, ¢, 3) C C{K, z,a) and clearly
Qx(y) € C(K,u.3).

Now let L = @o(far(K)). Suppose K\ L # 0. Then L & the intersection of balls
containing it as well and hence there exists a crescent ' of K disjoint from L. By
above obsevation O N far(K) # 0. But, of course, far(K) C L. This proves the
necessity.

Sufficiency : Suppose there exists K € W that is not intersection of balls. Let
K= "B : Bis aclsed ball and K C B}. Let 3 € K Y K. Choose yp € K and
0 < A=< 1such that zp = Azg+ (1 — Ay & K.

Let Ky = co(K U {z}). Then K; € W. We will show that far(K;) C K, and
hence, Ky # 7 far{ K7 ).

Let z € X. Then K C {u€ X : |lu—z| €ri(z)}. Note that rg(z) < g (z) =

r(z) = rie(z). Clearly, zg ss well as any point of the form

(2] v=azx+(l—-a)z, ac(dl], zeK,
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are not extreme points of K, and since X is strictly convex, they are not farthest
points as well. Therefore, v — z|| < ri(z). Thos, Qg (z) € K. Since r € X was
arbitrary, far(Ky) C K.

{(b) If X has the RNP, by [4, Proposition 3|, each w*-compact set K C X* is
densely remotal. Thus, necessity can be proved as in {a).

For sufficiency, note that if there exists a w*-compact set K that is not in-
tersection of balls, smee K = Myog[K + AB(X*)], passing to some K + AB(X*)
if necessary, we may assume that K has nonempty interior. Now if we choose
yo € int(K), then zy and any point of the form (2) are interior points of K, and

hence the result follows as before. O
The following observation is immediate from the abovwe arpnments.

Proposition 2.2, Every closed bounded conver set in X is the closed conver hull
of its farthest points of and only if
(a) X has the MIP; and
(b for every closed bounded conver set K C X and every closed ball B with
KW B£0 KB contains a farthest point of K.

Note that the proof of Theorem 2.1 shows that if K is densely remotal, then K

satisfies (b) above. Following example shows that we cannot dispense with (b).

Example 2.3. The space ¢p has a strictly convex Fréchet differentiable renorming
[, Theorem 7.1 (ii)] which, thus, has the MIP. However, since the unit ball of the

usnal norm on oy lacks extreme points, it must lack farthest points in the new norm.

Remark 2.4. This also shows that even if X * has the RNP, there may exdist a closed
bounded convex set in X with far(K') = ! (Compare this with [4, Proposition 3]).
Observe that since the bidual of a space with the MIP has the w*-MIP, Theo-

*_compact convex set in £%°, with the bidual of the

rem 2.1{b) shows that every w
above norm, i the w*-closed convex hull of its farthest points. Thus, there is a
closed bounded convex set K C oy, such that no farthest point of the w*-closure of

K in X** comes from K.

3. THeE FarrHest Distance Map

We begin by collecting some simple properties of the set D{K). Recall that a

sequence {z,} C K is called a maximizing sequence for z if |z — z,.|| — ric(z).

Proposition 3.1. Let K be closed bounded set in o Banach space X.
(a) z € Dy(K) if and only if any marimizing sequence for © convenges.
(b Ifzre Dy(K), then Qp is single valued and continuons at = and Qg x)
is a strongly erposed point of K.
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n

() Dy(K) isa Gy in X,

The following proposition shows that any discossion on Dy K) naturally require

some convexity conditions on the norm.

Proposition 3.2. (a) A Banach space X is strictly convez if and only if
for every compact set K and & € far(K), there exists z € Dy K, such that
Qi (=) = {k}.
(4 A Banach space X is LUR if and only if for every closed bouwnded set K
and k € far(K'), there exists x € Dy(K), such that Qx(z) = {k}.

Proof (a) Let K be a compact set in a strictly convex Banach space X. Let
ke far( K. Then, & € Qp(x) for some z € D{K). Let ¢ > 1. Strict convexity of
the norm shows that for y = k + t{z — k), Qx(y) = {k}. Now compactness shows
that y € D, (K).

Conversely, if X i not strictly convex, there exists z,y € 5(X) such that the line
segment [z,y] C S(X). Clearly, K = [z,y] & compact and K C Qx(0). But any
point of the open sepment (x, ) cannot be strongly exposed and therefore, cannot
be in the set Qg (D(K).

() Observe that S(X) € Qgx(0). For any 2 € S{X) and any sequence
{zn} C B{X) that is maximizing for —z, we have |z + z,,|| — 2. So if X is LUR,
Tp — . Thus —z € Dy(B(X)) and = € Qgx){—=). Now for a closed bounded
set K C X and k€ far{ K, get # € D(K) such that & € Qg (z), and apply this
argument with suitable translation and scaling to the ball Bz, vy (z)].

To prove the comverse, let K = B(X). Then, S(X) = far{ B{X)). So by the
hy pothesis, it follows that every point in 5{X) is a strongly exposed point of B{X),
and therefore, X is strictly convex.

Now let mp £ S{X). By hypothesis, there exists ¢ € Dy(B(X)) such that
Qx(z) = {z}. Then |z— x| = rg xy(z) = 1+ | z]|. By strict convexity, it follows
that # = azg for some o € B and |a — 1| = 1 4 |a|. Therefore, o < (0.

To show X is LUR, let {z,} C B(X) be such that ||z, + z¢|| — 2. For each n

consider the function on (0, 1),
fuld) =1—||Azn + (1 — Az
Then for all A € (0,1), £(\) > 0. And by triangle nequality,
2fal1/2) 2 fu(A) + fu(l = A) = fu(A) 2 0
By assumption, fu(1/2) — 0. Thus, for any A € (0,1), fu(A) — 0. In particular,

putting A = 1/{1 —a), we get ||z, — azy|| — (1 —a), that is {z,, } is a maximzing

sequence for ¢ = ary. Hence, z, — xy. O

The following two lemmas are crucial in proving our main theorem of this section.
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Lemma 3.3. Suppose X is LUR and K C X is densely remotall Then Dy (K is
a dense Gy in X

Proof. By Proposition 3.1{d), it suffices to show that Dy(K) is dense in X,

let z € DIK). Getk € Qglz). 0 <2< 1. Lety==k+(l+c)z—Ek).
Then, |z — y|| =srg{z). It & easy to see that rg{y) = (1 + g (z) and by strict
comvexity, k is a unique farthest point from 3.

We now claim y € Dy(K). Let {z,} € K be a maximizing sequence for . That
is, |z — | = (L +2)rg(z). Then,
(zp — 2+ 2(lk—x)

(1+¢£)

Then y, = (z, — 2)/rglz) € B(X), yo = [k — 2)/rg(z) € S(X), and for
A=1/{14¢=), wehave |Ay. +(1— MNygl| — 1. Notice that since = < 1, 1/2 < A < 1.
As in the proof of Proposition 3.2(b), let f,(A) = 1—|| Ay +(1 — Ny - By convexdity

—Ti(z)

of the norm,
fﬂ{}‘j E {2 o Eljlf,,{ ]-r'llgj E 1]

Since f(A) — 0, we have that f,(1/2) — 0, that is, ||y, + wl — 2. Since X is
LUR, y, — yp and hence, z,, — k. O

Remark 3.4. It follows that for any weakly compact set K in a LUR Banach
space, Dy (K) is a dense G in X. So our result is more general than (5, Corollary
2.8], where it is proved that if the norm on X* is Fréchet differentiable, then for

any closed and bounded subset K © X, Dy (K) is residual.

Lemma 3.5. Let v € Dy(K). Then, drg(z) = D‘%ﬁ{r]
Moreover, vy ts Gateaur (resp. Fréchet) differentiable at x if and only if the
norm is (iteawr resp. Fréchet) differentiable at ¢ — Qg (x).

Proof. Let Qg (z) = {k} and 2" € D‘{T‘T_I:%] Then z*{z — k) =rg(z). For z € X,
¥z —x) =x*(z) — 2 (k) — ri(z) < v (2) —rg(z). Thus 2% € drg(z).
Conversely, let = € drg(z). Since D‘%i{;r:l is 8 w¥-closed convex subset of
S{X*), it is enough to show that for any z € S({X), there is an zj € Df%fi{m:l
such that %(z) < zj(2).
Let {k.} C K be such that ||z + z/n — k|| > ric(z + z/n) — 1/n®. Then {k,}

is a maximizing sequence for r, and hence, &, — k. Now
z z z z 1
f(=)=z(z+ =) —z*z) Errlz+ =) —rrlz) <|z+ = — ku| —rr(z)+ =.
" " "
Choose ), € Dz + z/n—k,). Then

ph(Z) =ah(r+ S —ka) — 2 — k) 2 2+ S — k]l — ric(a).
mn mn n
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Combining the two, we have z%(z) < z;,(z) + 1/n. Let z§ be a w¥-cluster point of
{z5}. Since £+ z/n —k, converges to x —k in norm, we have = € D‘f—_r{fﬁ{m:l and
x¥(z) < zji(z), as desired.

Thus, the norm is Gateawx differentiable is at * — k & D{ﬁ] is singleton <
s0 18 drg () < v B Giteanx differentiable at .

Now, ket {z*} = drg(z) = D‘{T‘K_if]:l For amy A € R and z € B(X), z"(Az) <
|2+ Az =Fk|| = ||z — &|| < rgl{z + Az) —rgl(z). Therefore,

lz+Az -kl —ll=—k] . iz +Az) —rilz)
3 — ()| = 3 —x"(z])].

Thus, Fréchet differentiability of v at  implies that of the norm at = — k.
Conversely, let the norm be Fréchet differentiable at + — & Let 2, — =,
Ty € Orglz,) and z° € dri(z), then {z;} C B(X*) and since rx & Giteanx
differentiable at x, x} — z* in the w*-topology. Since z* € DSk (1), z* is a
g
w*norm point of continuity of B{X"), and therefore, z}, — z* in norm. It follows

that rp 15 Fréchet differentiable at x. O

Remark 3.6. [5, Theorem 3.2{a)| proves only the “necessity” part of this result.
Our proof i also simpler.

Combining Lemma 3.5 with Lemma 3.3, it follows that in a Banach space with
smooth LUR norm, the farthest distance map rg of a densely remotal set K is

Gateanx differentiable on a dense (Gg.

We now state the main theorem of this section. This gives an expression for Sry
in the spirit of Preiss’ Theorem [8]. Note that our result does not need smoothness
of the norm and with (Fréchet) smoothness, by Theorem 3.5, we pet back Preiss’

Theorem for drg.
Theorem 3.7. Let K be such that D (K is dense in X and z € X, Then
dric(z) = (@ {Orly) : y € Di(K) and |y —z| <8}
&)

Proof Let * € RHS and = > 0. Choose § < /3. For z € X, choose y € Dy (K)
and ¢* € drg(y) such that |y —z| < 6 and 2%(z —2) < y*(z — z) + 4. Thus,

z—z) < Yy l-z)+é=yz-y+yy—z)+d=rx(z) —ri(y) + 24
< rrlz)—rrle) + 3 < rge(2) —rge(x) + 2

Since £ is arbitrary, we have % € drg(z).

Conversely, let 2% € drg(z). Asin Lemma 3.5, we will show given any z € §{X)
there is an zj; € RH S such that z%(z) < z5(z).

For each n, get v, € Dy(K) such that |z + z/n —y,| < 1/%®. Then

(=) S rrel(e+ =) —rie(x) S ricyn) — Tr(n — =) + -
" n n n
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Let 2% € drpc(y.). Let &y € Qrl(y,). Then

ool

z

) =25y — ) = — = = ka) 2 ) — Tl — ).

Thus z*(z) < x3(z) + 2/n. Let x) be a whchister point of z2. Then zf; € RHS

and z*(z) < z5(=z). O

CHET

Combining the Lemma 3.3, Lemma 3.5 and Theorem 3.7 we obtain the following:

Corollary 3.8. Suppose K is a densely remotal set in a LUR Banach space X
Then vy is the wnigue mazimal monotone extension of the densely defined mono-
tone operator D‘T—_r_{fi and for each x € X, we have,

orc(@) = (@ (D25 () -y € Dy(K) and 1y — =] < 3}
d=0
Remark 3.9. In [, Proposition 4.3] obtained the similar conclusion for reflexive

Banach spaces with X'* Fréchet smooth.

We end this section with a result on range of drg. Compare this with [9,
Theorem 4.2].

Theorem 3.10. Let X be a smooth (resp. Fréchet smooth) Banach space.  Let
K C X be aclosed and bounded set such that D(K) is dense in X, then the image
of Dy(K) under Brye ts whdense (resp. norm dense) in S{X*).

Proof. Let NA(X) denote the set of norm attaining functionals in §{X*). By
Bishop-Phelps Theorem, NA(X) & norm dense in §{X*). Let 2 € NA(X) and
xg € S(X) such that xf(zy) = 1. By density of Dy(K), choose z,, € Dy(K) such
that |z, —nzg| < 1/n and let =, € rg(z,). Then ||z,| — co. Therefore, by [9,
Lemma 4.1}, imz%(z,/|z.|) = lim ||zZ| = 1. But since z,./||z.| — zp in norm,
zi(zg) — 1 as well. Thus, any w*-cluster point of {z%} is in D(zy). Since the norm

is smooth, this set is singleton. Hence, =3 — ) in w¥*-topology.

Now, if the norm on X & Fréchet smooth, then zj; chosen above is a w*-norm
point of continuity of B{X*). Thus drp (D (K)) iz norm dense in 5{X*). O
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