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On Visualization and Aggregation of
Nearest Neighbor Classifiers

Anil K. Ghosh, Probal Chaudhuri, and C.A. Murthy

Abstract—Nearest neighbor classification is one of the simplest and most popular methods for statistical pattem recognition. A major
issue in k-neamest neighbor classification is how to find an optimal value of the neighborhood parameter &. In practice, this value is
generally estimated by the method of cross-validation. However, the ideal value of & in a classification problem not only depends on the
entire data set, but also on the specific observation to be classified. Instead of using any single value of &, this paper studies results fora
finite sequence of classifiers indexed by . Along with the usual posterior probability estimates, a new measure, called the Bayesian
measune of strength, is proposed and investigated in this paper as a measure of evidence for different classes. The results of these
classifiers and their comesponding estimated misclassification probabilities are visually displayed using shaded strips. These plots
provide an effective visualization of the evidence in favor of diffe rent classes when a given data point is to be classified. We also propose
a simple weighted averaging technigue that aggregates the results of different nearest neighbor classifiers to arrive at the final decision.
Based on the analysis of several benchmark data sets, the proposed method is found to be better than using a single value of &

Index Terms—~Bayesian strength function, misclassification rates, multiscale visualization, neighborhood parameter, posterior

probability, prior distribution, weighted averaging.

1 INTRODUCTION

IN supervised dassification problems, we usually have a
training sample of the form {(x..c.)in=1.2,... N},
where the x,5 are the measurement vectors and the s are
the class labels of the training sample observations. Based on
this available training sample, one forms a finite partition
b T o TR X; of the sample space X' such that an observa-
tion x is to be classified to the jth populationif x £ ;. There
are some well-known parametric [17], [31] and nonpara-
metric [37], [11], [23] methods in the existing literature for
finding such partitions. Nearest neighbor technique [12], [8],
[10], [9] is one of the most popular nonparametric methods
for this purpose.

In order to classify an observation by the knearest
neighbor method (& NN), we assume the posterior probability
of a specific class to be constant over a small neighborhood
around that observation. Generally, a closed ball of rad fus v is
taken as this neighborhood, where r. is the distance between
the observation and its kth nearest neighbor. We classify an
observation to the class which has the maximum number of
representatives in this neighborhood. The parameter &, which
determines the size of this neighborhood, can be viewed as a
measure of the smoothness of the posterior probability
estimates and, in the future, we will refer to it as the
nefghborhood parameter. A discussion on the bias and the
variance of the posterior probability estimates for different &
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is available in [16], [14], [11]. The performance of the nearest
neighbor classification rule depends heavily on the value of
this neighborhood parameter k. Existing theoretical results
[29], [8], [16], suggest that & should depend on the training
sample size N and it should vary with NV in such a way that
k— ocand k/N — (las N — oc.Inpractice, the optimalvalue
of & depends on the available training sample observations
and one generally uses resampling techniques like cross-
validation [28], [40] to determine it. However, the optimal
value of kis case specific and it depends on the observation to
be classified in addition to depending on the competing
population distributions. Therefore, in a classification pro-
blem, instead of fixing the value of &, it may be of more use to
look at the results for different neighborhood parameters and
then combining them to come up with the final decision.

In this paper, we study classification using different
neighbnrhmn:l parameters simultaneously. Broadly speak-
ing, this paper has two major components: In Section 2, we
propose some discrimination measures to study the strength
of theclassification results for different kand developa device
for visual presentation of these results using shaded strips.
The resulting plots provide a visual comparison between the
strength of evidence in favor of different classes for a spedfic
data point in the sample space. They are useful, especially in
higher dimensional spaces, to visualize the distribution of
data points in the training sample from different populations
in neighborhoods of varying sizes of a test case. It may also
help to make the final decision about classification. Such a
visual apprnach in discriminant analysis is also available in
[18] and [19], where the authors used a range of values for
bandwidth parameters of the kernel density estimates of
different competing classes. Earlier authors [6], [20] used
similarideastovisualize sigﬂiﬁcant features in univariate and
bivariate function estimation problems.

The other major components of the paper are introduced
in Section 3 and concern the aggregation of different nearest
neighbor classifiers. Here, we use a weighted averaging
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technique to aggregate nearest neighbor classifiers with
varying choices of k. The weights of different classifiers are
determined using the corresponding estimated (b}r leave-
one-out cross-validation) misclassification rates. Well-
known aggregation techniques, like bagging [4], boosting
[38], [15], and arcing [5], also adopt similar approaches for
final classification. Recently, Paik and Yang [34] proposed a
similar method for aggregating nearest neighbor classifiers,
where the authors used likelihood scores to determine the
weights. Alpaydin [2] and Holmes and Adams [25], [26] also
developed some aggregation techniques for combining
nearest neighbor classifiers. Details of our aggregation
methods are given in Section 3 and their performance on
some benchmark data sets is reported in Section 4. In
Section 5, we discuss the computational complexities of our
proposed methods. Section 6 contains a brief summary of the
work and related discussion.

2 VISUALIZATION OF /-ININ CLASSIFICATION
REsSULTS

Given an observation x, let x'"/ be its kth nearest neighbor
and rt =plx, x"") be the distance between them. A
k-nearest neighbor rule classifies the observation x to the
jth population if

N
Zf{p{x1 xl.'_:l L Thyln = .-i:}

=1
N
2 Zf{ﬂ{xxuj <G =i Wi#7,
=1

where I{-} denotes the usual 0-1 valued indicator function.
Ties can beresolved by gradually shrinking or extending this
neighborhood. Euclidean metric is one very popular choice
for the distance function p. Of course, one may use
Mahalanobis distance [30] or any other flexible and adaptive
metric [13], [22] as well. In the case of Euclidean distance, for
consistency of the nearest neighbor classifier, one allows & to
vary with ‘N such that k — ocand k/N — (as N — oc [29],
[8], [16]. Under the same conditions, one can also establish
this consistency in the case of Mahalanobis distance when
consistent estimates are used for class dispersion matrices.
Fukunaga and Hostetler [16] and McLachlan [31] dis-
cussed the importance of finding an optimal value of & for
moderately large and small sample sizes. This value is
generally estimated from the training sample using cross-
validation techniques. However, in aclassification problem, a
single value of & often fails to give the true picture for
classification of all data points. For instance, if k=1 is
selected as the optimal value by the method of cross-
validation (which may happen, in practice), each observation
will give posterior estimates of 0 or 1, which does not give any
idea about the strength of clawlﬁcah{m and the related
statistical uncertainties. Analysis using multiple values of &
becomes helpful in such situations. In this paper, instead of
estimating the optimal value of & we shall study the
performance of different nearest neighbor classifiers indexed
by k simultaneously to build up a more informative
discrimination procedure. For a fixed value of & one can
use any suitable distance function to identify the neighbors
and to determine which one of the J classes is the most
favorable. We now introduce some measures for the strength
of this evidence for a specific test case in favor of different
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Fig. 1. Scatter plot of salmon data.

competing classes and for different values of the neighbor-
hood parameter.

2.1 Posterior Probabilities for Different Populations

Given a data point x and a given value of the neighborhood
parameter & the proportion of observations > I{p(x. %) <
ri.c = j1/k is taken as an estimate §. =p(j|x) for the
posterior probability of the jth class (j = 1,2,.....J). In this
paper, to make the notations simpler, wedrop the argument x
since the dependence on x is obviousin all cases. Forany fixed
value of k, the estimated posterior probabilities determine the
favorable class and they also give an idea about the strength of
discrimination.

Consider the following example of salmon data taken from
[27]. It consists of 100 bivariate observations on the growth
ring diameter (freshwater and marine water) of salmon fish
coming from Alaskanor Canadian water. A scatter plot of this
data set is given in Fig. 1, where dots “(-)" and crosses (= )"
represent the observations coming from the Alaskan and the
Canadian populations, respectively. We chose three observa-
tions at three different parts of the data (marked by “=" in the
figure ) for which the classinformationis known andclassified
them using the remaining observations. Observation “A"
belongs to the Alaskan population, “B" and “C" belong to the
Canadian. Estimated dass boundaries for linear and quad-
raticd iscriminant analysis are also shown inthe ﬁgure In this
figure, one can notice that the evidence visible in the scatter
plotin favor of the true dass is much stronger in case of "C”
than that in the other two cases. Observations “A"” and “B”
belong to two different populations, but they arelocated near
the class boundary. So, one should expect to have three
different behaviors of the classification methodo logy for these
three observations. Using the simple Euclidean distance
function and leave-one-out cross-validation method on this
data set, we obtained & = 7 as the optimal neighborhood
parameter, which failed to exhibit )Ene difference in the
strength of cassification. It dassified observations “A" and
“C" correctly, but led tothe same posterior estimate (6/7) for
the true classes. Moreover, observation “B" got misdassified
by this method.

Using multiple values of kin this case, we obtained amuch
better result. The results of this multiscale analysis for these
observations are given in Fig, 2, which shows the gray-scale
values of posterior probabilities. Here, “white” and “black”
colors represent the posterior probabilities 1 and 0, respec-
tively. Differences in the classification results and their
strength are quite evident from this figure. It clearly suggests
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Fig. 3. Shaded strips describing Bayesian strength functions for different values of &.

that the strength of the evidence in favor of the true class is
much higher in the case of observation “C” than those in the
other two cases, as one would normally expect from Fig. 1.
Moreover, the plots forobservations “A” and “B"” show some
interesting features. For small values of & class-1 (Alaskan
salmon) has an edge, but, for higher values of k, dass-2
{Canadian salmon) seems to be the winner. Both for “A” and
“B,” throughout the figure, we observe very little difference in
the posterior probability estimates of the two classes, which
gives a clear indication of borderline cases.

2.2 A Bayesian Measure for Strength of Evidence
for Different Populations

Posterior probabilities used in nearest neighbor classification
are estimated based onthe assumption that the probability of a
specific class is fixed and nonrandom in a neightmrhmn:l
around a specific point x. Instead, suppose that ={p) is the
prior distribution of p = (p.pa, ..., _u,uj[E , pi = 1], where
py is the prubablllh-r corresponding to the J‘til da% Now, for
some given k, consider the &k nearest neighbors of an
observation x. If t; of these k neighbors come from the
jthclass, the multinomial distribution of te = (#,,.f2,...., ty )
[E_.L| t;, = H for a given p and & can be expressed as

HP 3

Therefore, for some fixed & and t. the conditional
distribution of p is given by the Bayes theorem

@lte | p.k) = Sl

flp| k. te) = w(p)e(te | p, kJ/[ﬁ'{P)@[t;-lp-dep-

Using this conditional distribution, we define the Bayesian
measure of strength for different populations. Clearly, one
will prefer the jth class compared to the ith one if
Plp; = | bt} > P{p = p; | &t} Following this idea,
for a given value of & the Bayesian strength function for
the jth population is defined as

Sl k=

p=mar{m m, ...,

fip |k ti)dp

i}

= Plarg maxp; = j| k.t }.

The usual estimated posterior probabilities sometimes fail
to give a clear idea about the strength of evidence in a
discrimination procedure. For instance, in a two-class
problem, the posterior estimate for one class turns out to be
onein all those situations where the neighbors come from the
same population, but certainly the strength is not the same in
all these cases. For instance, if 10 out of 10 neighbors are from
the same population, that evidence should be considered as
stronger than that obtained in a 1-nearest neighbor method.
These differences in the strength of discrimination get
captured by the strength function 5. In a two-class problem,
if the training sample observations form two perfectly
separated clusters, each consisting of observations from one
class, the posterior probability estimate for an observation
will remain one up to a certain value of k. But, the Bayesian
strength function obtained using a uniform prior distribution
on [0, 1] will keep on increasing as long as we get neighbors
from the same class.

Fig. 3 shows the gray-scale value of this Bayesian strength
function for the three observations “A," “B,” and “C," when
7(p)is taken to be the uniform distribution on [0, 1]. Uniform
prior distribution is very easy to handle, both computation-
ally and theoretically. Further, a uniform choice of prior is
unbinsed and noninformative as a prior distribution that does
not distinguish a priori between different dasses. Through-
out this paper, we use the uniform prior distribution to obtain
the Bayesian strength function. However, our empirical
study suggests that the results are not very sensitive to the
choice of the prior distribution and one may use many other
suitable priors as well.

Once again, Fig. 3 indicates stronger evidence in favor of
the true class for observation “C,"” but, for the other two cases,
we observed white as well as black shades, depending on the
values of k. The fraction of white or black areas in the shaded
strips gives us some rough idea about final classification of
these observations. One should also note that, in all these
cases, this strength function leads to sharper images by
making the plots more white or more black and mereb}r
makes it easier to visually identify the winner. From the plots
of posterior probabilities in Fig. 2, it is quite difficult to judge
which dlass isthe winner for observations “ A" and “B" but the
plots of Bayesian strength functions in Fig. 3 make, it quite
clear. In that sense, Bayesian strength function is a useful
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alternative to the posterior estimate as a visualization tool.

Some interesting theoretical properties of this strength

function are given in the following theorem.

Theorem 2.1. For some fived k, consider the k-nearest neighbor
classifier and let §; be the estimated posterior probability for
the jth (i = 1,2, ..., .J) population as described in Section 2.1,
Also, assume that w(p) is synometric in its arguments. Then,
S(i| k) = 81| k) if and only if p; > p;. Further, in a two-
class problem, S(j | k) increases with g,

From the above theorem, it is quite evident that the
posterior probability estimates and the Bayesian strength
functions are equivalent as far as &k nearest neighbor
classification of a given test case is concerned for any fixed &.
In other words, the posterior ordering of different classes is
strictly preserved in the Bayesian strength functions for
different dasses. Moreover, inthe case of binary classification,
given the value of & our strength function is a strictly
increasing function of the posterior estimate. Therefore,
Bayesian strength function does not lead to any loss of
information, butit sharpens the plots. Sharpening occurs due
to the enhancement in the difference of the discimination
measures and it increases the visual separability without
disturbing the order of the posterior estimates. In that sense,
this Bayesian strength function is a new discrimination
measure which provides an effective alternative to posterior
probability, especially for visualization purposes. The shar-
pening property of the strength function is explained well by
the following theorem.

Theorem 2.2. Suppose that, in a J-class problem, 7, 7. ..., T
are the priovs and fi, fa, ..., [y are the continuous probability
density functions for J populations. For a given x, define Py =
mifilx)/ L mifi(x) as the conditional probability of the
Jth population (j = 1,2, ... .J). Now, assume that 1) P > P;
for all j#4d and 2) k—~ ac and k,-’N—I[] as N — oo, If T{pj is
symmetric in its arguments, (i Lj—~1 and S(j| k&) —(]fur
all j # ias N — oc.

From the existing results [29], [8], [16], we know that,
under the conditions of Theorem 2.2, the estimates of the
posterior probabilities converge to the true posteriors, which
are values between 0 and 1. But, in such cases, our Bayesian
strength function converges to either 0 or 1 and makes the
evidence sharper in favor of the dass having the largest true
posterior and this is visible in the images in the correspond-
ing plots in Fig. 3.

In two-dimensional prublems, we can always get an idea
about the location of a data point from the scatter plot itself.
But, in higher dimensions, it is difficult to visualize which
points are near the population boundaries and which are
away from them. The visual display of the discrimination
measures is quite useful in such situations. It gives a visual
idea about the distribution of data points from different
classes in a neighborhood of a test case and thereby helps to
differentiate between the border line and the clear cut cases. It
is appropriate to note here that, as we look at those shaded
strips of posterior probabilities and Bayesian strength
measures and try to decide about the class to which the test
is Iikel}rtnbelnng,it leads to some kind of a visual aggregation
of the results. In asense, this visual aggregation can be viewed
as a useful supplement to the mathematical aggregation
procedure desaribed in the following section.
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3 AGGREGATION oF NEAREST NEIGHBOR
CLASSIFIERS

Discrimination measures like posterior probability and
Bayesian strength function show evidence in favor of
different classes for various choices of k& One has to
appropriately aggregate these results to arrive at the final
decision for classifying an observation. In many of the cases,
the plots of these discrimination measures give a clear idea
about this aggregated decision. However, this may not
always be the case. For instance, in the case of observations
“A"and “B" in the salmon data, we observe strong evidence
for class-1 when ks small, but, for relatively larger valuesof &,
the plot gives an indication in favor of the other class. As we
mentioned earlier, fractions of white and black areas in the
shaded strips give atentative id ea about the class to which an
observation belongs. However, to reach the final dedsion, itis
also important to know the reliability of classification results
for different values of & From the corresponding estimated
misclassification rate, we get an idea about that.

Here, we have used the standard leave-one-out cross-
validation method to estimate these misclassification rates
and plotted the estimated probabilities of correct classifica-
tion (rescaled to have a minimum value 0 and maximum
value 1) for different choices of & (see Fig. 4). This plot shows
the performance of nearest neighbor classifiers with different
neighborhood parameters, where white and black colors
indicate the lowest and the highest misclassification rates,
respectively.

A natural way to aggregate the results of different
classifiersistotake some kind of average of the discrimination
measures. Well-known classification methods like bagging
[4], boosting [38], [15], and ardng [5] also adopt a similar
strategy for aggregating the results of several classifiers.
Bagging constructs different classifiers based on different
bootstrap samples generated from the training set and
combine them using equal weights. Unlike bagging, boosting
and arcing adaptively change the weights of the training data
points for constructing the classifiers and then aggregate the
results of these dassifiers using weights based on their
misclassification rates. Naturally, these weight functions
decrease as the misclassificaion rate increases. An empirical
study on the performance of these ensemble methods is
availablein [33]. Breiman [4] pointed outthat nearest neighbor
classifiers aremore stablethanneuralnets [ 37] or dassification
trees [3] and there is not much gain in combining these
classifiers using bagging or boosting, Shalak [39] suggested
combining the classifiers only when they have a reasonable
amount of diversity among themselves. However, it should
also be noted that, in terms of misclassification rates, one
would normally expect to gain by combining classifiers and
diversity among classification rules can be viewed as a
measure of the extent to which the errorrates can be improved.
Over the last few years, there has been a revival of interest in
aggregating nearest neighbor dassifiers. Alpaydin [2] used
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the condensed nearestneighbor approach [21] and combined
a number of nearest neighbor rules developed on different
representative sets from the training sample. Ho et al. [24]
tried to build up a multiple classifier system based on dass
ranks. Recently, Holmes and Adams [2'3] [26] developed a
probabilistic framework for nearest neighbor classification,
where they combined the nearest neighbor rules by using a
likelihood-based method and a Bayesian technique. Paik and
Yang [34] used a likelihood-based weighting scheme for
aggregation of nearest neighbor classifiers.

The aggregation procedure that we adopt in this paper is
much simpler than most of these recently developed
techniques. It uses a weighted average of discrimination
measures to reach the final decision and, consequently, it is
computationally more straightforward in the sense that it
does not involve any iterative computations, like some of the
other techniques [25], [26], for aggregating nearest neighbor
classifiers. The aggregated decision rule is given by

dix) = arg |1]}1x gu{ﬁjﬂﬂﬁ,xj.

where D;{ k, x) is the value of the discrimination measure (i.e.,
the posterior probability or the Bayesian strength function)
for the jth population (at point x) and w(k) is the weight
function associated with the k-nearest neighbor classifier.
Weights should be chosen in such a way that it is higher for
those values of & which lead to lower misclassification
rate A(k), which is estimated by leave-one-out cross-valida-
tion (the estimate is denoted as A(k)). In this paper, we have
used the weight function

—J'{ Al k-Ag } ﬂ,l:, A
e 2 | Vami-zam if — 2R e o apd
VA=A =

L] otherwise,

w(k) =

where N is the training sample size and A, = ming A(k)
(see also [18], [19]). Notice that A, and A (1 — A ) /N can be
viewed as estimates for the mean and the variance of the
empirical misclassification rates of the best nearest neighbor
classifier when it is used to classify N independent
observations. The constant 7 determines the maximum
amount of deviation from A, in a standardized scale
beyond which the weighting scheme ignores the classifiers
by putting zero weight on them. Clearly, 7 = () corresponds
to the situation of putting all the weights only on those
classifiers Cp. for which A(k) = A,. Because of the choice of a
Gaussian weight function above, one does not have to
consider a value of 7 larger than 3 in practice.

Qur choice of weight function is subjective and, instead
of that, one may use many other suitable functions.
However, our empirical experience suggests that the final
result is not very sensitive to the choice of the weight
function as long as any reasonable weight function is used
that decreases with the cross-validated error at an expo-
nential rate or at a polynomial rate with a very high degree.

As discussed in [34], it is better to combine the nearest
neighbor classifiers when there are multiple values of &
leading to misclassification rates close tothe A, . Otherwise, it
is better to adopt the classification method based on the cross-
validated choice of k. Note that the weight function w(k)
automatically takes care of it.

Let us consider the example on salmon data once again.
For 7= 3, weighted averages of posterior probabilities in
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favor of the Alaskan population for the three observations
“A,""B," and “C" inFig. 1 were found tobe 0.6261,0.4146 and
0.1445, respectively, while we obtained 0.7777, 0.2808, and
0.0134 as weighted averages of Bayesian strength functions
for the respective cases. One should notice that aggregation of
both the discrimination measures could correctly classify all
three observations. However, we have already pointed out in
Section 2.1 that, if leave-one-out cross-validated choice of kis
used, the resulting classifier failed to classify observation “B"
correcthy.

4 CASE STUDIES

In this section, we use some benchmark data sets to
illustrate the usefulness of the proposed methods. Some of
these data sets were used in [2], [25] and [26] for combining
the nearest neighbor dassification rules. We have quoted
some results directly from those papers and compared the
performance of our aggregation methods with them. Error
rates for the best nearest neighbor rule (selected on the basis
of leave-one-out cross-validation) are also reported to
facilitate the comparison. Cross-validation methods esti-
mate the misclassification rates br'l.-r naive empirical propor-
tions and, as a result, it is often pmslble to have more than
one value of & that will lead to the smallest value of ﬂl[ﬁj
Since nearest neighbor classifiers assume the posterior
probability of a specific class to be constant over the entire
neighborhood, it is reasonable to consider the lowest value
of k in such cases. Throughout this section, we have used
T = 3 for aggregating nearest neighbor dassifiers. In all the
cases, we use the Fuclidean metric after standardizing the
data sets using an estimate of the pooled dispersion matrix.
This essentially leads to nearest neighbor dassification
using Mahalanobis distances [30]. For those data sets which
have separate training and test sets, we estimated the
pooled dispersion matrix using the training sample, while,
in all other cases, the full data set was used for estimation.
We have already described the salmon data in Section 2
for the purpose of illustration. Among the other data sets
analyzed in this section, description of vowel data-1is given
in [7]. Adult data can be obtained from the Delve data
archive (http: / /www.cs toronto.edu/ ~delve). Iris data, bio-
medical data, chemical and overt diabetes data (referred to
as “diabetes data” in this paper), synthetic data, and glass
data are available at the CMU data archive (http://
lib stat.cmu.edu). The rest of the data sets (i.e, Pima Indian
diabetes data, Australian credit data, wine data, and vowel
data-2) and their descriptions can be obtained from the UCI
machine learning repository (http:/ /www ics.uci.edu).

4.1 Comparison with the Cross-Validated Selection
of Neighborhood Parameter
We begin with the comparison between our aggregation
techniques and the usual nearest neighbor method, where a
single value of k (chosen by leave-one-out cross-validation) is
used for dassification. Both weighted average of posteriors
and Bayesian strength functions are used as aggregation
methods. In this section, we use only five data sets for
comparison. Results on other data sets will be reported in
subsequent sections, where we willcompare the performance
of the proposed methods with some other aggregation
techniques available in the literature. Out of these five data
sets, vowel data-1 has separate training and test samples,
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TABLE 1
Misclassification Rates (in %) for Usual and Combined
Mearest Neighbar Classifiers

Date sots Sample sz k-MI Wedghted Wiprhted
Training | Test | (eross-valid.] pesterior atrengrh

Balmon ] T 338 (0.18) 830 (0.14) | &30 015

Woel-1 ] A 17,75 (2.00) | 1893 {2.15) | 19,25 (1.16)

Doialieles ] ah TLAD [LIG] | 10047 {1150 | 1071 (0016]

Linmezical 100 04 17.61 (0.1B) | 17.10 {0.16) | 17.56 (0.17)

Adultt Azhnl 16281 | 20021 (0nd) [ 30004 {00y | 20% (0.05]

Figuras in braces are standard errars {in %) of average misclassification
rates. + We did not consider the eight calegorical variables and twao
numarical variablas which have most of the values zero and camied out
aur analysis using only the remaining four variables.

while, for all other cases, we formed the training and test
samples by randomly partitioning the data. This random
partitioning was carried out 300 times to generate 300 training
and test sets. Average test set misclassification rates over
these 300 partitions are reported (see Table 1) for different
methods along with their corresponding standard errors.
Only in the case of adult data are results based on 100 random
partitions. The sizes of the training and the test samples in
each partition are also given in the table.

Apartfromvowel data-1, in all other cases, the aggregation
methods performed better than the usual nearest neighbor
method based on aross-validated choice of & Inthe case of the
salmon data and diabetes data, both weighted posterior and
weighted Bayesian strength led to significantly lower mis-
classification rates compared to that of the usual nearest
neighbor classification. There was no significant difference
between the error rates of these two aggregation techniques.
However, in the case of the biomedical data, weighted
averaging of posteriors led to sig;niﬁcantl}r lower misclassi-
fication rates compared to the other two classification
methods. Only for vowel data-1 the performance of the usual
nearest neighbor classifier based on leave-one-out cross-
validated estimate of neighborhood parameter was margin-
ally better than the performance of the proposed aggregation
methods. But, in view of high standard errors, these
differences are statistically insignificant.
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42 Comparison with Probabilistic Nearest
Neighbor and Likelihood-Based Aggregation
Procedure

In this section, we have used some benchmark data sets to
compare the performance of the proposed aggregation
procedure with that of the usual knearest neighbor methods
{with k chosen by leave-one-out cross-validation) and other
aggregation methods suggested in [25], [26]. In [25], Holmes
and Adams developed a probabilistic framework for nearest
neighbor classification, where they proposed an aggregation
procedure based on Bayesiantechniques using Markowv Chain
Monte Carlo (MO M) methods. In another paper [26], they
developed an aggregation method based on a likelihood
function, where iteratively reweighted least squares techni-
que wasused to estimate the posterior probabilities. In both of
these papers, the authors used some benchmark data sets to
evaluate the performance of their aggregation methods. We
have taken four of those data sets for comparison. Qutof these
four data sets, synthetic data and vowel data-2 have separate
training and test sets. In these cases, we have reported the test
set misclassification rates for different classifiers. For the
other two data sets (Pima Indian data and Australian credit
data), the reported results are the cross-validated error rates.
We partitioned these datasetsinto 12and 10 folds for the Pima
Indian and the Australian credit data, respectively, as has
beendone in [25] and [26]. We have repeated this partitioning
25 and 30 times for the Pima Indian and Australiancreditdata,
respectively, and the average cross-validated error rates over
those 25 and 30 trials are reported in Table 2 along with their
corresponding standard errors. Note that this way of repeated
partitioning leads to 300 training and test set combinations
both for the Pima Indian and the Australian credit data. The
result of the probabilistic nearest neighbor method on vowel
data-2was notreported in [25], which is why we have a blank
space in the table.

In all these data sets, the perfurmance of our proposed
aggregation methods was fairlj.-r competitive with the other
nearest neighbor classifiers. For the synthetic data and the
Pima Indian data, our aggregation methods could achieve
lower misclassification rates than that of the usual k-nearest
neighbor classifier, while, in the other two cases, they have
similar error rates. When an unstandardized version of the
synthetic data was used for classification, the knearest
neighbor method with cross—validated choice of & led to an
error rate of 8,70 percent, but both the aggregation methods,

TABLE 2
Misclassification Rates (in %) for Different Nearest Neighbar Classifiers

Data NN Likelihood Proh. NIV Weighted feighted

sets {cross valid.) | (Holmes-Adams) | (Holmes-Adams) | posterior strength
Synthelic 11.70 (1.02) 8.2 5.4 9.80 (0.04) | 9.90 (0.94)
Vorwel-2 A6.75 (2.32) 48.3 A6.75 {2.32) | 16,75 (2.32)
Pima. Indian 25.27 (0.25) 23.9 21.7 2448 (0.24) | 24.64 (0.24)
Australian eredit | 13.20 [0.23) 13.3 14.7 13.16 {0.24) | 12.97 (0.23)

Figuras in braces ane standard ewars (in %) of average misclassification rales.
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TABLE 3
Misclassification Rates (in %) for Mearest Neighbor and C NN Classifiers
Diata, Sample gize f=NN Condensed NN | Condensed WIW | NN on | Weighted Weighted
gEtE Train | Test | {cross valid.) simple weiphted umion posterior gtrempth
Wowel-2 228 462 46,75 {2.32) 43.44 441005 4286 | 44670 (2.32) | 46.75 (2.32)
Iris 15 | 135 | 412 (D.11) 7.33 6.00 778 | 3.71(0.10) | 3.68 (0.10)
Wine 100 TR 105 [0.07) .15 A0 003 (145 (1L05) (.41 (0.004)
Glass | 100 | 114 | 34.59 {0.21) 30.00 28,33 9860 | 3403 (0.20) | 35.51(0.23)

Figuras in braces ane standard emars (in %) of average misclassification rales.

weighted posterior and weighted Bayesian strength, could
reduce it to 8.30 percent. These two proposed aggregation
techniquesbased on weighted averaging had nearly the same
misclassification rates in all these examples. The standard
errors indicate that the error rates of our aggregation methods
are not significantly different from the error rate of the usual
nearest neighbor classifier and that of the other aggregation
methods proposed by Holmes and Adams [25], [26]. How-
ever, our aggregation methods are computationally more
straightforward than the iterative computations required in
the likelihood-based and the probabilistic nearest neighbor
algorithms.

4.3 Comparison with Weighted C'VN Methods

Next, we compare our methods with the performance of
aggregated condensed nearest neighbor (C"NN) classifier
reported in [2]. Along with the vowel data-2, the wine data,
the iris data, and the glass data are also used for this
comparison. Vowel data-2 has separate fraining and test
sets. For the other data sets, we used the random
partitioning method to generate the training and test sets
of the same sizes as used in [2].

For each of these data sets, Alpaydin [2] used the
C'NN method on 10 representative samples taken from the
training set and combined them by some weighted aver-
aging procedure. He also proposed another classification
method, “INN-union,” which classifies an observation using
the union of the representative sets as the training sample.
But, the author did not perfun'n these experiments over
different training and test sets. However, we divided the
data sets (except for the vowel data-2, which has a given test
set) randomly to form 300 different training and test sets and
carried out our analysis over those 300 random partitions.
Average test set misclassification rates over those 300 trials
and their corresponding standard errors are reported in
Table 3.

Once again, our proposed aggregation methods showed a
competitive perfmma.nce in all the data sets. In the iris data
and wine data, both weighted posterior and weighted
Bayesian strength performed significantly better than the
other nearest neighbor classifiers. For vowel data-2, there was
no significant difference between the error rates of different
classifiers. Alpaydin [2] reported the best error rate when an
unstandardized version of this data set was used for
classification. On that unstandardized data, both the usual
nearest neigh]:mr classifier and our weighted averaging
methods lead to an error rate of 43.72 percent. However,

theseaggregationmethods had aslightly highererror rates for
glass data. But, in view of high standard errors of the
misclassification rates, their differences with the error rate of
the usual nearest neighbor classifier based on a cross-
validated estimate of k were not statistically significant. It
should be noted that, inthe case of glass data, thereareonly 9,
13, and 17 observations in three of the competing classes and
this makes the construction a good classifier for this data set
very difficult.

In the case of the wine data, since the populations are quite
well separated, we observed low cross-validated error rates
over a wide range value of & Consequently, the minimum
error is obtained for alarge number of choices of k. This makes
it difficult to choose a single optimum value of & based on
cross-validation method. Fig. 5 shows the cross-validated
error rates and test set error rates for two different partitions
of wine data, from which it is quite evident that there are
multiple values of kwhich lead to the lowest cross-validation
error. This feature of estimated error rates was obtained for
almost all the 300 partitions. Paik and Yang [34] pointed out
that aggregationis always better than cross-validation insuch
cases. We also observed the same thing. Both weighted
average of posteriors and weighted average of Bayesian
strength could lead to significantly lower misdassification
rates than that of the usual nearestneighbor method, where &
is selected by cross-validation technique.

5 CoMPUTATIONAL ASPECTS AND RELATED ISSUES

This section deals with the computational complexities of our
proposed aggregation methods as the number of training
points becomes large. Since the dimension d is involved only
in distance computation, we do not consider it in our
calculation and start from the stage when all pairwise
distances are given to us.

Classification of a specific training data point based on
the remaining N — 1 training sample observations requires
the sorting of N — 1 distances if we want to classify it
using all possible values of k This classification takes
(N NlogN) calculations. Clearly, this operation has to be
repeated V times (taking one data point at a time} to find
the leave-one-out error rates for different & and that makes
the computational complexity {N*logN). From the
description given in Section 3.1, it is quite clear that our
proposed aggregation method s require the same order of
computations (N logV) to define the weight function.
After finding the weights, a future observation is classified
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Fig. 5. Misclassification rates for two different partitions of the wine data.

either using weighted posteriors or weighted Bayesian
strength function. For classification of this new observa-
tion, both these methods require the same order of
calculations (X NlogN), which essentially arises due to
sorting of N distances. Though both these methods
perform almost similar calculations, the number of
computations is higher in the latter case as it requires
the Bayesian strength functions to be computed instead of
posterior probabilities. When J < 3, it is computationally
feasible to use any numerical integration method based on
an appropriate averaging of the integrand over a suitable
grid in the domain of integration to approximate the
integral appearing in the expression of the Bayesian
strength function (see Section 2.2). Given the sorted array
of distances, for a fixed value of &, while the number of
computations for posterior probabilities is proportional to
J, it is proportional to m'~! for Bayesian strength
computation, where m is the number of grid points
chosen on each axis. When all possible values of & are
considered, the cost for Bayesian strength computation
(for different k) becomes proportional to Nm’'~!. Though
these calculations do not affect the order of computations
for the classification of a future test case, in many practical
situations, when N is not very large, sl‘rength computation
becomes computationally more expensive than sorting the
distances. Since the computational cost for Bayesian
strength function increases exponentially with the number
of classes, for J >4, we have adopted a different
procedure for approximating Bayesian strengths of differ-
ent populations. A large number (My) of samples are
generated from appropriate Dirichlet distributions to
approximate the strength functions for different popula-
tions. This method reduces the computational cost for
strength function by making it proportional to N,
Throughout this paper, we have taken M, = 10,000 for
our data analytic purpose. One should ako note that,
given any value of k&, the usual k-nearest neighbor
algorithm requires O(N) calculations (see the algorithm
for finding order statistics in [1]) to classify an observa-
tion, but, in order to select a value of & by cross-validation,
it needs ((N°logV) calaulations if leave-oneout or any
V-fold cross-validation method is used.

From the above discussion, it is quite clear that the
computational complexity for each of our aggregation
techniques is ({NlogN) and it is the same as that of the
usual cross-validation method. However, we can reduce
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this computational cost if we restrict our aggregation
methods to values of & smaller than or equal to VN
instead of combining all of the nearest neighbor classifiers
for k=1.2,..., N — 1. Since it requires only (N calcula-
tions to sort N smallest elements in a sequence of
N numbers [1], in that case, the weighted averaging
methods require (){N?) calulations to define the weight
function and (N} computations after that to classify a
future observation. Clearly, this partial aggregation of
nearest neighbor classifiers makes the aggregation proce-
dure much faster and the resulting classifiers, in practice,
lead to a fairly satisfactory performance as well. This choice
of VN is partially motivated by the result on consistency of
k-nearest neighbor classifier, which requires the conditions
1) k—ocand 2) &/N — 0 as N — oo to be satisfied. Some
other authors [35], [32] have also used the same range of
values for £ in classification.

The bar diagrams and the box-plots in Fig. 6 show the
relative increase in misdassification rates (i) due to this
partial aggregation. This relative change is defined as
R = (A — A) /A, where Ay and Ay denote the error rate
for the original aggregation and partial aggre gation methods,
respectively. Apart from wine data, in all other cases, error
rates of the partial aggregation method could match the
performance of the original aggregated dassifier. From this
figure, it is quite evident that the restriction (k < v IV) did not
affect the misclassification rates much, but it makes an
enormous savings in computation in most of the cases.

6 ConcLusioNS AND DiscussioN

This paper describes twonew methods for visual representa-
tion of classification results based on nearest neighbor
classification algorithms. The first one is based on estimated
posterior probabilities, while the other one uses the Bayesian
strength functions. Instead of using a single value of the
neighborhood parameter, here, we study the results for a
finite sequence of nearest neighbor classifiers in order to get
more information for classification and its strength. Visual
displayslead to away of comparison between the strengths of
different competing populations for a range of values of the
neighborhood parameter.

The second part of the paper describes an aggregation
method which is simpler than most of the similar aggregating
procedures available in the literature. When compared with
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Fig. 6. Relative increase in misclassification rates due to truncated aggregation. A = Adult data, As = Australian credit data, B = Biomedical data,
[ = Diabetes data, G = Glass data, | = iris data, P = Pima Indian data, 5 = Salmon data, Sy = Synthetic data, 17 = Vowel data-1, 1% = Vowel

data-2, W = wine data.

the usual nearest neighbor classification, where & ischosen by
cross-validation techniques, these aggregation methods
produced significantly better performance on some of the
data sets, while their performance on the other data sets was
also quite competitive. In view of the above data analysis, it is
appropriate to conclude that it would usually be better to
aggregate the results of nearest neighbor classifiers for
different choices of neighborhood parameters than using a

single optimum value of & estimated by cross-validation.

Both of the aggregation methods, namely, weighted
posterior and weighted Bayesian strength, led to similar
performance on all the data sets. The first one requires a
relatively smaller number of computations, while the latter
one makes the plots sharper preserving the ordering of the
classes according to their posterior probabilities (see Theo-
rem 2.1 and 2.2). The choice of the method depends on the
specific purpose of the user. When visualization is of prime
interest, one will naturally look for the Bayesian strength
function, whereas for aggregation, the user will prefer the
weighted averaging of posterior probabilities to arrive at the
final decision.

APPENDIX

Proof of Theorem 2.1. Without loss of generality, let us
assume i < j. Since wip) is symmetric in its arguments, it
is easy to see that

J
(H 3}!':.') m(p)dp =

. =]
m=marm ) m

J
m II 'I.'

]___[ jfm pf p_[ i'f{p_:lffp_

m=mar{p g, | i f

Now, note that S(j| & and S{i| %) have the same

denominator, which is positive, and the numerator of

S| k) -S| k) =

!
[Tem | oiws (p}' THaapdiH ) w(p)dp.

FEmAr By e | sy

Since p; > g in this domain of integration, from the
above expression, it is quite transparent that S(j | k) is
greater (smaller) than S(i | k) if and only if ¢; is greater
(smaller) than #,.

Further, in a two-class problem, suppose, for some
fixed &, in the neighborhood of x, we have t;, and
ta, observations from the two classes. Now, let us define
t,, =, +aandt), =t —afor some positive integer o.

MNow, it is fairly easy to check that

1 1

¥ s £ i £y ] b
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This implies that §'(1] k) =7 >

: 2 — §(1| k) and
§'(2| k) =2 <

F

= S(2| k) (since m.72,7},

T ¥
e Y, are

all positive). o

Lemma 2.1. Suppose that qi(p) = H;:,=, P (0 Oe=1 for
all k=1,2,...) is a sequence of functions defined on
{{p1.pas - - -, pal 0 < prpa,.. ., pr<land ¥ p. =1}
and g(p) is another positive function defined on the same
domain. Also, assume that, as k — oo, 8 = (fhp, B, - ., ETY
converges to P =(PP...., Py, where 5 B, =1 and
P, = F; forall j # 4 Define a new sequence of functions e on
theset C = {{p.pa, ..., py) s = Vi A} which is given by

¢ulp) = q:(plalp) / [ a(pla(p)dp.
J

Then, for every € = 0 and any j # i, there exists a & > 0 and a
Ey = 1 such that, for all k= &y, we have

Celpldp < e

Crjl—é<p/p<1]

Proof of Lemma 2.1. Consider the function g(p) = [[_, p*
defined on the same domain as that of g.(p). Fixing the



Proof of Theorem 2.2, Take #,. =i, /kform =12 ..

values of all p,s suchthatm # 4, j, it is easy to see that g is
maximized when p;/p; = F/Fi=1 -9 (0 < 5= 1). One
can also notice that g decreases with p; /p; when p;/p; =
1 —# and increases when p;/p < 1 -9 Now, choose
some & < /2 and define the set 4; = {(pm.p. .. ., Pl
1 —&=pi/p <1}, On this set, g is maximized at
P ={.m. i), where pf, = F, for all m#4i.j,
P =(P.+P)/(2-6), and 1 = (1 6)(P, + ) /(2 — &),
and this maximum value is given by

AMP) =

of
(I1 2o )2+ Py Tt — )" p(2 - 6+ =ty say.

MNow, as k& — oc, O — P, forall m = 1,2......J. There-
fore, 8. /0 — P/ P (since F; > () and, because of the
continuity of the function A, |A@:) — MP)| — (. Hence,
for every ¢ = (), one can always find some & = 1 such
that 8/ < 1 — 4 and (@) — AM(P)| < e for all k= k.
MNext, note that for such values of 8., qc is decreasing in
mi/m when pfp; > 1 — & and on the set 4, it has an
upper bound A(8:). Therefore,

sup gelp) < My +e Ve =&
pe A
On the other hand, the function g is maximized at p = P,
which is an interior point of . Let us denote this value
[T—1 Pi= by M,. Clearly, M, > M, and because of the
continuity of HJ": ; J"j in x5 and r;s, for every € = (), it is
possible to find ey such that ||p— P|| + [|#:. — P|| < & =
| ]'fl‘i_l Pl — H.-i.=1 Pi=| < e Here, || || denotes the usual
Euclidean norm on 7. Since 8, convergesto P, it isalways
possible tochoose aball B C 7 of radius ¢ < & around P

such that, for some & > 1 and all k > k., we have
P:;}}E.r;-q"':l:'} = Ms—e

MNote that the above results hold for every ¢ = (I Choose
an ¢ such that (M) +e)/{M;—¢) <t for some ¢ < 1.
Define

o= [QIIPJ-'f-Pand.H— [g(PJffP-

Al B

It is now quite easy tosee that for all & > &'= max{k, k),

[ Celpldp < [ g (pg(p) / [ g (pg(p)dp < ot /4.
i

Asrd? Asrl?

To arrive at the final result, choose & = &* such that
at*/d < e |
yols
gip) = m(p), and consider the sequence of functions g;
and (i as described in Lemma 2.1. From the existing
results [29], [8], we know that if & — ~c and &/N — () as
N — o, under the assumption on continuity of fs, &
converges in probability to P, the vector of true
conditional probabilities (at x) of different classes.
Now, following the idea of exchangeability of p; and p;
as used in the proof of Theorem 2.1, it is easy to see that
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S(F| kS| k) = [ (pif/p )™ * G (p)dp,
C

where {; and €’ have the same meaning as in Lemma 2.1.
For <8<, define As={{p.pa, ..., pi)il—& <pi/pi
=1} Since pi/p <=1 on € and k(6 —65) o0 as
k — oo, for every €, A == (), it is possible to find & > () and
by = 1 (see Lemma 2.1) such that

P{ [ (ps/ ) ey < [ &(prﬁp{rﬁz}
A A

>1— A2k = k.

Again, note that, on the set ASNC, (p;/p)"" "
uniformly converges to () in probability. Therefore, for
those same ¢ and A, one can find some &; = 1 such that

P{:-mp {g}_,-fg},-Jm’*_”'*] < r,-"!} = 1= A2k = k.
A5

Hence, P{S{j| k)/5(i| k) < e} = L= for all & > max
{kq, k1 }. This implies that S(j | k) — 0 forall j # i (since
S(i| k) < 1). Now, the result 5(i | k) — 1 follows from
the facts that 3, S(j | k) = 1 and .J is finite. n|
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