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Abstract

Over the last couple of decades, data depth has emerged as a powerful exploratory and inferential
tool for multivariate data analysis with wide-spread applications. This paper investigates possible
use of different notions of data depth in nonparametric discriminant analysis. First, we consider the
situation where the prior probabilities of the competing populations are all equal and investigate
classifiers that assign an observation to the population with respect to which it has the maximum
location depth. We propose a different depth based classification technique for unequal prior prob-
lems, which is also useful for equal prior cases, especially when the populations have different scatters
and shapes. We use some simulated data sets as well as some benchmark real examples to evalu-
ate the performance of these depth based classifiers. Large sample behavior of the misclassification
rates of these depth based nonparametric classifiers have been derived under appropriate regularity

conditions.

Keywords and Phrases : Bayes risk, cross-validation, data depth, elliptic symmetry, ker-
nel density estimation, location shift models, Mahalanobis distance, misclassification rates, Vapnik

Chervonenkis dimension.

Introduction : data depth and discriminant analysis

Data depth measures the centrality of a d-dimensional observation x with respect to a multivariate
distribution F' or with respect to a given d-dimensional data cloud. It helps to build up a systematic
and nonparametric approach to generalize various features and properties of univariate distributions
to multivariate distributions. The notions of multivariate median, multivariate L-statistics, tests for
the center of elliptic symmetry, measures of multivariate dispersion and skewness are some well known
examples of its application (see e.g., Chaudhuri and Sengupta, 1993; Liu and Singh, 1993; Liu, Parelius
and Singh, 1999; Vardi and Zhang, 2000; Mosler, 2002). Several notions of depth functions are available

in literature. Some of these depth functions are briefly described below.

e Mahalanobis depth (M D) (see e.g., Mahalanobis, 1936; Liu and Singh, 1993) of an observation x

w.r.t. the distribution F' is defined to be

MD(F.x) = {1+ (x — ) S5 (x — i)}

where ur and ¥ are the mean vector and the dispersion matrix of the distribution F'.

e Half-space depth (HD) (see e.g., Tukey, 1975) of x w.r.t. F' is defined as the minimum probability

measure of any closed half-space containing x.



HD(F,x) = i?[f{PF(H) : H is a closed half space in RY, and x € H} .

e Simplicial depth (SD) (see e.g., Liu, 1990) of x w.r.t. F is defined to be the probability that x

belongs to a random simplex in R<.

SD(F,X) = Pp {X € S[Xl,Xg,. .. ,Xd+1]},

where S[Xy,Xay,...,Xg4y1] is a d-dimensional simplex formed by (d + 1) i.i.d. observations X;,
X9, ..., X441 from F.

e Majority depth (M JD) (see e.g., Singh, 1991; Liu and Singh, 1993) of x w.r.t. F' is defined as the
probability that x belongs to the major side (i.e. the half-space with larger probability measure)
of a random hyperplane passing through d data points in R%.

MJD(F,x) = Pr {x belongs to the major side of X1, Xo,..., X4},
where X1, X, ..., Xy are i.i.d. observations from F.
e Projection depth (PD) (see e.g., Stahel, 1981; Donoho, 1982) of x w.r.t. F' is defined as the worst

case outlyingness of x w.r.t. one dimensional median in any one-dimensional projection.

PD(F,x) = ||(leig1 [{a’x - Median(a/X)}/MAD(a/X)} )

where MAD(Y) = Median (|Y — Median(Y)|) and X ~ F.
e Simplicial volume depth (SV D) (Zuo and Serfling, 2000a, 2000b) is closely related to Oja median
(Oja, 1983). SV D of an observation x w.r.t. F' can be expressed as

SVD(F,x) =

V{anIa s aXd} }6 -
|2F|1/2 ’

1+EF{

where X1,..., X, are observations from F, V(x,Xjy,...,Xy) is the volume of the d-dimensional
simplex formed by x and X4,...,Xy, and X is the scatter matrix of the distribution F'. Note
that the division by |Zp|'/? is required only to make the depth function affine invariant like the

other depth functions mentioned above.

e The notion of spatial depth (SPD) or Ly depth (Vardi and Zhang, 2000; Serfling, 2002) follows
the work of Chaudhuri (1996) and Kolchinskii (1997) on spatial quantiles. SPD of an observation

x w.r.t. F'is defined as

SPD(F,x) =1 — HEF {ﬂ}

, where X ~ F.
[[x — X]|

Spatial depth has some nice properties. When d > 2, for all F', Ep{(x — X)/||lx — X]||} is a
continuous and “monotonic transformation” on R, and it uniquely determines the distribution function
F (see e.g., Koltchinskii, 1997). When the observation x is located near the center of the distribution,
Er{(x — X)/|[x — X]||} is expected to be very close to 0, and hence SPD(F,x) is expected to attain



its maximum value 1. On the other hand, if the point moves away from the center, SPD approaches
the value 0. Unlike other depth functions, SPD is easy to compute for high dimensional data, and one
can define SPD even for infinite dimensional Hilbert spaces (see e.g., Chaudhuri, 1996). This depth
function is invariant under rotation and if the same scale transformation is done on all co-ordinate

variables. One can also make it affine invariant by taking 2;1/ ?(x — X) instead of x — X.

Various other well known depth functions like likelihood depth, convex hull peeling depth and
zonoid depth have been studied by Liu, Parelius and Singh (1999), Zuo and Serfling (2000a, 2000b),
Mosler (2002) and Mizera (2002). Apart from likelihood depth, all these depth functions are affine
invariant in nature. Likelihood depth also preserves the ordering of the depth functions under affine

transformations.

Sample versions of various depth functions are obtained by replacing F' with the empirical distri-
bution function F;, that puts mass 1/n on each of the n data points in d-dimensional space. Theoretical
properties of these empirical depths and their corresponding depth contours have been extensively stud-
ied in the literature (see e.g. Liu, 1990; Nolan, 1992; Donoho & Gasko, 1992; Liu & Singh, 1993; He
and Wang, 1997; Zuo and Serfling, 2000a, 2000b). To make it notationally simpler, instead of D(F},x)
and D(Fy,;,x) we will write D(j,x) and Dy(j,x), respectively, to denote the theoretical (population)
and the empirical (sample) depth of x with respect to the j%* population.

Like other useful applications of depth functions in multivariate statistics, different notions of
data depth can also be used for the purpose of discriminant analysis, where the objective is to classify
an observation into one of several competing populations. Given the prior probabilities m;’s and the
density functions f;’s of these populations, the optimal Bayes classification rule assigns an observation
x to the population having the maximum posterior probability at x (i.e., it assigns x to the i*" popu-
lation, where 7 = arg max 7; f;(x)). This classifier has the lowest possible average misclassification rate
known as the optimal Bayes risk. However, in practice f;’s (j = 1,2,...,J) are unknown, and they
have to be estimated using the available training sample. Parametric methods like Fisher’s (see Fisher,
1936) linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are motivated by
specific distributional assumptions on the competing populations, which may not be valid in practice.
Further, these traditional classifiers use estimates of the unknown population parameters (e.g., means,
variances and correlations) based on the moments of the training sample observations, and this makes
these methods very sensitive to outliers and extreme values. Christmann and Rousseeuw (2001) and
Christmann, Fischer and Joachims (2002) used the idea of regression depth (see e.g., Rousseeuw and
Hubert, 1999) for classification between two competing populations. Ghosh and Chaudhuri (2004b)
extended this idea for multi-class problems, where they used regression depth and half space depth (see
e.g., Tukey, 1975) to construct linear and nonlinear discriminating surfaces. In these depth based meth-
ods, one assumes a finite dimensional parametric form (usually linear or quadratic) for the separating
surface and uses the distributional geometry of the data cloud to estimate the associated parameters. In
that sense, these classifiers though distribution free are not fully nonparametric but only semiparametric
in nature. Performance of these depth based semiparametric classifiers and their asymptotic properties
have been studied in Ghosh and Chaudhuri (2004b). The objective of this article is to demonstrate how
various notions of data depth can also be used to develop fully nonparametric classifiers (see also Liu,

1990, pp. 408-409). In the next section, we investigate maximum depth classifiers for classification in



equal prior cases. Later, we will introduce another depth based classification technique, which works

under a more general set up.

2 Maximum depth classifiers

Unlike the parametric and semiparametric classification methods, maximum depth classifiers do not
assume any specific parametric form of the separating surface nor do they assume any particular type
of probability distribution for the populations. Instead, they classify an observation to the class with

respect to which it has the maximum location depth. These classifiers can be expressed as
dp(x) = arg max Dy, (5,%),

where n; is the number of training sample observations, Dy, (4,x) is the empirical depth of x in the j*
population, and the prior probabilities of the competing classes are assumed to be equal. It is straight
forward to see that when M D is used, such a depth based classifier leads to a linear or a quadratic
classifier depending on whether a common scatter matrix is used for all of the competing populations or
not. So if one is interested in a more flexible procedure than just a classifier with a linear or quadratic
class boundaries, M D will not be an appropriate choice. Note that when the competing populations
have the same scatter matrix (e.g., if the population distributions satisfy a location shift model), it
is not necessary to have |X|'/2 in the denominator of the expression of SV D? when it is used for
maximum depth classification. Recently maximum depth classifiers based on SPD have been studied
by Jornsten (2004) for classification of microarray gene expression data, where she used SPD also for
cluster analysis. A cluster analysis method based on zonoid depth has also been investigated in Hoberg
(2000).

2.1 Misclassification rates and asymptotic optimality

When the population distribution is elliptic with density function strictly decreasing in every direction
from its center of symmetry, some of the population depth functions also satisfy that monotonicity
property (see e.g., Zuo and Serfling, 2000a), and they turn out to be a decreasing function of the
population Mahalanobis distance (Mahalanobis, 1936). HD, SD, MJD, MD, PD and SVD (for
d > 1) are some of the depth functions with this property (see e.g. Liu, 1990; Singh, 1991; Donoho
and Gasko, 1992; Nolan, 1992; Liu & Singh, 1993, Zuo and Serfling, 2000a). Therefore, in equal prior
cases and when several elliptic populations differ only in their location parameters, these population
depth functions are equivalent to population Mahalanobis distance for classification purpose, and they
all are equivalent to the optimal Bayes classifier. However, in practice, population depth functions
are not available, and one has to use the empirical depth functions, which are natural estimates for
their population counterparts, in order to classify an observation. The following theorems establish
asymptotic optimality of maximum depth classifiers based on some of the empirical depth functions.
From now on, we will assume that all the populations possess densities, which are continuous and
positive over the entire d-dimensional space. Also, the average misclassification rate of an empirical

depth based classifier will be given by



J J
Ap = Z 7 P{dp(X) #j|X € j"population} = Z P{dp(X) #j and X € j"population} ,
j=1 =1
where n = (ny,no,...,ny) is the vector of training sample sizes for different classes, and 7; is the prior

probability for the j“* population (j = 1,2,...,.J). Note that in the above definition of Ap, P denotes
the unconditional joint probability involving both the probability distribution of the training sample as
well as that of the test case X.

Theorem 2.1 : Suppose that the population density functions fi1, fa,..., f1 are elliptically sym-
metric, and fj(x) = g(x — p;) for some location parameters p; and a common density function g
with g(kx) < g(x) for every x and k > 1. Now define n = (ny,n9,...,ny) and An as above. Then,
in the equal prior cases, for HD, SD, MJD and PD, An converges to the optimal Bayes risk as

min{ny,na,...,ny} — oo.

Theorem 2.2 : Assume the same set up as in Theorem 2.1. If g is spherical, An in the case of

SPD converges to the optimal Bayes risk as min{ni,na,...,nj} — oo.

Theorem 2.3 : Assume all the conditions of Theorem 2.1. For some given x, define Vj{x,Xy,...,Xq}

as the volume of the d-dimensional simplex formed by x and Xq,...,Xy, which are observations from
fj- Further, assume that Ey,[V;{x,Xq,... ,Xd}]5 < oo forall j =1,2,...,J, and some 6 > 1. Then,
Anq in the case of SVD° converges to the optimal Bayes risk as min{ni,ny,...,ny} — oo.

3 Data analytic implementation of the classifiers

Among various notions of depth functions, M D is surely the simplest one to calculate, but as we have
mentioned earlier, it can only lead to classification using linear or quadratic discriminant functions
(LDA and QDA). Further, computational simplicity in the case of M D is a consequence of using
sample moments that are always very easy to compute. When more robust estimates for the location
vector and the scatter matrix are used as has been done by some recent authors (see e.g., He and Fung,
2000; Croux and Dehon, 2001; Hubert and Van Driessen, 2003), this computational simplicity is lost.
Note that like M D, SVD° also depends on some empirical moments based on the training sample,
and consequently they both are sensitive to outliers and extreme values. Many of the other classifiers
derived from different depth functions are not based on moments, and they are more suitable when the
training set observations have distributions with heavy tails. Among such depth based classifiers, SPD
in practice has some advantages. We have already pointed out that it is computationally less expensive
than most of the other depth functions, and it can be used for classification even in infinite dimensional
Hilbert spaces. Since the empirical version of SPD is continuous in x for d > 2, there is almost no
possibility of ties, while ties may cause problems for depth functions like HD, SD and M JD because

of their step function (piecewise constant) like nature.

The computational cost for HD and SD of an observation increases rapidly with the dimension
at a geometric rate (see e.g. Chaudhuri and Sengupta, 1993; Rousseeuw and Ruts, 1996; Rousseeuw
and Struyf, 1998). Therefore, exact computation of these depths is not feasible for high dimensional
problems, and there one can only use some approximate algorithms. Such an approximate algorithm for

H D was proposed in Ghosh and Chaudhuri (2004b). This approximation allows us to use derivatives of



certain smooth functions to find out the direction of steepest ascent or descent of the objective function
to be optimized. In this paper, for all problems with d > 2, we have adopted this approximation
for computing HD of an observation. Exact version of HD is used for bivariate data sets only. In
order to cope up with the problem of possible presence of several local optima, we have always run our
approximate version of the optimization algorithm a few times starting from different random initial
points. Since no such approximate algorithm is available for SD, we have used this depth function only

for two dimensional problems.
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Figure 3.1 : Scatter plot for simulated data

Apart from computational difficulty, HD and SD have another problem in higher dimensions.

Consider the following example of a two-class problem where the classes are bivariate normal with

. . . 1
means p; = (0,0), puy = (2,2) and common dispersion matrix I2:l 0 (1) . We have generated 100

observations from each class, and the scatter plot of this data set is given in Figure 3.1. In this figure,
one can notice some observations which have zero empirical depth for HD as well as SD with respect
to both the classes. For instance, the observations ‘A’ and ‘B’ (see Figure 3.1) clearly belong to two
different classes but both have zero empirical depth with respect to both the classes. Clearly, the
classifiers based on HD and SD fail to classify these two observations correctly. In high dimensions,
when the sizes of the training samples are small compared to the dimensionality of the problem, we have
a high proportion of observations having zero empirical depth with respect to both of the competing
classes. For classifying these observations, we rely on 1-nearest neighbor method. From the definition
of SPD, however, it is quite transparent that if the distribution is not completely supported on a real
line, SPD is always positive. As a result, both the observations ‘A’ and ‘B’ are correctly classified by
SPD. This is a critical issue as both of HD and SD attain the value zero at points outside the support
of the distribution when the support is bounded while SPD does not get affected by such problems in

high dimensions.

4 Numerical results for equal prior cases

In this section, we use some simulated and some benchmark data sets to illustrate the performance of

the maximum depth classifiers. Performance of traditional LD A and (QD A on those data sets has also



been given to facilitate the comparison. In the case of simulated examples, we report the corresponding
Bayes errors as well. For benchmark real data sets, we have reported the misclassification rates of some

nonparametric methods to compare those with the performance of the maximum depth classifiers (dp).

As we have already noted in Section 1, SPD is not invariant under general affine transformations.
It will not be meaningful to compute SPD based on a multivariate data set when the co-ordinate
variables are measured in different scales, and some standardization of the variables is necessary before
computing SPD. One can use an estimate of the dispersion matrix based on empirical second moments
to standardize the variables but we chose not to do that as our simulation studies involve distributions
with heavy tails. We wanted our classifiers to be robust against the possible presence of outliers in the
training data. On the other hand, use of more robust estimates of scatter matrix like the minimum
volume ellipsoid or the minimum covariance determinant estimates (Rousseeuw, 1985; Rousseeuw and
Van Drissen, 1999) will increase the computational cost substantially. In all our numerical studies,
before computing SPD of an observation, we standardized the measurements variables in each class
using marginal inter-quartile ranges. This enables us to use SPD even if different measurement variables
are originally not in comparable scales. Throughout this section, prior probabilities for all competing

populations are assumed to be equal.

4.1 Results on simulated data sets

As simulated examples, we consider some two-class problems, where both the populations are elliptically
symmetric and they differ only in their location parameters p; = (0,...,0) and py = (..., p).
The value of p is taken to be 1 and 2 for our experiments. For proper evaluation of depth based
classification methods, we investigate two extreme cases, where the observations are generated from
multivariate normal distributions having exponential tails and multivariate Cauchy distributions having

heavy polynomial tails. We consider I= the identity matrix or ¥y as the common scatter matrix of

110
the two populations, where ¥ is taken as l L4 ] and | 1 4 1 |, respectively, for two and three
01 1

dimensional problems. For each of these simulated examples, we generate a training set taking equal
number (100 or 200) of observations from each class while a test set of 1000 observations (500 from
each class) is used to compute the misclassification rates for different classifiers. Each experiment is
carried out 100 times, and the average misclassification rates and their corresponding standard errors
over those 100 simulations are reported in Table 4.1 and 4.2. For two dimensional problems, we report
the performance of HD classifier based on its exact version, whereas the approximate version is used

for d = 3. Due to computational difficulty, SD is used only in the case of bivariate problems.

In the case of normal distributions, as expected, LD A led to the best performance, and it could
nearly achieve the optimal Bayes risk. Error rates for QDA were also quite comparable. The maximum
depth classifiers could produce satisfactory performance as well. When the population distributions
are spherically symmetric (i.e. 3; = ¥y = I), SPD had a slight edge over the other two depth
based classifiers, but when 3 is used as the common scatter matrix, especially in dimension 3, HD
led to a slightly better performance. Recall that we used only the marginal quantiles to standardize

the variables for SPD calculation, which do not take care of the correlations between the variables.



1/2 may lead to a better performance in such cases at

Standardization by any robust estimate of X~
the cost of increased complexity. However, the performance of LDA and QDA falls drastically when
the observations are generated from a heavy tailed distribution like Cauchy. In this case, HD, SD and
SPD clearly outperformed LDA and QDA. The error rates for depth based classifiers were reasonably
close to the optimal Bayes risk while those for LDA and QDA were much higher for data simulated

from Cauchy distributions.

Distribution | 1 | = | Bayesrisk | n LDA QDA SPD HD SD
I 23.98 100 | 24.12(0.15) | 24.23(0.15) | 24.45(0.16) | 24.94(0.17) | 25.05(0.17)
1 200 | 24.16(0.13) | 24.19(0.13) | 24.29(0.12) | 24.64(0.13) | 24.71(0.13)
0 30.86 100 | 31.02(0.13) | 31.33(0.14) | 31.61(0.14) | 32.29(0.17) | 32.51(0.19)
Normal 200 | 31.11(0.16) | 31.13(0.17) | 31.68(0.17) | 31.72(0.17) | 31.88(0.17)
I 7.87 100 | 8.05(0.09) | 8.07(0.09) | 8.21(0.09) | 8.44(0.10) | 8.64(0.11)
2 200 | 7.92(0.09) | 7.95(0.08) | 8.01(0.09) | 8.16(0.09) | 8.25(0.09)
=0 15.86 100 | 16.07(0.11) | 16.14(0.11) | 16.92(0.11) | 16.86(0.12) | 16.88(0.12)
200 | 15.99(0.11) | 16.04(0.10) | 16.89(0.12) | 16.30(0.11) | 16.40(0.12
I 30.40 100 | 41.99(0.81) | 49.67(0.14) | 32.81(0.20) | 33.48(0.27) | 33.57(0.25)
1 200 | 43.26(0.96) | 49.80(0.19) | 32.25(0.19) | 32.89(0.21) | 32.97(0.22)
0 35.24 100 | 45.68(0.67) | 49.37(0.19) | 38.36(0.25) | 39.26(0.27) | 39.31(0.28)
Cauchy 200 | 44.78(0.73) | 49.86(0.07) | 36.68(0.21) | 37.62(0.23) | 37.70(0.24)
I 19.58 100 | 33.05(1.29) | 47.81(0.54) | 21.84(0.20) | 22.65(0.23) | 22.75(0.23)
2 200 | 34.42(1.41) | 49.37(0.18) | 21.05(0.16) | 21.91(0.20) | 22.00(0.19)
=0 25.01 100 | 40.83(1.19) | 49.41(0.14) | 27.78(0.23) | 28.64(0.27) | 28.80(0.28)
200 | 38.65(1.18) | 49.63(0.14) | 26.79(0.19) | 27.36(0.21) | 27.51(0.19)

Table 4.1 : Misclassification rates (in %) for elliptic distributions with ¥; = ¥y =X (dim. 2).

Distribution | ¢ | 32 Bayes risk n LDA QDA SPD HD
I 19.32 100 | 19.63(0.13) | 19.83(0.13) | 20.01(0.14) | 21.27 (0.13)
1 200 | 19.60(0.11) | 19.78(0.11) | 19.85(0.11) | 20.52(0.13)
=0 21.45 100 | 21.87(0.16) | 22.14(0.16) | 25.99(0.17) | 23.97(0.19)
Normal 200 | 21.53(0.13) | 21.70(0.13) | 25.25(0.12) | 22.77(0.14)
I 4.16 100 | 4.28(0.07) 4.34(0.07) 4.46(0.07) 5.09(0.09)
2 200 | 4.20(0.07) | 4.26(0.07) | 4.33(0.07) | 4.68(0.08)
=0 5.70 100 | 5.94(0.08) | 6.00(0.88) | 9.98(0.12) | 7.03(0.10)
200 | 5.76(0.07) 5.80(0.08) 9.79(0.11) 6.36(0.09)
I 27.29 100 | 39.78(0.77) | 49.77(0.10) | 31.09(0.26) | 32.69(0.31)
1 200 | 39.41(0.94) | 49.78(0.13) | 29.65(0.21) | 31.14(0.26)
=0 28.71 100 | 41.94(0.92) | 49.46(0.22) | 33.82(0.26) | 34.01(0.32)
Cauchy 200 | 42.59(0.86) | 49.49(0.20) | 33.08(0.18) | 32.68(0.25)
I 16.67 100 | 27.51(1.12) | 46.13(0.77) | 19.51(0.20) | 21.33(0.27)
2 200 | 27.09(1.04) | 48.47(0.46) | 18.68(0.17) | 20.02(0.18)
o 17.95 100 | 28.90(1.11) | 48.32(0.52) | 22.94(0.21) | 22.81(0.28)
200 | 30.69(0.98) | 48.75(0.440 | 22.36(0.18) | 21.72(0.25)

Table 4.2 : Misclassification rates (in %) for elliptic distributions with ¥; = ¥, = ¥ (dim. 3).

In all these simulated examples, even when 100 observations are taken from each class, the max-
imum depth classifiers could achieve error rates fairly close to the optimal Bayes risk, which became
even closer for larger sample sizes. The following theorem gives some idea about the order of asymp-
totic accuracy of misclassification rates for suitable empirical depth based classifiers under appropriate

regularity conditions.

Theorem 4.1 : Suppose that the population density functions fi, fa, ..., f satisfy the conditions
of Theorem 2.1 and define An as before. Also, define D% (x) = {_mi_;ll}{D(j,x) —D(i,x)} and A =
i iF£]



optimal Bayes risk. Then, in the equal prior cases, we have

1 < :
An < A+ Y[ - AP N G

J=1 poj (X)>0

for some appropriate function Pn, which depends on the choice of the depth measure. Here, for
HD and SD, Bn(t) is of the form pn(t) = []; maz{0,1 — Qn?e*”th/Q} and fn(t) = [1; maz{0,1 —
Qe_L"J'/d"'lJtQ/Q}, respectively, where |x]| denotes the highest integer < x. Further, if the population
distributions are spherical, the error rate of the SPD classifier also satisfies the above inequality with
An(t) = TTj=; maz{0,1 - 2d e—mit!/8d")

One should note that irrespective of the depth function, for every ¢, fn(t) converges to 1 as
min{ny, ng,...,ns} tends to infinity. This implies the asymptotic convergence of misclassification rates

of maximum depth classifiers to the optimal Bayes risk.

4.2 Results from the analysis of benchmark data sets

We use three benchmark data sets, namely synthetic data, vowel recognition data and salmon data, for
further illustration. Synthetic data and salmon data have the same number of observations for different
populations, which justifies the use of equal priors for the competing classes. Since the sample sizes
of the different classes in vowel data are not very different, we have taken the priors to be equal for
evaluating the performance of the depth based classification techniques. Performance of LDA, QDA and
nearest neighbor method (based on Euclidean distance and cross-validated choice of k) are also reported
to facilitate the comparison. Since nearest neighbor and SPD classifiers are not affine invariant, we
report the results for these methods both based on standardized and unstandardized version of the data
sets. Usual sample dispersion matrix is used for this standardization. Unlike synthetic data and vowel
data, salmon data does not have any separate training and test sets. We divided this data set randomly
to form the training sets consisting of 80 observations (40 from each class) while the remaining 20
observations were used to form the corresponding test sets. This random division was carried out 250
times. The average misclassification rates for different methods and the corresponding standard errors
over these 250 partitions are reported in Table 4.3. For synthetic data and vowel data, which have
separate training and test sets, we report the test set misclassification errors for different classifiers. If
a classifier leads to a test set error rate p, the corresponding standard error is taken as /p(1 — p)/n,

where n is the size of the test sample.

Synthetic data : This data set was used by Ripley (1994) and many other authors, who reported
the error rates of different parametric and nonparametric classifiers. It is a well-known benchmark data
set, where both the classes are equal mixtures of two bivariate normal distributions differing only in
their location parameters. Parameters of these bivariate distributions were chosen to yield a Bayes risk
of 8.0%. There is a training set consisting of 250 observations (125 from each class) and a test set
consisting of 1000 cases (500 from each class). A scatter plot of this data set is given in Figure 4.1,

where the dots (-) and the crosses (x) represent the observations from the two classes.

On this data set, LDA, QDA, classification tree and SPD classifier led to almost similar test set
error rates. Misclassification rates for these methods were found to be 10.8%, 10.2%, 10.1% and 10.5%,
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Figure 4.1 : Scatter plots for synthetic data

respectively. Nearest neighbor could achieve the best error rate of 8.7%. Misclassification rates for HD
(error rate = 12.8%) and SD (error rate = 13.8%) were higher than that of the other classifiers. When
the data were standardized using the sample dispersion matrix, SPD, classification tree and nearest
neighbor method led to error rates of 10.5%, 12.0% and 11.7%, respectively.

Vowel recognition data : This data set was created by Peterson and Barney (1952) by a
spectrographic analysis of vowels in words formed by ‘h’ followed by a vowel and then followed by
‘d’. There were 67 persons who spoke different words, and the two lowest resonant frequencies of a
speaker’s vocal track were noted for 10 different vowels. The observations were then randomly divided
into a training set consisting of 338 observations and a test set consisting of 333 observations. Here,
the classes have significant overlaps between them, which makes the data set a challenging one for any
classification method. A scatter plot of this data set is given in Figure 4.2 where the numbers represent
the labels of different classes (‘0’ represents the 10-th class).

Training set : 338 observations Test set : 333 observations
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Figure 4.2 : Scatter plots for vowel data
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Cooley and MacEachern (1998) used this data set to study the performance of different classifica-
tion algorithms. On this data set, QDA could achieve an error rate =19.8%. Nearest neighbor method
had a misclassification rate =21.9%. HD classifier and the classification tree method both led to the
same error rate =23.7%. Misclassification rates for LD A and SD classifier were much higher than those
of the other classifiers. SPD classifier led to an error rate =24.6%. However, when the data points
were standardized using a pooled estimate of the dispersion matrix, this misclassification rate for SPD
reduced to 21.3%. On this standardized data set, classification tree and nearest neighbor method had

error rates 24.0% and 17.7%, respectively.

Salmon data : This data set is taken from Johnson and Wichern (1992, p. 520). It contains
measurements on freshwater and marine water growth ring diameters on each of 100 salmon fish coming

from Alaskan and Canadian water (50 from each population). A scatter plot of this data set is given in

Figure 4.3.
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Figure 4.3 : Scatter plots for salmon data

On this data set, LD A (error rate =7.54%, S.E.=0.32%), QDA (error rate =7.23%, S.E.=0.32%),
SPD (error rate =7.46%, S.E.=0.33%) and HD (error rate =7.32%, S.E.=0.34%) classifiers could
achieve fairly competitive performance. SD classifier and k-nearest neighbor method had slightly higher
error rates. For these two classifiers, the average misclassification rates were found to be 8.76% and
8.02%, respectively, with standard errors 0.41% and 0.36% in the respective cases. On the standardized
version of the data, the nearest neighbor method and the SPD classifier could achieve average test
set error rates 8.11% (S.E. = 0.37%) and 7.42% (S.E. = 0.34%), respectively. Due to computational
difficulties in finding the error rates over repeated partitions, we could not report the performance of

the classification tree method for this data set.

Data sets LDA QDA Nearest neighbor SPD HD SD
Original Standardized Original Standardized
Synthetic | 10.8 (0.98) | 10.2 (0.96) | 8.7 (0.89) | 11.7 (1.02) | 10.5 (0.97) | 10.5 (0.97) | 12.8 (1.06) | 13.8 (1.09)
Vowel | 25.2 (2.38) | 19.8 (2.18) | 21.9 (2.27) | 17.7 (2.09) | 24.6 (2.36) | 21.3 (2.24) | 23.7 (2.33) | 32.7 (2.57)
Salmon | 7.54 (0.32) | 7.23 (0.32) | 8.02 (0.36) | 8.11 (0.37) | 7.46 (0.33) | 7.42 (0.34) | 7.32(0.34) | 8.76 (0.41)
Table 4.3 : Misclassification rates (in %) for benchmark data sets

From the analysis of these data sets, SPD and HD classifier seem to be better than SD classi-
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fiers. Performance of these classifiers on the simulated and benchmark data sets was fairly competitive
compared to the other parametric and nonparametric classification procedures. In most of the data
sets, SPD led to smaller error rates than HD. In terms of computational cost, it had a clear edge over

HD, SD and other maximum depth classifiers.

5 More on depth based nonparametric classification

In practice, different populations may have different priors, and they may not belong to the same family
of elliptic distributions. In such cases, the maximum depth classifiers may not work well. In this
section, we deal with such situations and propose another depth based classifiers which are capable to
achieve reasonably lower misclassification rates under a more general set up that includes situations
with unequal priors. These classifiers only assume the ellipticity of the data distribution to build up
the decision rule and in that sense they are more flexible than maximum depth methods which need

the populations to satisfy a location shift model to perform well.

Theorem 5.1 : When the population distributions are elliptically symmetric, for any of M D,
HD, SD, MJD, PD and SV D° with § > 1, there exist some functions 0;(-) of population depth D(j,x)
(0 may depend on the type of the depth function) such that the optimal Bayes classifier is given by

dp(x) = argmax 7;0;{D(j,x)},
J

where the 7;’s are the prior probabilities of different classes.

Note that when the population distributions satisfy a location shift model, and the density func-
tions decrease with the Mahalanobis distance from the center of symmetry, the functions 6;’s are the
same for all the populations, and they are monotonic in nature. Therefore, in the equal prior cases and
under the above conditions, this Bayes classifier turns out to be the maximum depth classifier based on

population depth functions as we have already seen in preceding sections.

To construct a classification rule based on the training sample observations, one needs to find out
appropriate sample analogs for 6;{D(j,x)}. Unfortunately, for most of the depth functions, 6;{D(j,x)}
is a complicated function of D(j,x), and it is not easy to obtain its consistent estimate based on training
sample observations. Of course, because of the simple relation between Mahalanobis distance and H D
(see the proof of Lemma 5.1 in the Appendix) in the case of elliptic distributions with location parameter
p; and scatter parameter X, it is possible to have a simple expression for 6;{D(j,x)} when HD is

used. In that case, 6;{D(j,x)} can be expressed as

0{D (., %)} = 1251717 0 ({D (i, x)}) / (1i{ DG x) N,

where the depth function D(j,x) and the Mahalanobis distance v;{D(j,x)} have the relation D(j,x) =
1—F; (v;{D(j,x)}) for F(-) being the distribution function of QIEJI/Q(XJ‘—M]-) for any a with ||a| =1,
and pj(-) being the density function of v;{D(j,x)}. Consistent estimates of 3;, v;{D(j,x)} and its
density function p;(-) lead to a decision rule capable of achieving misclassification rates close to the
optimal Bayes risk. One should notice that 8;{D(j,x)} is nothing but the density function of the ;%

population and our method tries to find out a consistent estimate of ; using depth. Such depth based
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density estimation has also been investigated by Fraiman, Liu and Meloche (1997). Any moment based
estimate of p; and 3; will make the estimate 4; and the classifier sensitive to outliers and contaminated
observations. Instead, it is better to plug in some robust estimates for these parameters. Here, we use
half-space depth to estimate -; while kernel density estimation technique is used to estimate g; and to
construct a new depth based nonparametric classifier (see the following section for detailed description).
It requires a consistent estimate for |3;| as well. Here, we bypass this estimation problem by writing

the classifier in the form
d(x) = arg max Cj 0; (vi{D (i, %)}) / (%D, x) ),

where C1,Cy, ..., are suitable constants. In practice, one can take C1 = 1, and after finding some
consistent estimates for ; and p; using the training sample, one will minimize the misclassification rate

of the resulting classifier with respect to Co, Cs,...,C; to build up the final classification rule.

5.1 Description of the methodology and related convergence properties

Let us start with a two-class problem, where we have observations x;1, %9, ..., X, from the 4t pop-
ulation f; (j = 1,2), and we want to classify a future observation xq into one of these two classes. At
first, we compute empirical half-space depths Dy, (,%0) of xo with respect to the data cloud of the j*
population (j = 1,2). Next, we project the observations of f; in some fixed direction a (||a| = 1)
and find out two points a; and ay such that they both have empirical depth D, (j,x0) but lie on the
opposite side of the center. Half of the distance between these two points (i.e. |a; — a2|/2) is taken
as an estimate for the re-scaled Mahalanobis distance v;{D(j,x¢)} /&’ E;a. The following theorem

establishes the consistency of this estimate under appropriate condition.

Theorem 5.2 : Suppose that X has an elliptically symmetric density with location parameter u
and scatter matriz X. Let §, be the empirical depth of an observation x with respect to a data cloud of
n i.i.d. observations from the same distribution as that of X. Also, define &y av.n as the p-th (0 < p < 1)

empirical quantile of o X for some o with |la|| = 1. Then, as n — oo, (&1-6,,an — &5,,an)/2 &5

{(x— 1) =7 (x — W}/2Va' Sa.

This estimation procedure can be repeated using a number of different directions a1, a, ..., ag
and the average of these estimates can be taken as the final estimate '[J(()j ) for the re-scaled Mahalanobis
distance vV = Aj vi{D(j.%0)}, where X\; = DR \as'Zjas/S. Our empirical study suggest that
the final classifier is not much sensitive to the choice of ay’s. For all data analytic purposes in this
article, we have used S = d, where a,’s are taken as the unit vectors along the co-ordinate axes. It
should also be noted that the form of this new depth based classifier remains invariant under such scale
transformation and only the constant terms C4, Co (as described in the previous section) get changed
to Cf,C3, where C5/CF = (A /A2)9Cy/Cy. Not only for xq, we estimate the re-scaled Mahalanobis
distance at each data point using leave-one-out (leaving out that particular data point) method. In this
way, a number of bivariate observations Vi1, Vig,...,V1,, and Vo1,Vas, ..., Vo, are obtained, where
(1) 52 (1) )
Ji o0 Vg Jgi 2 g
the centers of the first and the second populations. Using ©

Vii = (0 ) denotes the estimate of (v;;’,v;;”), the re-scaled Mahalanobis distances of x;; from

(7)
ji
from the j-th population (j = 1,2), we can estimate the density function (Y, say) of the re-scaled

1 = 1,2,...,n; as the observations
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Mahalanobis distance by any appropriate nonparametric methods [note that Y;(v) = A; 0j(A; v)]. If
kernel methods are used for density estimation, one has to find out appropriate bandwidth parameters
as well. Instead of using bandwidths that minimizes the estimated mean integrated square error of
a kernel density estimate, for classification problems it is better to use the largest bandwidth that
minimizes the cross-validated misclassification rate (see Ghosh and Chaudhuri, 2004a). However, to
find out these cross-validated error rates, one has to estimate the value of C* = C5/C} as well. Here,
we use leave-one-out cross-validation technique for simultaneous estimation of C* and the bandwidths.
Let h1n, and hop, be the estimated bandwidths, and T{hml and ’f;h2n2 be the kernel estimates of the
densities of the re-scaled Mahalanobis distances for the two populations. Now, we classify the future
observation xg to population-1 if and only if Y’{hlnl (13((]1))/{13(()1)}‘1*1 > C*Y Sham, (13(()2))/{13((]2)}‘1*1, where

A

C* is the estimate of C* obtained by cross-validation. From Theorem 5.2, it is quite transparent that for

7=12 f)(()j ) converges almost surely to v(()j ), Again, under some appropriate regularity conditions (see

Y ih (f)(j )) converges to T ;(vg) as well. Therefore, suitable estimates
nj

of C* should lead to misclassification rates close to the optimal Bayes risk.

Proposition 5.1 in the Appendix)

For classification problems with more than two-populations, we adopt a similar strategy to find

out f)(()j ) and 'f}‘fhj (f)((]j )) for j =1,2,...,J. Then, one can construct the new depth based classifier of
nj
the form
dp-(x0) = argmaxC; T3, @) e
The error rate of this classifier depends on J — 1 independent parameters Cy/C1,C3/Ch, ..., C;/Cy,

and by minimizing this error rate over those parameters we can obtain the final classifier.

Unlike the maximum depth classifier, the performance of this classifier does not get affected by
deviation from location shift model or violation of monotonic nature of the density functions, and
it works for more general models, where the prior probabilities may or may not be equal. Density
estimation using depth (see also Fraiman, Liu and Meloche, 1997) requires only the one dimensional
densities to be estimated, and just like the projection pursuit method it helps to avoid the problem of
sparsity in higher dimensions. Further, it makes the convergence of the density estimates faster than
that in d-dimensional kernel density estimation. However, it is computationally difficult to minimize the
error rate simultaneously with respect to C1, Co, ..., C; as well as bandwidth parameters hy, ho, ..., hJ.
Instead, one may split the multi-class problem into a number of two-class problems taking each pair of
classes at a time and proceed in the same way as before. Then, results of these pairwise comparisons
may be combined by the method of majority voting (see e.g., Friedman, 1996) to arrive at the final

classification.

6 Numerical results

In this section, we use some simulated and benchmark data sets for further illustration. Along with the
results of the proposed new classifier (henceforth called H D*) based on half-space depth, the perfor-
mance of LDA and QD A are also reported for proper evaluation of this classification methodology. For
simulated examples, Bayes errors are reported as well. Performance of the nearest neighbor classifier is

given for the real data set to facilitate comparison.
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6.1 Simulated examples on unequal prior cases

For simulation experiments, we consider two dimensional problems only. We choose the same two-
dimensional examples with normal and Cauchy populations as discussed in Section 4.1, where the two
competing populations satisfy a location shift model. But this time, we use unequal priors m; and
1 — m; for the two competing populations. For each experiment, the reported results (see Table 6.1)
are based on 100 simulations as before. Like the equal prior case, LD A led to the best performance in
the case of normal distributions while error rates of QDA and H D* were also fairly comparable. In the
case of Cauchy distribution, the classifier HD* outperformed LDA and QD A like the maximum depth

classifiers considered earlier.

Distribution | g | w1 | Bayes risk n LDA QDA HD*
0.6 23.11 100 | 23.52(0.14) | 23.59(0.14) | 25.07(0.17)
1 200 | 23.24(0.12) | 23.30(0.13) | 24.39(0.14)
0.7 20.42 100 | 20.72(0.13) | 20.89(0.14) | 22.87(0.17)
Normal 200 | 20.56(0.11) | 20.56(0.11) | 22.04(0.14)
0.6 7.65 100 | 7.89(0.08) 7.95(0.05) 8.73(0.12)
2 200 | 7.65(0.09) | 7.71(0.09) | 8.17(0.09)
0.7 7.01 100 | 7.15(0.09) 7.21(0.08) 8.29(0.13)
200 | 7.11(0.08) 7.14(0.09) 7.72(0.10)
0.6 28.89 100 | 40.23(0.04) | 45.92(0.81) | 33.38(0.30)
1 200 | 40.17(0.03) | 49.16(0.89) | 32.56(0.21)
0.7 25.01 100 | 30.34(0.04) | 40.45(1.48) | 30.72(0.28)
Cauchy 200 | 30.16(0.03) | 44.53(1.69) | 29.48(0.21)
0.6 18.77 100 | 39.53(0.17) | 45.86(0.92) | 22.19(0.24)
2 200 | 40.16(0.04) | 48.25(0.94) | 20.90(0.18)
0.7 16.70 100 | 30.51(0.06) | 40.97(1.55) | 20.82(0.24)
200 | 30.26(0.03) | 44.79(1.75) | 19.66(0.19)

Table 6.1 : Misclassification rates (in %) on elliptic distributions when 7; # 72 (dimension = 2)

6.2 Examples with equal priors but different scatters and shapes

As we have already pointed out, unlike the maximum depth classifiers, HD* can work well even when
the competing populations have different shapes and scatter matrices. Here, we consider some example
of that kind to illustrate the utility of the classifier HD*.

We begin with some examples, where the two elliptic populations differ only in their location and
scatter parameters. Let us consider the two-dimensional examples with normal and cauchy distributions
as discussed in Section 3. The location parameters of these distributions are chosen as before with y =1
and 2, but this time the we take different scatter matrices (1 = I and 39 = 4I) for the two populations.
Each experiment is carried out 100 times as before and the results for different classification methods
are reported in Table 6.2. Since the optimal class boundaries are quadratic, as it is expected, QDA
outperformed the other classifiers when the underlying distributions are normal. The classifier H D*,
in these cases, performed significantly better than the maximum depth methods, and it could nearly
match the performance of QDA when we have relatively larger training samples. Once again, for cauchy

distribution, depth based classification procedures outperformed the traditional approaches.
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Distribution | x | Bayesrisk | n LDA QDA SPD HD SD HD*

1 22.03 100 | 30.53(0.15) | 22.40(0.13) | 37.03(0.32) | 36.85(0.32) | 37.20(0.31) | 28.24(0.36)

Normal 200 | 30.21(0.15) | 22.23(0.13) | 36.29(0.26) | 36.18(0.25) | 36.38(0.26) | 25.81(0.27)
2 13.31 100 | 16.24(0.11) | 13.56(0.11) | 19.85(0.26) | 19.71(0.26) | 20.27(0.26) | 16.47(0.24)

200 | 16.11(0.10) | 13.47(0.10) | 19.51(0.18) | 19.39(0.19) | 19.48(0.18) | 15.22(0.20)

1 30.92 100 | 44.93(0.76) | 47.64(0.32) | 40.50(0.35) | 40.62(0.37) | 41.03(0.39) | 36.07(0.31)

Cauchy 200 | 45.39(0.76) | 48.27(0.21) | 40.27(0.23) | 40.34(0.25) | 40.50(0.26) | 33.98(0.22)

2 22.27 100 | 38.40(0.11) | 46.94(0.37) | 29.98(0.38) | 30.39(0.40) | 30.62(0.38) | 27.82(0.27)

200 | 39.66(0.11) | 48.61(0.23) | 29.82(0.29) | 30.18(0.30) | 30.37(0.32) | 25.83(0.17)

Table 6.2 : Misclassification rates (in %) for elliptic distributions with ¥; =1, ¥ = 4L

Advantage of the classifier H D* becomes more evident when the competing populations are of very
different shapes. Here, we consider an example with two classes, where both populations are distributed
as N5(0,0,1,1,0) but the second one is truncated at x? + 23 > 4. Though both the populations are
elliptically symmetric, they have very different structure. Clearly, the optimal class boundary for this
problem is 22 + z3 = 4. To study the performance of different depth based methods, we generate equal
number of observations from the two classes to form a training set and a test set each of size 1000. We
generate 100 such samples and use different classifiers to classify them. Average test set error rates over
these 100 trials and their corresponding standard errors are computed for different methods. In this
example, QDA led to an average test set error rate of 9.87% but LDA and the three maximum depth
classifiers misclassified nearly 50% of the test set observations. The classifier HD* performed better
than these classifiers. It could lead to an average test set error rate of 8.31% with a standard error
of 0.06%. When the normal populations are replaced by Cauchy distributions, along with LDA and
maximum depth classifiers, QDA also failed to capture the optimum class boundary. But, even in that

case, the classifier HD* performed well and it could nearly achieve the optimal Bayes risk.

Bayes risk LDA QDA SPD HD SD HD"
Truncated Normal 6.77 49.59(0.16) | 9.87(0.09) | 49.82(0.03) | 50.06(0.04) | 50.07(0.04) | 8.31(0.06)
Truncated Cauchy |  22.36 | 46.31(0.63) | 48.46(0.14) | 49.83(0.03) | 49.98(0.04) | 50.10(0.04) | 25.08(0.23)

Table 6.3 : Misclassification rates (in %) when competing populations have different shapes.

6.3 Results on biomedical data

We now consider the “biomedical data set” (see Cox, Johnson and Kafadar, 1982) to compare the
performance of different classification methods. This data set (available at CMU data sets archive)
contains information on four different measurements on each of the 209 blood samples (134 for “normals”
and 75 for “carriers”). Out of these 209 observations, 15 have missing values. We have removed those
observations and applied the classification methods on the remaining 194 cases (127 for “normals” and
67 for “carriers”). Biomedical data does not have separate training and test sets, and we formed these
sets by random partitioning of the data. This partitioning was carried out 250 times to generate 250
different training and test samples. In each case, 100 observations from the first group and 50 from
the second were chosen randomly to form the training sample, while the rest of the observations were
used as the test set. Average misclassification rates for different classifiers over those 250 samples are

reported here along with their corresponding standard errors. For our experiment, we took the sample
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proportions of the two classes as their prior probabilities. Since the priors are quite different, maximum

depth classifiers were not used for classification.

In this data set, LD A and QD A led to error rates of 15.75% (S.E.=0.32%) and 12.26% (S.E.=0.21%)
respectively. HD* classifier could achieve an error rate 13.98% with a standard error 0.31%. The usual
k-nearest neighbor classifier based on Euclidean distance and cross-validated estimate of k£ had an error
rate 13.22% (S.E.=0.27%). Here also we applied the nearest neighbor method after standardizing the
observations by pooled dispersion matrix. On this standardized data set, the nearest neighbor method

led to a worse misclassification rate =16.26% with a standard error =0.30%.

7 Concluding remarks

Among the maximum depth based classifiers discussed in this article, SPD seems to have some definite
advantages. Not only it requires less computation but also gets less affected by the “problem of zero
depth” pointed out in Section 3 for high dimensional data. In most of the examples in Section 4, SPD
led to better performance than the other maximum depth classifiers in equal prior problems. Further,
compared to the performance of other well-known nonparametric methods like nearest neighbors and
classification trees, maximum depth classifiers, especially the SPD classifier, led to fairly satisfactory
performance in all the data sets that we have analyzed. From the numerical results, it seems that SPD
classifier has the potential to be used as a computationally efficient robust alternative to many traditional
methods of discriminant analysis. However, when the distributions of data in competing populations

have very different shapes, all of the maximum depth classifiers may have very poor performance.

This article also throws some light on possible generalization of depth based classifiers for unequal
prior cases. The classifier HD* based on half-space depth is computationally more expensive than
maximum depth classifiers. But HD* is more flexible in nature and requires less assumption on the

data distributions.

Before we finish, we would like to address the issue of computational cost for the classifier HD*.
It involves two major computational steps : (i) depth computation and estimation of re-scaled Maha-
lanobis distance for all observations (i) kernel density estimation and simultaneous estimation of opti-
mum bandwidth pair (h1, hs) and the corresponding cut off value C* by leave-one-out cross-validation.
Consider now the training sample sizes ni,ng,...,ny such that n = ny; + ..., ny, and we assume n;/n
remains bounded away from zero as n tends to infinity for all 1 <4 < J. On a d-dimensional data set,
use of available algorithms for exact depth depth computation require O(n%logn) calculations (see e.g.,
Rousseeuw and Ruts, 1996; Rousseeuw and Struyf, 1998) to complete the first step mentioned above.
For d > 2, we have used an approximate algorithm for depth computation, which has been described
in detail in Ghosh and Chaudhuri (2004), and this reduces the computational cost significantly. It is
an iterative algorithm, and for each observation it requires O(n) calculations to perform one iteration.
For the second step mentioned above, one has the evaluate the misclassification probability for varying
choices of bandwidth pairs (hy,h2) by leave-one-out method. For a given value (hq,hs), it requires
O(n?) computations in a two-class problem to calculate the misclassification probability in a leave-one-

out method. Then, one has to repeat this computation of misclassification probability over different
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choices of bandwidth parameters (varying over a grid of values of h; and hs) to find out the optimal
bandwidth parameters and the cut-off value C*. For a J class problems, this has to be carried out
J(J —1)/2 times taking all possible pairs of classes. For the biomedical data set with two classes, a
Pentium-4 processor took less than four minutes to complete all those above mentioned operations when

a search over 100 x 100 values of (hi, hs) was used for finding the best pair of bandwidths.
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Appendix : Proofs

Proposition 2.1 : If the density f(x) of a spherically symmetric distribution (in dimension > 2) is

strictly decreasing in distance from the center of symmetry, so is the spatial depth.

Proof of Proposition 2.1 : Without loss of generality, we can take the origin as the point of sym-
metry. As f is spherically symmetric, it is easy to see that the points at the same distance from the
center have the same spatial depth since it is invariant under orthogonal transformation. Now, choose
two points x; and xo such that [|x1]] < ||xo|l (i.e. f(x1) > f(x2)). Because of spherical symmetry,
without loss of generality we can take these points on the same co-ordinate axis. Let x; = (£1,0,...,0)
and xy = (t,0,...,0) where |t;| < |ta]. Next, notice that for any observation x(!) = (z1,z9,...,zq),
it is possible to find three other points x(?) = (2, —z9, —z3,..., —zq), x®) = (—z1,29,23,...,24)
(—x1,—x9, —x3,.. —:vd) such that f(x(V) = f(x®) = f(x®) = f(x¥), and both

<) _ |
of Z Hx X1 (x (@) ) and Z ||X

—X1||

and x( )

|| (x(i)) are vectors along that co-ordinate axis directed
— X

towards the origin with the second one having a larger magnitude. Now, integrating over all such
X(l),X(Q),X(B),X(4), we obtain HEX {W}H < HEX {W}H Hence the pI'OOf O

Some general observations regarding Theorems 2.1-2.3 : In order to prove Theorems 2.1-2.3,
first note that

|An—A|<Z7rj/ HI{Dn] J,%) > Dy, (i,%)} — HI{D;, > D(i,x)}| f;(x)dx
z;éj 19&]

where Dy (j,x) and D(j,x) are the empirical depth and population depth of x with respect to the
j* population (j = 1,2,...,.J), mj’s are the prior probabilities and f;’s are the density functions of
the respective classes. Therefore, if one can show the almost sure pointwise convergence of empirical
depth functions to population depth functions, the result will follow as an immediate consequence of
dominated convergence theorem provided that the population depth based classifiers are the optimal
Bayes classifier. Note that for HD, SD, M JD and PD, the population depth based classifiers are the
Bayes classifier whenever the populations are elliptic differing only in their location parameters. For
SV D?, if one has the additional condition § > 1, the same assertion holds (see e.g., Zuo and Serfling,
2000a). The population version of SPD leads to the Bayes classifier under the condition of location

shift and spherical symmetry.
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Proof of Theorem 2.1 : Results on uniform convergence of the empirical versions of HD, SD, M JD
and PD are well known in the literature (see e.g., Nolan, 1992; Donoho and Gasko, 1992; Liu, 1990;
Liu and Singh, 1993; Zuo and Serfling, 2000b), and the theorem follows from that. O

Proof of Theorem 2.2 : Uniform convergence of the empirical version of spatial depth to its population
analogue follows from the work of Kolchinskii (1997) and Serfling (2002), and that proves the theorem.
O

Proof of Theorem 2.3 : Since the populations satisfy the location shift model, it is not necessary
to have the term |§J|1/2 in the denominator of the expression of SV D%, and it can be ignored. Now,
under the assumed condition, it follows from the result on U-statistic that for any given x, the empirical

version of SV D? converges almost surely to its population counter part. This completes the proof. O

Proof of Theorem 4.1 : Note that under the given conditions the population depth based classifiers

turn out to be the optimal Bayes classifier, and A can be expressed as
J

A=J! Z P{arg max D(k,X) # j when actually X originates from the j** population }
7=1

(i) (The case of HD) : From Hoeffding’s (1963) lemma for i.i.d. random variables, for any fixed x, [

and for every € > 0, we have

A

Here, the inside probability (P) denotes the probability with respect to the distribution of X; ~ f;,

*121{1 xji — x) > 0} — P{l' (X; — x) > 0}

> e} < 2e72€ for j=1,2,.....

the outer probability (P) is with respect to the distribution of all the x;;’s, and x is fixed. Now, the
set of hyperplanes {X : I'(X —x) = 0} in R? with varying | has VC dimension d (see e.g., Pollard,
1984; Vapnik, 1998). So, the sets of the form {X : I'(X —x) > 0} have polynomial discrimination with
d being the degree of the polynomial. Therefore, using results on probability inequalities on such sets
(see e.g., Pollard, 1984), for j =1,2,...,J, and every € > 0, we get

{sup

supnIZI{l Xji — X )>0}—supP{l( j—x) >0}
=1

121{1 xj; — %) > 0} — P{l' (X; — x) > 0}

2
> e} <2 n“;’le_Q"J6 .

Again, > €

:>s1;p 12:1'{l xji —x) > 0} — P{'(X j—x) >0} >e

Therefore, P{‘Dn]. (4,x) — D(j,x)‘ > e} <2 n;-ie*Q"J‘rZ. Now, assume that D% (x) = U mlgl}{D(
ji
D(j,x)} > 0 and choose € = D% (x)/2.
P{Dy (x) >0} > P{|Dy;(j,x) — D(j,x)| < D°*(x)/2 for every j =1,2,...,J.}
J

> Hmax{O, 1-— Zn;-ie*"f[Dm(x)]Q/?} = B {D" (x)},say.
7j=1
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Clearly, f5{D" (x)} > 0 and P{D% (x) < 0} < 1— B5{D% (x)}

AMK

~ J(Ap—A) = / P{DY(x) < 0} f;(x)dx

>0

<
Il
—

~—

— Ba{D" (%)} f;(x)dx

AN
-M“

<
Il
-

D% (X)>0

(77) (The case of SD) : The sample version of simplicial depth is a U-statistic with a bounded kernel
function. Therefore, using Hoeffding’s inequality (see e.g., Hoeffding, 1963; Serfling, 1980) we have

P{‘Dnj (j,x) — D(j, x)‘ > e <272/ for every € >0 and j=1,2,...,J.

Now, using similar arguments and similar choice of € as used in the case of HD above, we get

J J

Han-2) <Y / [1 - B DY () Nf(x)dx, for Fa(t) = [[maa{o, 1 - 2e-lms/ a1 2y,
=1 DOJ(X) j=1
(i73) (The case of SPD) : For the ease of notation, let us define z; = (x — x;;)/||x — x| for
"

J
i=1,2,...,nj and Z = (x — X)/|[x — X||, where X ~ f;. Also define z,, = %ZZZ and py, = E(Z).
i=1
Since ||Zy, || and [|pg|| both are positive, we have

7
where z,, (k) and pg(k) are the k" components of Zn; and pg respectively. Now, for every k =
1,2,...,d, we have

7
As 7y, (k) is an average of 4.i.d bounded random variables (bounded between -1 and 1), using Hoeffding’s
7
= P{IDy,(7.x) = D(i.x) > e} = P

Now, using similar arguments and similar choice of € as used in the other two cases, we obtain

- )| > /d}

120, [| = [l 2]

>e} <§:1P{z$l (k)

(k) - pz(k)‘ S e /2d} since [z, (k) + pg (k)] < 2.

2, () - 0| > @/} < P {Ja,

lemma we get

Zn, (k) — Nz(k)‘ > 62/2d} < 9¢ My /84

12, [| = [l 2]

> e} < 2d e~ i€ /8,

d J
J(An — Z / [1— BH{D% (x)}]f;(x)dx, for Bf(t) Hmax{O 1_ 24 e—nit*/8d? ).
= D% (X)>0 j=1

O

Proof of Theorem 5.1 : Let p; and X; be the location parameter and the scatter matrix of the §th

) 1/2
population which has a density function f;. Define R; = {(X] - ;) Ej_l(Xj — uj)} / , where X; ~ f;.
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When, f; is elliptically symmetric, the distributions of R; is given by (see e.g., Fang, Kotz and Ng, 1989)

/2

where 7; = {(x — uj)lﬁj_l(x - uj)}l/Q, the Mahalanobis distance of x from p;. Clearly, ;f;(x) >
mifi(x) & w272 gj(rj)/rj‘-lfl > 1|2 712 0i(r) /!, and one should also notice that in the case
of elliptic populations, the Mahalanobis distance r; is a function of population depth D(j,x). Let us

define r; = v;{D(j,x)}. Now, it is easy to see that the optimal Bayes classifier can be given as
dp(x) = argmax;0;{D(j,x)}, where 0;(t) = 12517 0w (0} v (03
O

Lemma 5.1 : Suppose that X follows an elliptic distribution G, and X = pu + =Y/ 2U, where p and X
are some location and scatter parameters, and U is a spherically distributed random vector. Then, for

any given x and any given direction a (||| = 1), we have
[€1osa —Gal/2={(x —p) =7 (x — )} /*Va'Se,
where § = HD(G, x), the half-space depth of x with respect to G, and §, o is the p-th quantile of a'X.

Proof of Lemma 5.1 : Half-space depth of x with respect to G can be expressed as

=1-—su a/ —X =1-su a’(X_“) aI(X—N)
HD(G,x) =1 apP{ (X—-x)<0t=1 aPP{ Vo Sa < m}

It is easy to check that X ) i gigtributed as U with [lI]| = 1. Therefore,

Vo'Sa
§ = HD(G,x) = 1—supF lw
a \//m
SR U7 R (OS]
where F is the distribution function of I'U for every I with |/I|| = 1. Now, from the definition of &, o,

it is quite clear that

/ _ Epa — a'p _
P{a X < fp,a} =F <4/—a,2a > p

Taking p=1—46 and p = 4, we get

F <7§15—§;10;“> =1-6=F [{(x — u)’E*I(x — u)}l/Q] and

F(Samt ) 5ot p - ) 2 - W) = P [ ) B - ]

Now, since F is strictly monotonic, we have Ssa AH_ Go AR {(x—p) = N x—p)}!/?
va'Sa Vo' Sa
= [&15a —é5al/2={(x—p) =7 (x - p)}/*Va'Sa. O
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Lemma 5.2 : Suppose that ¢, is the unique solution of F(x) =p (0 < p < 1), and (5, is its empirical
version based on F),, the empirical distribution function. Also assume that § and §,, are the half-space

depths of an observation x with respect to F' and F,,, respectively. Then, as n — 0o, [(5,.n — (5 L50.

Proof of Lemma 5.2 : Since (, is a continuous function of p, for every ¢ > 0, there exists an n > 0
such that |6, — 0| < n = |[{5, — (5| < €/2. Therefore, P{|(5, — (5| > €/2} < P{|o, — 8] > n} <
onde=2n1” Now, from a theorem in Serfling (1980, pp. 75-76), it follows that for every d, (0 < d, < 1),
P{|¢s,m — Con| > €/2} < 2e~2M%  where a, = min{ F((s, + €/2) — 0n, 0n — F((s5, — €/2)}. Therefore,

P{|Cs,m — Cs| > €} < 2nde 27 4 9¢2nan,
From the results on convergence of empirical half-space depth (also follows from the proof of part
(4) of Theorem 4.1), it is easy to see that &, > § as n — co. So, one can always have an integer ng
and an interval I = [§ —,d + ] (0 < 0 —v < d + v < 1) such that §, € I for all n > ny. Notice that

min a, > %nf [min{F({; +€/2) —t,t — F(¢; — €/2)}] = m (say) > 0. Hence, for all n > ny we have
€

P{|Cs, . — Cs| > €} < 2nde 27 4 9¢2mm?
Now, the result follows from Borel-Cantelli Lemma. O
a.s,

Proof of Theorem 5.2 : From Lemma 5.2, it is easy to see that &, an &5 &0 and $1-5, an —
§1-5,a0, Where &, o is the p-th quantile of a'X. Now, from Lemma 5.1, it follows that

(E1-s50,00m — Ebr0en) /2 25 (G150 — E.0) /2 = {(x — p) 7 (x — p)}/*Va/ Tar. 0
Proposition 5.1 : Suppose that x1,xo,...,x, are observations from G (as described in Lemma 5.1),
and &) o and &, o ,n have the same meaning as in Theorem 5.2. For some given a (||a|| = 1), define

vi ={(xi—p) = (xi—pw)}'?Va' Sa and 4 = (§1-5,, .00 — &
the empirical half-space depth of x;. Similarly, define vy and @y for a new observation xy. Assume that
v;’s have the density function T, and define its kernel density estimate 'f}’;n (v) = ﬁ P K{(v—=0;)/hn}
for some kernel function K and bandwidth h,, > 0. Further, assume that ¥, K and h, satisfy the
following conditions :-

(%) T has bounded third derivative.

(4 ) K is symmetric, it has bounded first derivative, and it satisfies [ [¢|> K?(t)dt < oo.

(%) hp, — 0 and nh, — oo as n — oc.

an)/2fori=1,2,...,n, where ¢;, is

in s

Then, Y;‘Ln (0p) converges to Y (vg) in probability as n — oo.

Proof of Proposition 5.1 : Define T, (v) = —— " | K{(v—v;)/hy}. From the definitions of T}, (.)

~ nhn

and Y;‘ln(), it is easy to see that, for every € > 0,
P{Th, (00) = T, (0)] > €} < nP{K (o0 — 01)fha} — KA (5 — 01)/hn}] > hue}.

Now, K{(vo—v1)/hn}— K{(0o—01)/hn} = % (vo —v1) — (9 — 1) YK (v/hy), for some v lying between
(vo — v1) and (6 — 91). Therefore, when K'(-) is bounded by M, we have

P{|Th, (vo) = T (i0)| > €} < nP{|(vo — v1) — (90 — 01)| > hyMe} < 2nP{|vg — G| > hnMe/2}.

22



Now, using Lemma 5.1, it is easy to verify that |vg — 99| < %{|§57a — &pan| + 1&—s.a — &i—6,,aml-

Therefore,

P{lvo — 0| > hnMe/2} < 2P{|¢5.0 — &5 cum| > haMe/2} < 4(nde hur"/2 4 gmnhim?/2)

for some n > 0 and m > 0 as chosen in Lemma 5.2. This implies that

P{|Th, (vo) — T, (60)] > €} < 8(nd+le ™han*/2 4 gmnhim? /2y

and hence |'i';§n (t0) — Th, (v0)| L5 0asn - . Now, under the assumed conditions, the expectation
and the variance of Tj,_(vg) are of the form (see e.g., Ghosh and Chaudhuri, 2004)

E{Yy,(v0)} = T(vo) + O(hy) and Var{Ty,(v)} = O(n~'n;"),

which implies that [T, (vo) — T(vo)] L5 0as n — oco. Therefore, Y,’;n (1g) converges to Y(vg) in

probability. O
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