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Abstract: From a population containing m different kinds of species in various proportions,
units are dmwn randomly until all the species are discovered. We show that, irrespective
of whether the population is finite or infinite and, in the first case, whether the successive
draws are with or without replacement, the number of trials needed for the discovery of all
the species is stochastically minimized and hence has the minimum expected value when the
species are as equally abundant as possible.

Keywords: Coupon collector’s problem; Equally abundant; Species discovery; Stochastically
smallest.

Subject Classifications: Primary 60E15; Secondary 60G40.

1. INTRODUCTION: MOTIVATION

Measurement of biodiversity is an important issue in ecological studies and
conservation planning. For a general discussion on statistical issues in measurement
of diversity, we refer to Gore and Paranjape (2001). Two quantitative aspects of
diversity are regarded as central to its measurement. These are species richness
{number of species of a taxon in a given geographical area) and species evenness
(differences in relative abundance). The two can be combined in various ways to
form diversity indices (see Patil and Taillie, 1982).

The issue of developing a sampling strategy for understanding of species
richness and species abundance has been rightly emphasized in the context of
measurement of biodiversity. A workable strategy starts with an assumed value
of the initial size of species richness and an assumed pattern of species evenness
and then recommends an appropriate initial size of the sample for data collection.
Gradually, both the aspects are upgraded. Inherent in this practice is the empirical
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observation that the species-evenness distribution allows for a minimum sample size
when, for a fixed size of species richness, the abundance rates are all equal (Gore
and Paranjape, 1997, 2001).

Our aim in this article is to focus on the distribution of the “effort size”
for a given richness size and for arbitrary evenness distribution. In the process
we also provide an analytical proof of the empirical observation cited above (see
Theorems 3.2 and 3.3).

2. MATHEMATICAL FORMULATION OF THE PROBLEM
AND THE MAIN RESULT

We consider a population with m different species. The number m—that is, the
number of species—will be treated as known in this analysis. What are not known
are the “abundance rates™ of the various species. The “abundance rate vector” for
the population is defined to be the vector

P=(p.--.. P (2.1)

where p; denotes the abundance rate of the ith species, i= 1, ..., m. Here, by the
abundance rate p, of a particular species labelled i is meant the proportion of
that species in the population. This, of course, may also be interpreted as simply
the probability that a randomly drawn unit from the population comes from that
particular species i.

In the case of a finite population, say, of size N, each p; is of the form %, where
N, is a positive integer representing the size of the ith species in the population.
Thus, here a typical abundance rate vector will look like

=3 ) @)

I

where N, 1 = i = m, are positive integers with 3", N; = N.

In case of infinite population, however, each p, 1 =i = m, is allowed to take
any value in the interval (0, 1) subject to the condition that 3", p; = 1.

The problem that we are going to consider can now be described as follows.
Suppose that we keep on drawing units randomly from the population until all the
m species have been “discovered”—that is, at least one representative unit of each of
the m species has appeared in our sample. Let T denote the number of trials needed.
Clearly, T is a random variable whose distribution depends on the abundance rate
vector P, and, of course, also on the sampling scheme—specifically. in the case of a
finite population, whether the sampling is done with or without replacement. We will
consider both the schemes in the finite population case. In the infinite population
case, of course, it does not matter. Our main result can then be stated as follows.

Main Resuft: In both the cases of random sampling from an infinite population
as well as random sampling with or without replacement from a finite population,
the random variable T is stochastically smallest when all the m species are “{almost)
equally abundant.”
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The phrase “{almost) equally abundant™ needs an explanation. In the case of
infinite population, it simply means that the abundance rates are equal for all the m

species, that is, the abundance rate vector is the special vector py = (=, ..., ﬁ}

In the finite-population case, the interpretation is a bit more involved, although
the most natural As before, let us denote the population size by N. Since each p,
now has to be necessarily of the form -‘:f, where N, .. ., N are positive integers with

"N =N, we cannot, in general, demand that the p; be all equal (equivalently,
that the N be all equal). This will require that N be a multiple of m. Instead of
imposing such a restriction on N, what we do, in general, is to define N, = [2], that
is to say that we define N, to be the unique integer such that N = mN, + & with
0=k =m—1. Since N =m, such an N, is automatically positive. We say that the
m species are (almost) equally abundant if N, = N, + 1 for 1 = i < k and N, = N, for
k41 =i=mand the corresponding abundance-rate vector will be also denoted by
py- This clearly means that, for given N and m, the species are as equally abundant
as possible.

Our main result can then be stated as follows: Let P(T >1|p) denote the
probability that the number of trials needed to discover all the m species is greater
than ¢, given that the abundance rate vector is P. We will show that, in all the cases,
P = p, minimizes this probability uniformly over all 1.

In view of the fact that E[T|p] =32, A(T=t|p). it will akso follow from our
result that E[T |p] attains a unique minimum when E = . that is, in all the cases,
the expected number of trials required to discover all the m species is the smallest
when the species are (almost) equally abundant.

3. STATEMENTS AND PROOFS OF MAIN RESULTS

We start by making some preliminary observations. The first observation, which
is really trivial but will turn out to be useful in proving our main result, is that a
permutation of the abundance rate vector does not change the distribution of T.
In other words, if P is an abundance rate vector and p* is just a permutation of
(the coordinates of) P, then the distribution of T, given the abundance rate P, is the
same as that given the abundance rate p*—in particular, AT = +|P) = (T = | p*),
for all ¢. This is because permuting the coordinates of the abundance rate vector
simply amounts to relabeling the species and, therefore, does not affect T.

Our next observation may not have any direct bearing on our main result, but
it is interesting in its own right. Let us consider any two different species, say, the
ith and the jth, that is, { & j are any two elements from {1, ..., m}. Let P denote the
abundance rate vector. Denote by f{t, i |P) the probability of the event that T = ¢
and that the last unit drawn comes from the ith species. Let f(z, j| P) be similarly
defined with the jth species in place of the ith. We then have the following result.

Theorem 3.1. If p; < p;, then, for all t = m,
fGe.i19) > £t D). (31)

It is easy to see that for ¢ = m (respectively, + = m), the two probabilities are
equal (respectively, both are equal to 0).
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Proof.  The two cases—namely, the case when the units are drawn with replacement
and the case when the population is finite and units are drawn without
replacement—will be treated separately. However, our general argument will closely
follow those in Rao et al (2003).

Let us consider the “with replacement case” first. If m =2, the result is
almost immediate, because in that case, f(r,1|p) = (p,)"'p,, while fiz, 2|lp) =
() 1ps. Clearly, if p, < ps. say, then (p2)'py = (p ) ' ps for all ¢ = 2. We now
assume m > 2 and fix ¢ = m. Consider any permutation z = (i, ..., in_2) of the
other m —2 indices in {1,..., m} except { and j and let n=(n,..., n,_;) be
any (m — 1)-tuple of positive integers with Y0 'n . =¢t—1. For 1 =l =m—1,
denote A{i, j, !,z n) to be the event that the m species are “discovered” in the
order i, ... digy By eens i3, i and these discoveries happen exactly at the lst
draw, at the (1 + n,)th draw, ..., at the (1+ X" n,)th draw, and finally at the
(1+ 34 ne)th, ie., the rth draw, respectively. The event A(j, i, [, «, n) is defined
analogously with just the roles of i and j interchanged. It is then clear that

fit, EE?} = EP[A(E, b2 m) il}] (3.2)
and
fit. jlp) = ZP[A(;', i, {2, m) | P, (3.3

where the sums in both extend over all x, n, and /.
We now show that

PIAG, j, 1, o, n) | B] = PIAG, i, [, 2, m) [P] ¥, 1, (3.4)

with strict inequality holding for some 2, n, /.
From the definition of the events A(7, j, [, =, n) and A(j, i, |, z, n), one can easily
derive the following formulae:

m m—1

-1
P[A(L j' !' % n::l I EI =T ]_[ Py ]_[ {PJ] Oy PJ.*}”*_.I ]_[ {.ij + PJ'| + -+ _P‘J*__I}”*_I,
k=l

r=] k=1

(3.5)

while

m I-1 m—1

P[A{"r ! ! D!,II.J E?I = ]_[P' ]_[ {Pl'l HEE +PJ'*}“*_] ]_[ {PJ +FJ'| + e +PJ'*_|}”*_1.
=] k=1

k=[

(3.6)

=1

e (pp e+, )

ny

Now p, <p, implies (p;+p, +---+p, )
whence one gets the inequality in (3.4).

Further, since t > m, we must have n, = 1 for some £, so that strict inequality
holds above whenever { = k. This completes the proof in the “with replacement™
case.
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Mext, let us consider the case when the population is finite and the units are
drawn without replacement. Let us denote the population size by N and the sizes
of the different species by N, . .., N,,—these are positive integers adding to N. Here
pi < p; is the same as saying that N; < N;. As in the “with replacement” situation,

the case m =2 is easy to dispose of, because, in this case, f(1,1|P) = u‘fﬁ'ﬂs
while f(z, 2| p) = Mot and if Ny < N,, say, then (Ny),_, N, = (N;),_, N, with strict
inequality holding for ¢ = 2. Here (n),, for nonnegative integers n and r, denotes
the usual factorial power n!/(n — r)!. Turning now to the case m = 2, it is easy to

see from the definitions of fir, i |P) and f{(z, j| P) that for ¢ = m,

fieie) =0 5[ (V) 11 () o= o (3)

o/ i A

and

—

fle jlp) = Z[(M,]“NJ-[(M) I (N) t=1) (3.8)

n 0/ redi, j I,

where both the sums are over all (m — l)-tuples n of positive integers n, and
n., r# i, j adding to t — 1. Since N, < N; implies that NJ{::} > NJ'{E}* with strict
inequality holding whenever n, > 1, the proof is complete.

Let us now turn to our main result. The case of infinite population is easier to
handle and, therefore, we first proceed with that case. For simplicity, let us denote

D, m, P) = P[T = t|m, P, (39

that is, for an infinite population consisting of m species with abundance rate
vector P, the probability that more than ¢ draws will be required to discover all the

species is denoted by @(r, m, p). We then have the following theorem.

Theorem 3.2, For an infinite population consisting of m different species with m = 2,

e, m, p) = Pt m, py) ¥t =m, (3.10)

where py = (=, ..., %} Further, strict inequality holds in (3.10) unless P = py.

m 1 A

Progf. First we consider the case m = 2. In this case, a typical abundance rate
vector is p= (p,, p,) and one has

(2,0 =(p) + (p2)" (3.11)

The desired result now is an easy consequence of the well-known fact that, subject
to the conditions p,, p; = (), p; + p; =1, the righi-hand side of the above equation,
for any ¢ = 2, has a unique minimum when p, = p, = 1.

To prove the result for general m, we will use induction on m. To be able to do
that, that is, to get a formula that will relate &{-, m, -) with ®(-, m — 1, -). we need



Downloaded by [Indian Statistical Institute] at 04:12 22 Apgust 2011

108 Goswami and Sinha

some notations. For any m-vector P = (p,, ..., p,.) of abundance rates and for any
1 =i =m, let us denote P to be the (m — 1)-vector of abundance rates defined by

iy __ ™ i it P -
? _( ----- 1_-PJ I_PJ ----- I_PJ')- {3-1_]

One can then use an easy conditioning argument to deduce that for any m = 3,
anyP=(p...., po)any 1 =i <m, and any ¢ = m,

emP)=(1-—p)'+ 3 (i)ﬂ";}x“ — Py

w=f—{m—2)

I—{m—1}

2 E (_)(m V(1= p) 't —s,m—1,P"). (3.13)

This is the connecting link between @{-, m, -) and ®{-, m — 1, -) that allows us to
use induction. Assume, therefore, as an induction hypothesis, that the result (3.10)
is true for m — 1. This will imply, in particular, that

: 1 1
(e, m—1,p") = m(:’, m—l,(— ..... )) Vizm—1, (3.14)

with strict inequality holding unless p" = (15, ..., =)

Using (3.14) for each d(r — 5, m — 1, E""]l appearing in the last sum on the right-

hand side of (3.13) and then recombining all the terms in the resulting sum, one geis
that for every m = 3, any pP= (e p).oany 1 =i=m, and any ¢ = m,

o gz P L
rp(:.m.m::m(:,m,( B e L ”)) (3.15)

m—1"""m—1

with strict inequality holding unless the p;, j # i are all equal.
Now if P + py, there certainly is an i, | =i = m, such that the p;, j # i, are not

all equal. Since ®(¢, m, P) remains invariant under permutation of coordinates of P,

we can, without loss of generality, take { = 1. Denoting p, by p, the above result
says that

Dt m, P) = l'l'-'(i, m, (p, e ﬂ)) Vi = m. (3.16)

Mote now that the right-hand side of the above inequality is a function of just
a single variable p € (0, 1), for each ¢ = m. Denoting this function by g(p). our
proof could be easily completed if we could show that the function g, on the open
interval (0, 1) attains a unique global minimum at p= L (for all ¢ = m)! Writing
the explicit expression for g (p), it is not difficult to show that -.Iﬂ{,]ﬂ =0¥t=m.
But, the second derivative g]'(p) turns out to be not so easily tractable, making it
difficult to conclude whether p = J]T is even a local minimum.
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A different route is wsed to complete the proof. Consider the function
F:[0, 1] = [0, 1] defined as f(p) = =£. Then, the inequality that we have proved

m—1"
above, using the induction hypothesis, simply says that for any m = 3, any P, any

l =i=m, and any ¢t = m,
Dt m, p) = Ot m, (fip). ... fp). pi Ap)s -, Fp))), (3.17)

with strict inequality holding unkess the p, j # i. are all equal.
We now complete the proof of (3.10) as follows. If p # py. then denoting p, = p
and using the above notation, we have as argued above,

Dt m, P) = de, m, (p, f(p). ..., AP ¥e=m. (3.18)

But applying (3.17) now to the right-hand side of the inequality in (3.18) with i = 2
yvields

e, m, (p, f(p), ... f(P))) = Rt m, (LA Ap). fF D, ..., AP
= (e, m, (fip), LR . AAP), (3.19)

where the last equality follows from the invariance of & under permutations of

coordinates of the abundance rate vector.
Let us denote by f", n =0 the repeated iterates of the function f, that is,

U py=pand ™ (p) = f{f" '(p)).n = 1. If now P py and if 1 =i = m is such
that the p;, j # i, are not all equal, then denoting p; = p. using (3.18) first and then
{3.19) repeatedly, we get that, for all + = m,

B(t,m, P) = B(t, m, (fp, fV(p)..... )

= @t m, (F(p) F9P). ... F2 ()

E ......

= e, m, (), F P, Fr ()

N _ (3.20)

Using now the Lemma 3.1 stated below and the fact that the function
e, m, (P, ..., p.)) s continuous in {(py, ..., Pl it follows from the string of
inequalities in (3.20) that for P # py,

Dt m, P) = e, m, py), ¥iz=m, (321)

which was to be proved. O

Lemma 3.1. The function f(p) = =L on [0, 1] into [0, 1] has a unigue fived point at

m—1

Po= ﬁ Mareover, py is a globally attracting ficed point for [ in the sense that for any
p [0, 1] the sequence { ™ (p)} converges to py as n — .
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Proof. That p, is the unique fixed point of the function f (that is, fip) =p if
and only if p= 117} is immediate from the definition of f. For the other part, one
simply needs to observe that |f'(p)] = ﬁ < 1 for m = 3 and apply, for example,
Theorem 448 of Apostol (1974, p. 92). O

Remark 3.1. We would like to point out here that the problem of drawing from
an infinite population (or drawing with replacement from a finite population)
consisting of m species has been discussed in Basu (1958) and also in Feller (1967,
pp. 224-225). However, they consider only the special case when the species are all
exactly equally abundant. Under this special assumption, they show, among other
things, that the probability that, in a sample of size n, exactly r distinct species
appear is given by (') £ and that the expected number of trials needed to discover

m
1

all the m species equals m - [1 +1+... + 1].

Let us now turn to the case of a finite population, say, with size N. In this
case, as noted already, the abundance rates are necessarily of the form p; = % where
N; represents the size of the ith species in the population. Thus, the abundance
rate vector is really determined by wvector of the actual sizes of the m different
species, that is, by the “abundance vector” N = (N}, ..., N,), where N, 1 =i=m
are positive integers with 3" | N; = N. Recall also that, with N, being the unique
positive integer such that N = mN, + &k for some 0 =& = m— 1, the m species
are said to be (almost) equally abundant if and only if exactly & of the N's are
equal to A, + 1 and the remaining m — & of the N/'s are equal to N,. In view
of the permutation—invariance property of the probahilities that we are interested
in, this is, for our purposes, readily seen to be equivalent to demanding that
MNM=---=N=N+1and N, =--- =N, =N, The corresponding abundance
vector (again, unique up to permutaion) would be denoted by N, For any
abundance vector N, we define d(N) = max; ; [N; — N;| = max; N, —min; N;. It is
then easy to see that N, is the unique (up to permutaion) abundance vector with
d(Ng) = 1.

“We now introduce a notation similar to the infinite-population case. Let
d(r, N,m,N) denote now the probability that for a population with size N
consisting of m species with abundance vector N, more than ¢ draws will be required
to discover all the species, that is, '

D(t, N, m, N) = P[T = t| N, m, N]. (3.22)

This probability, of course, depends on whether the successive units are drawn
from the population with or without replacement. But we will use the same notation
for these probabilities in both the cases. Our main result in the finite-population
case is stated in the following theorem.

Theorem 33. For a finite population of size N consisting of m different species with
2=m= N,

Dfe, Nom,N) = e, N,m, Nyg), ¥ =m, (3.23)
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irrespective of whether the units are drawn with or withow replacement. Further, strict
inequality holds in (3.23) (for all 1, for which the left-hand side =0), unless N = Ny (up
to permuations ). ?

The proof is based on an elementary observation described below. This will
play a role very similar to that played by Lemma 3.1 in the proof of Theorem 3.2,
Let m =3 and N =m be positive integers. Let N =(N,,. .., N_) be an m-tuple
of positive integers with 3", N; = N. For any i (1 = i = m), let N; be the unique
positive integer such that N — N, = (m — 1)N,; + { with 0 = { = m — 2. Denote by
N the m-tuple whose ith coordinate is the positive integer N, and, of the other
m — | coordinates, the first [ are all equal to the positive integer N, + 1, while
the remaining are all equal to the positive integer N,,. We then have the following

simple yet useful result.

Lemma 3.2, (a) [f N has an even number of coordinates with exactly half of them all

equal to some positive integer N', sav, and the other half all equal to N’ + 2, then for
some 1 and j, d{(N")'7) = (0

(b) IfN is not of the special form as considered in (a) and if d(N) = 1, then for
some i, d([:{“j]l = d(N).

The main content of the lemma that is crucial for our purposes may be
understood as follows. Suppose that for any pgiven abundance vector N, the
abundance vectors It{'”. 1 =i = m,as defined above, are thought of as those that are
“accessible from N in one step.” The vectors accessible from the N' are, in turn,
thought of as accessible from N “in two steps,” and so on. Then what the lemma
says is that if N is any abundance vector with d(N) = 1, then there is an abundance
vector N*, accessible from N (in two steps if N is of the form described in (a) and
in one step in all other cases) such that d(N*) = d(N). Let us postpone the proof of
Lemma 3.2 and proceed first to prove Theorem 3.3, assuming the lemma.

Proof of Theorem 3.3, Just like Theorem 3.2, the proof here also will be through
induction on m. So, we first consider the case m = 2.
With N = (N, Ny}, where 1 < N; < Ny < N—1and N, + N, = N, we have

% Vi =2, (324)

in case the successive draws are without replacement, while if the draws are with
replacement, then

e, N, 2, N) =

2

®(t, N,2,N) = (%) + (%) ¥i =2 (3.25)

It is now easy to see that if N £ N, that is, ¥, = N, + 2, then

®(1, N, 2,N) = B(t, N, 2,N*), (326)
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in both the cases, where N* = (N, — 1, N, + 1). Indeed, in the case of sampling

without replacement, inequality (3.26) follows from the fact that (V'7') = () for
all 2 = ¢ = N, if N —1 = N,, while in the case of sampling with replacement, it is
a consequence of the fact that, for ¢ = 2, the function x— x' + (1 —x)', x € (0, 1)
is strictly increasing for x € (1, 1) and strictly decreasing for x € (0, 1). By repeated
use of (3.26), one can easily deduce that the desired result (3.23) is true for m = 2.

To use induction now, we need a notation. For any m = 3, N = m and any
N=(N,..., N,.), we denote, N, = (Ny, ..., N1 Nopgs oo Nyhoforl =i=m ltis

then easy to see that, for all r = m and any | =i = m, one has

7, & BeDd

{T} r=f—{m—23) {IT}

I—={m—1} {:\':.}{N—.‘:l::}
=] {T}

in case of sampling without replacement, and

swnmn= (5 e_E ()5

F=i—{m—2)

r—{m—=1} ¢ NJ- i N_N'J o |
% § ()(E)( N ) Pt — s, N = N,om — 1, N,

e, N, m, [’3} -

+ ®(t—s5,N— N.m—1,Ng), (3.27)

5
(3.28)
in case of sampling with replacement.
Using the induction hypothesis that the result (3.23) is true for m — 1 and

recalling the notation introduced just before Lemma 3.2, one obtains from the above
that forallm =3, Nzm, N=(N,...., N, and, forall 1 =i = m,

D, N.m,N) = P(t, N, m, [Sl":']l, Y= m, (3.29)

with strict inequality holding unless d(Ng,) = 1.
Now if NN, that is. d(N)=>1, then we consider two cases and use

Lemma 3.2,

Case I: N is of the form described in Lemma 3.2(a). In this case, as the proof

of Lemma 3.2 will show, for any 1 =i=m, d(N;) =2, so that the induction
hypothesis will actually give

O(r, N, m,N) = P(z, N, m, [‘j"-:']l, Wi = m. {3.30)

But we also have, according to Lemma 3.2(a), that, for some j, ([':,;lﬂ}fﬂ =N
so that, by (3.29), we have :

e, N, m, [:{“'j]l =de, N,m, Ny, Vi =m (3.31)
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From (3.30) and (3.31), we get

Dt N.m, N) = D, Nom,Ny), ¥Viz=m (3.32)

Case 2:  In all other cases, by Lemma 32(b), there is an i, | =i < m, such
that d(rjl”} = d(N). Moreover, it is also clear that, for the same i, we must have

d(N,) = 1 (since otherwise N' will be the same as N}, so that
B, N, m, N) > P(z, N, m, [S“jjl, Wi = m. (3.33)

If d(N") = 1, then N =N (up to permutation), so that we are done. If not,
we can use Lemma 3.2 on the véctor ['5-"" to get another abundance vector, N*, say.

with d(N*) < d(N"), which is accessible from N"' in at most two steps, so that

by (3.29),
(s, N,m, N") = @(t, N,m,N*), ¥i=m. (3.34)

However, since d(N) = N — m, therefore, if we repeat this process of strictly
reducing the o-value at successive stages, while the d-values remain nonincreasing
all the while, we will only need finitely many stages until we get an abundance vector
with d-value = 1, that is, we reach the vector N, thus proving finally that

Dfe, Nom, N) = Pt Nom, Ny), Yi=m, (3.35)

and that completes the proof of the theorem. O

Proof of Lemma 3.2. (a) In this case, it is easy to see that N, for any i, will
have one coordinate equal to N', one coordinate equal to N'+ 2, and the other
coordinates all equal to N’ + 1, so that d(N") =d(N) =2, for all i. However, it
is equally easy to see that, if we now start with any one of these N""'s and if the

jth coordinate of N' equals N’ + 1, then (N")V' =(N'+1,..., N'+ 1), so that
d((N")) =0.
(b) For the proof, we may clearly replace the vector N by any of its

permutations. We assume, therefore, that our original vector W is such that
N, = --- = N, so that J(N) = N, — N,,. Let us denote N, to be the unique positive

integer such that N = mN; + &k where0 =k = m — 1.
First of all, mN, = N <= m(N,+ 1) implies that N, = N,. But, if N, = N,
then N — N, =(m— 1IN, + & where 0 =k =m—1, so that N, =N, or N, + 1

according as £ = or = m — L. [t is now easy to see that d([':;l“”} = {} or | according
as k= or = (. In any case, if (N} = 1, then d([‘j“"’} = d(N).

For the rest of the proof, therefore, we may assume that N = N, — 1. Next,
note that d(N) > 1 really means that N, > N, + 1. In particular, mN, = N = mNj,
implying that N, = N, + 1.
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Suppose now that N, =N,+ 1. Then N—N, ={m— )N, +& —1. where
O0=k=m—1. In case k = 1, we see that N, = N,. so that J(N") =1 < d(N).
On the other hand, if k=0, then N —N, = (m— 1)(N, - 1} +]:nr—2}, so that
Nya = Ny — 1 and N = (N}, N, ..., Ng. Ny — 1) If we had N, < N, —1 to start
with, then d(N"') =N, — (N, — 1) = N, — N, = d(N). and we are done. If, on the
other hand, we had N, = N, — 1, that is, we had the situation where Ny = N+ 1,
N =N,— 1, and N =mN,, then either 3 (2 =i =m — 1) such that N, = N, in
which case clearly N' = (N, ..., Ny). so that J(N") =0 < d(N) or else m =2r
and Ny =--- =N, =N, + 1,N.,, =---= N, = N, — L. But this last contingency is
impossible because the vector N is assumed to be not of the form considered in (a).

We now continue with the proof assuming that N, = N, —1 and also
N, = Ny+2.

The case m =3 is relatively easy to handle and hence we do that
first. We have a vector N = (N, N, N), with N =N=N, and d(N)=
N, — N, > 1. In fact, we actually have N, <N,—1 and N, = N, +2, where
N, is the unique positive integer such that N, + N, 4+ N; =3N,+ k& with
O0<k=<2 Now, if N,>N+1, then N,+ N, =2(N,+1), so that N, =
N;+1 and hence d(N"')=N,— Ny =N, —N;=d(N). On the other hand,
if N.=N;+1, then ﬁusing the fact that N;+1 =< Ny =N —2, one gets
N, + Ny =2(N;—1). In case equality holds here, we have NY' =(N, -1,
Ny — 1, N;), so that d(N")=N —1—N; =d(N). On the other hand,
N + N, < 2(N; — 1) will imply that Ny, <N, -2 and therefore d(N"') < N, +
1 —N; = Ny — 1 —N; < d(N), and the proof for the case m = 3 is complete.

From now on, we assume that m = 4 We have a vector N= (N, ..., N,)
with N, =..-=N, and N+ ---+N,=N. We abo have N =N, -1
and N, = Ny, +2 where N, is the unique positive integer such that N =
mN,+k with 0<k=m—1. Let us first consider N,, =[%]. Clearly,
Npa = N,. If Ny, =N, then clearly d4(N")=N,— N, <N —N, =d(N),
and we are done. If. on the other hand, we have N, =N, we then

m*

consider N, =[-2=] and proceed to show that Ny, +1 <N, which
will, of course, imply that d(N") =Ny, +1—N, <N —N, =d(N). For
this, note first that N, =N, implies that N.+ ---+ N, =(m— 1)N, + 1,
where 0={=m—2, so that N+ ---4+N _,=(m-2)N +!=<=(m-2)N +
{m—1). Therefore, N—N, = N+ (m—2)N, + (m—1). Using the fact that
N <sN,—1=(N—-2)—1, we pet N—N <N +(m-2)(N-3+(m—-1) =
(m—10N —-1)—(m—4)=(m—13(N, — 1), since m =4 Thus, we have N—
N, = (m — 1){N, — 1}, which gives N, = N, — 1, or, equivalently, N, + 1 = N,

as was to be proved. O

Remark 3.2. It is well known that an arbitrary P-vector is majorized by p, and

hence the results on Schur concave functions will have direct application, provided
we can establish Schur concavity of P[T = t|m, p| as a function of p, which may
be of independent interest. Referring to Lemma A2 in Marshall and Olkin (1979),
it amounts to establishing “local improvement by averaging over two neighboring
allocations.” This may once again require an induction argument, similar to the one
used by us. However, our argument uses induction to directly hit upon the solution
to the minimization problem, rather than going via Schur concavity.
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Remark 3.3, Our result for the finite-population case asserts that under SRSWR
with population size N = ms, P[T >t |m, p] = P[T = t|m, py]. with strict inequality
holding unless P =p,. and this holds for all s=1,2,.... One may possibly try

to derive the result for the infinite-population case from this by using a limiting
argument with 5 1 co. However, it presents a number of hurdles. Firstly, not all
probability vectors P are admissible in the finite-population case. Secondly, as s

changes, the probability space also changes, and it does not seem obvious that the
probabilities for finite population will, in the limit, give probability for the infinite-
population case. Having explicit expressions for such probabilities would perhaps
have helped, but we do not have such expressions at any stage, unless m is really
small! Of course, we have given a direct proof for the infinite-population case, which
is fairly simple and perhaps interesting in its own right.
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