Tail asymptotics for exponential functionals of Lévy processes
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Abstract

Motivated by recent studies in financial mathematics and other areas, we investi-
gate the exponential functional Z = fooo e~ XMt of a Lévy process X(t),t > 0. In
particular, we investigate its tail asymptotics. We show that, depending on the right
tail of X (1), the tail behavior of Z is exponential, Pareto, or extremely heavy-tailed.
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1 Introduction and main results

Let {X(t),t > 0} be a Lévy process drifting to co and let Z be its associated exponen-
tial functional, i.e. Z = fooo e~X(®d¢. Random variables of this form have recently been
analyzed in great detail. Such random variables appear in several applications, like mathe-
matical finance (Z as the present value of a perpetuity [11], Asian options and COGARCH
process [23]), Additive Increase Multiplicative Decrease (AIMD) algorithms [12, 21], order
picking strategies in carousel systems [26], mathematical physics, and more. A recent
monograph devoted to such exponential functionals is [32].

In this paper we analyze the behavior of P{Z > z} as = becomes large, complementing
the above-mentioned works, which largely focus on exact expressions for the distribution
of Z. We analyze several classes of Lévy processes which give rise to qualitatively different
tail behavior of Z, ranging from extremely heavy (of the form (logz)™®) to light tails
(exp{—a?},p > 1).

Several results in this paper are derived using the following identity. Let 7 be a stopping
time with respect to the filtration generated by X (¢). Then the following distributional
identity (which is easily verified using the strong Markov property) holds:

Zi/ e XWdy 4+ e X7, (1.1)
0



with Z on the right hand side independent of fOT e XWdy and e X("). Thus we have an

equation of the form R 4 @ + MR. Such equations have been studied extensively. A
classical result due to Kesten [22] and Goldie [18] states that, if there exists a solution
k > 0 to the equation E {M*} = 1, then under some further regularity conditions,

P{R >z} ~Cz™". (1.2)

The constant C'is usually very hard to obtain, unless x is integer-valued, see [18]. Recently,
Rivero [28] applied these results to the setting of the present paper, in which E {M"*} = 1 is
equivalent to the Cramér condition E {e_“X (1)} = 1. In Section 3 we give an extension of
this result, by providing more explicit expressions for the prefactor C. These expressions
partly rely on new expressions for the fractional moments (i.e. the Mellin transform) of Z,
which are presented in Section 2 and could be of independent interest.

The main results of the paper are those cases in which Cramér’s condition, and hence the
assumptions in [18, 28], are not satisfied. In Section 4, we consider the case in which X (1)
does not have exponential moments. This yields a completely different tail behavior for
Z: under the assumption that G(z) := min {1, [°P{—-X (1) > u} du} is subexponential,
and p:=E{X (1)} € (0,00), we derive that

P {log /Ooo e Xy > x} ~P {sup(—X(t)) > m} ~ ;é(x), (1.3)

t>0

which is equivalent to
1
P{Z >z} ~ EG(logx).

We again use the embedding (1.1) but now we choose a non-trivial stopping time. This
choice is motivated by a recent study of Zachary [33]. Since we could not find the second
equivalence in (1.3) in the literature, we present a short proof.

The third case we consider (apart from the Cramér case and the subexponential case) is
when X (t) is a subordinator. Here we need to distinguish between a number of additional
cases. We assume first that X (¢) is a compound Poisson process with rate A\ and non-
negative i.i.d. jumps B;,7 > 1. In this case we obtain light-tailed behavior. The following
result is proven in Section 5:

P{Z>z}~E {eAe’BIZ} e, (1.4)

if and only if E{1/B1} < oo. The proof of (1.4) is based on another variant of (1.1),
namely the distributional identity Z LBy 4 %El, where Fj is a unit exponential
random variable. Multiplying by A and taking exponents on both sides of this identity
gives *? L A "1 Z¢E1 Breiman’s [8] theorem (which deals with the product of heavy-
tailed random variables) now suggests the result of Theorem 5.1. We make this reasoning
precise by exploiting the fact that ! has a Pareto tail.

Section 6 considers the case in which the condition E {1/B;} < oo does not hold. In this
case, the tail asymptotics are of the form Cate™ if P{B; <y} ~ py as y | 0. This
result is obtained with a technique that differs from the rest of the paper: We use explicit
expressions for the moments E {Z*} to obtain the behavior of E {eSZ } around its abscissus
of convergence. We then relate this to the tail behavior of P{Z > z} using Abelian and

Tauberian theorems. Finally, we note that when the compound Poisson assumption is



violated (i.e. the Lévy measure associated with the subordinator has infinite mass) then
the asymptotics of Z are considerably lighter.

Before we present all these results in Sections 3-6, we introduce some notation and state
some preliminary results in Section 2. In particular, we give some new explicit expressions
for the fractional moments (i.e. the Mellin transform) of Z.

We would like to conclude this introduction by mentioning some related work. More results
on the equation R 4 Q@ + MR leading to light-tail (exponential and Poissonian) behavior
of R can be found in Goldie and Griibel [19]. Other recent results on this equation leading
to Pareto tails can be found in Konstantinides and Mikosch [25] and references therein.
When B; = 1, equation (1.4) becomes a special case of a result of Rootzén [29]. The result
(1.3) we obtain in the subexponential case is related to recent work on the tail behavior of
various subadditive functionals of random walks and Lévy processes, see Braverman et al.
[7] and Foss et al. [17]. An interesting problem, which is not discussed here, is the lower
tail of Z. This tail is analyzed in [26] in the case that X (¢) is a Poisson process. Finally,
we would like to mention recent work of Blanchet and Glynn [6] who consider various
asymptotic estimates for the distribution of Z, under an asymptotic regime which lets the
drift of X (¢) become small.

2 Finiteness and moments

In this section we develop some preliminary results. In particular, we give a criterion for
a.s. boundedness of Z, and extend expressions for various integer and non-integer moments
of Z. We first introduce some notation. Let X (¢),t > 0, be a Lévy process with Laplace
exponent ¢(s) determined by

E {e*SX(t)} = 7t(s), (2.1)

Using Holder’s inequality, it is easily checked that the function ¢(s) is concave. Moreover,
¢(s) is finite for s > 0 when X (¢) has no negative jumps, and for s < 0 when X (¢) has no
positive jumps.

In several cases it is useful to consider the integrated tail distribution associated with
—X (1), which is given by G(z) = min {1, [[°P{-X(1) > u}du}. We often use the fol-
lowing infinite product representation of the Gamma function, which is due to Weierstrass:

k
s+ k’

I(s+1)=e"° H ek (2.2)
k=1

In this expression, v is Euler’s constant.

2.1 Finiteness

The following result, which is not used in the sequel but is included for completeness,
gives a criterion for a.s. boundedness of Z. The result directly follows from Theorem 2 of
[15] and the discussion immediately following the statement of the theorem there, keeping
in mind the fact that the integrator in our case is deterministic. However, we give an
independent proof here.

Proposition 2.1. Z < oo a.s. if and only if X(t) — oo a.s.

3



Proof. Asin (1.1), write Z 4 B e X&) ds+e XM Z. According to Theorem 2.1 of Goldie
and Maller [20] (in particular Condition (2.3) of that result), Z is finite a.s. if

n+1 n+1
e X / e~ (XW=XM))qy, = / e XWdy — 0 as.

n

The condition X (u) — oo a.s. is equivalent to the a.s. existence of some u. such that
e X < ¢ for u > u., e > 0. Thus f:H e~ XWdy < e if n > u,, implying that X (t) — oo
a.s. is a sufficient condition for a.s. finiteness of Z.

To check the necessity of the condition, suppose that X (t) — oo a.s. is false. Hence there
exists € > 0 and a real number A such that

P {liggle(t) < A} > e

Let us define the stopping times 79 = 0, and 7,41 = inf{t > 7, + 1 : X(¢) < A}. Then,
on the set {liminf; ,, X (t) < A}, we must have, 7, < oo for all n. Furthermore, on that
set, we have,

Tn+1

Z = Z / dt>e*AZ / e~ (X(t+7:)=X(m) gy,

The sum on the right hand side has i.i.d. positive summands and hence the right hand
side is infinite a.s. on {liminf; ., X (t) < A}. So,

P{Z = oo} > IP{Z = o0; lim inf X () < A}

{Z/ —(X(t+m) =X () 4t = 0o: hmme( ) < A}

—P {ligcing(t) < A} >

2.2 Explicit expressions for moments

We now turn to some expressions for moments; these expressions will be useful later on.
The following recursion, valid as long as s > 0 and ¢(s) > 0, can be found in, for example,
Proposition 3.1 of Carmona et al. [9].

E{Zs 1} ()]E{Zs}

However, they require a further condition of E{Z*} to be finite when 0 < s < 1, which
is unnecessary and restrictive in our discussion. So we give a new proof of the result

removing this condition in the following lemma.

Lemma 2.1. If s > 0 and ¢(s) > 0, we have
E{z5 '} = 9(s )E{ZS} (2.3)

The equality is interpreted to mean that both sides can be oco. If we further assume that
w=E{X(1)} € (0,00), then E{Z*} < oo for all s € [-1,0] and all s > 0 for which
¢(s) > 0.



Proof. Define ¢(t) = [; e~ X du. Then

Cty = s /0 (C(t) = C(w)) e ¥ Wy
s—1

t t—u
_ 8/ o sX(u) (/ e—(X(v+u)—X(u))dU> du.
0 0

Note that the two factors in the last integrand are independent and the second factor has
the same distribution as ¢ (t—u)*~! by the strong Markov property. So taking expectations
of both sides we have,

fg O {C(u)s_l} du

B{G(0)*) =5 [ OB {glt ) du=s mre

t

0
Since ¢(s) > 0, both the numerator and denominator on the right hand side go to oo, as
t — 0o. So we use L’Hopital’s rule to take the limit as ¢ — oo and obtain

el?(S)E| {C(t)s_l } s
S\ : _ s—1
B2 = o e = g

Note that in L’Hopital’s rule, co is allowed as possible limit.
If pu € (0, 00), Proposition 2 of [3] implies that E {Z~!'} is finite, and hence E {Z*} is finite
for —1 < s < 0. Using (2.3), we then have E{Z*} < oo for all s > 0 with ¢(s) > 0. O

The recursion (2.3) above can be solved explicitly for integer values of s, yielding

E{Z"} = (2.4)

n!
[T5—1 &(k)
For non-integer values of s, it is much harder to obtain explicit results. In the remaining
part of the present section, we analyze two classes of Lévy processes for which it is possible
to obtain such expressions. In particular, we focus on subordinators and Lévy processes
with no positive jumps.

Subordinators
First we consider the class of subordinators as possible choice of X (t). In this case, the
Laplace exponent can be written as

é(s) = n+ds+ /00(1 — e Hy(de) (2.5)
0
= n+ds+ 5/ e S'u(t, 00)dt, (2.6)
0

with v a measure satisfying [;° min{1,z}r(dz) < oo (cf. Chapter III of [2]). Then d >0
is the drift of the subordinator and we allow the killing rate n to be strictly positive as
well.

Proposition 2.2. Suppose that X (t) is a subordinator with Laplace exponent ¢(s) given
as in (2.5). Suppose further that there exists an o € [0, 1] such that the function ¢qo(s) =
¢(s)/s is eventually monotone and converges to a limit ¢ € (0,00) as s — oco. Then for
any s > —1,

S\ s 1701075 o ¢(S+k) k “
E{Z°} =T(s+1)' "%, k];[l p ( ) .

(k) k+s



The assumptions of the above proposition seem restrictive, but are satisfied in a large
number of cases. Examples are:

e Any subordinator with positive drift d in which case always ¢(s)/s — d, cf. Theorem
1.2.(ii) in [2]. Monotonicity of the function ¢(s)/s follows easily from (2.6).

e A (possibly terminating) compound Poisson process with rate A and i.i.d. jumps
B; > 0 with Laplace-Stieltjes transform 3(s). In this case ¢(s) = n+ A(1—3(s)) and
the assumption of the proposition is satisfied with o = 0, since ¢(s) is increasing.
The case n = 0 and B; = 1 has been treated before in [4] and was extended in [21]
assuming a certain lower tail condition on B;.

e An a-stable subordinator, 0 < o < 1, in which case ¢(s) = s, and hence E{Z*} =
I'(s+1)'=®. Also sums of independent stable subordinators (yielding ¢(s) = 5%+ s°)
are admissible. For more about the tail behavior of Z in this case, see Theorem 6.2.

Proof of Proposition 2.2. Since X is a subordinator, ¢(s) > 0 for s > 0 and hence the

product []p2, %S@f ) is well-defined for s > —1. We now show that it is strictly positive

and finite.
For this, let m be such that ¢(s) is monotone for s > m and set M, = [[,;-, ¢‘;5i5(:)k).
Write

T Gals +k) . ¢as+k
HW = M, lim H

N—oo
k=m+1

Assume now that ¢, (s) is increasing for s > m. Let n be the smallest integer larger than

s. Then HkN:m 41 %fj(z)k ) increases in N and is bounded above by

H % n+k) ﬁ da
k=m+1 a k =1 ¢

canceling the common factors when n + m < N, and the right hand side converges to a
finite limit as N — 0o. The case in which ¢, (s) is decreasing for s > m is similar.

After these preliminaries, we now turn to (2.3). That recursion is indeed valid since
¢(s) > 0 for all s > 0. Moreover Proposition 3.3 of [9] states that Z has some exponential
moments; hence all moments are finite.

Thus, we are allowed to apply (2.3) and write, for s > 0,

T(s+1)°E{Z°} = %S(S)F $)°E{Z°1} . (2.7)
Define now the function, for s > 0,
R a s—1 s—1 - ¢a(k)
W(s) :==T(s)"c 'E{Z },£{¢a<s+k—1> (2.8)
— s—1 31704(31)00@ ¢(k)
=E{Z° '} le™ IIe pTeEy (2.9)

k=1



using Weierstrass’ representation (2.2) of the Gamma function. According to (2.7), v
satisfies

P(s+1)=T(s+1)*E{Z°}c, hm H Pa =

L Ga(s + k)
R e Galh)

N
_ a s—1 s—1 d)a(k) _
= E{Z }C ]\}Enoor[l(ﬁa(s—kk—l) —Sw(s)7

for any s > 0, and ¥ (1) = 1. It suffices to prove that ¢(s) = I'(s). Bohr-Mollerup’s
theorem implies that it is sufficient to prove that log(t(s)) is convex. From (2.9) we have
that

0 5 — ogc a 0 s—1 s — 0&
log(s) = (s — 1)(log ca — ) +log E {Z }+;< 1)+1g¢(s+k—1)>'

The first term is linear and always convex. As in [21] we can conclude that logE {Z57'}
is convex: Since Z has some exponential moments, the second derivative of log[E {Zs_l}
exists and is equal to

E{z '} E{Z* '(log 2)’} — (E{Z°'(l0g 2)})’
E{ZSfl}Q

)

which is nonnegative by Cauchy-Schwarz’s inequality.

Furthermore, note that ¢(s) is concave since from (2.5) its derivative is d+ [, te™5'v/(dt),
which is decreasing. This implies that —log¢(s + k — 1) is convex for any k and hence
each term in the infinite sum is convex. Since sums of convex functions are convex as well,
we can conclude that log1(s) is indeed convex. O

Lévy processes with no positive jumps

The second case which allows an explicit moment analysis arises when X (¢) has no positive
jumps. We exploit a certain identity for the distribution of Z in terms of the exponential
functional of a certain subordinator, which satisfies the assumptions of Proposition 2.2.

Proposition 2.3. Suppose that X(t) has no positive jumps with Laplace exponent ¢.
Suppose further that p = E{X (1)} € (0,00). Define § = sup{s : ¢(s) > 0}. Also assume
there exists a € [0,1], such that —¢(—s)/s't® is eventually monotone and converges to
Co- Then, for all s < 5, except the non-negative integers,

e G(—k)  k—s—1
d(s+1—-k) k

00
E{Zs} pc; (s+1) e’ya (s+1) H (2.10)

The above formula fails for the non-negative integers as % appears as a factor. However,
in that case, (2.4) gives the required formula.

Proof of Proposition 2.3. Let H(t) be the ladder height process associated with —X(¢).
Then H(t) is a subordinator with Laplace exponent 0(s) = ¢(—s)/(—s). Let Zy be the

7



exponential functional associated with H(t). Let finally M = sup;~o(—X(t)) and E; an
exponentially distributed random variable with mean 1. Note that M is a finite random
variable since X drifts off to co. Then the following remarkable identity, due to Bertoin
and Yor [3] holds:

Z/Zy LM/, (2.11)
where the random variables on both sides are independent pairs.
Let s > 0. Then we have
E{e*M}lT(s+1 [(s+1
E{z—s}: {e }S(8+ ): M (S+S) ,
E{ZH} H(S)E{ZH}

since E {eM} = 11/0(s), cf. Equation (VIL.3) and Theorem VIL8 in [2]. So it suffices
to compute E{Zf;} only. For this we use Proposition 2.2. Since H is a subordinator

with Laplace exponent 0(s) = —¢(—s)/s, the assumption on ¢ of the current proposition
implies that the assumption of Proposition 2.2 is satisfied for §. We then obtain from
Proposition 2.2, for s > 0,

5\ _ —a,,—s - 9<3+k) k “

Consequently, using Weierstrass’ representation (2.2) for the Gamma function, we get for
s> 0,

9] 9 k. S k “
E{z*} = (;@F(S“)%z,ﬂ 9(5(+)k) ( Z )

oo 5T O (sk\
:MF(S) Caé,(s)]\;gnool}_[l 0(5—{—]{:) ( k >

N a
_ (N+s)* o(k) s+k—1
= uD(s)% lim 2
H(s) CO‘NE%oe(N—I—S)NEgokl_[IG(S-Fk—l) k

— Mcz—le—wa(s—l) H ew e(k)

P O(k+s—1)

This proves Proposition 2.3 for s < 0, and it is extended to all s < § using the recursion
Lemma 2.1. O

The assumption of Proposition 2.3 is again satisfied in a large number of cases. To see
this, recall that the Laplace exponent ¢ of a Lévy process with no positive jumps is of the
form

o2

1 oo

o(s) =ds — 732 - / (e* — 1 — sz)v(dx) — / (% — 1)v(dx), (2.12)
0 1

where v satisfies [;° min{1,2?}r(dz) < oco. Now using the assumption p = ¢/(0) =

d— [° av(dz) € (0,00), we can rewrite (2.12) as

— o 2 > ST — o’ 2 > ST
o(s) = ps — =55 - (e* =1 —sz)v(dz) = ps — 55 =8 (¥ = 1v(z,00)dx.
0 0

8



So the ladder height process H has Laplace exponent of form
2

_ 2 00 00
0(s) = it 58) = /H-(;s—i—/ (1—e *")v(x, 00)dx = u—}—(;s—l—s/ e vz, 00)dx, (2.13)
- 0 0

where 0(z,00) = [>°v(u,00)du. Thus, H is a subordinator killed at rate p with drift
02/2 and Lévy measure with density v(x,c0) and we have the following examples:

e For s > 1 and = > 0, we have (1 —e™**)/s < x A 1 and hence using the Dominated
Convergence Theorem, [;°s™ (1 — e *)v(x,00)dz — 0 as s — oo, see also Propo-
sition 1.2 (i) in Bertoin [2]. Also, 6(s)/s is monotone decreasing from (2.13). So,

when X has a Brownian component, then we can choose a =1 and ¢; = %2

e If the paths of X are of finite variation (implying that X has no Brownian com-
ponent), then we have fo zv(dx) fo (x,00)dx < oo. Again, using the Dom-
inated Convergence Theorem and the fact that [j°(2? A 1)v(dz) < oo, we have
Jo° @ = e )v(x,00)dz — [;°v(z,00)dz and we can choose & = 0 and ¢y =
p+ fo° av(de) = d.

e Finally, we consider a case where X has no Brownian component, but the paths
are of infinite variation. Assume v(z,00) = x7° with 1 < p < 2. Then P(z,00) =
z'77/(p — 1) and hence, s [;° e 5*D(z,00)dz = I'(2 — p)s*~!/(p — 1). So we can
choose a =p—1landc, =T(2—-p)/(p—1).

We can also recover the formula for negative moments from (2.10), also obtained by Bertoin
and Yor [3] in Proposition 2:

n—1
] (= g(=k))
E{z—"\ — kfl( ¢( )
{ y=n (n—1)!
Using Weierstrass’ representation (2.2), we have from (2.10),

P(—k) (n+:—1>1+°‘

N

B {27 = e (=0 i TT S
k=1

n—1 n—1 n—1, ./
SUNCETNY | Sl § S = )

k;l—i—a

3 The Cramér case and related results

As mentioned in Section 1, tail asymptotics for Z under Cramér’s condition have been
studied by Rivero [28]. The focus of this section is to obtain more appealing expressions
for the prefactor in the tail asymptotics, which are of Pareto type. We first relate the
prefactor to a possibly fractional moment of Z and then, using results from the previous
section, give explicit expressions in terms of ¢(-) in the case that X (¢) has no negative
jumps.

Theorem 3.1. Suppose that the distribution of X (1) is non-arithmetic and suppose there
exists a solution k > 0 to the equation ¢(s) = 0, such that ¢' (k) € (—00,0). Also assume
that E{X (1)} is positive and finite. Then

P{Z >z} ~ E_{j’z/{;}x_”



The form of the prefactor was also given in [28] under the assumption that 0 < k < 1.
Our proof below allows for all values of .

Proof. For completeness we give the full argument. By Holder’s inequality, ¢ is concave
and k > 0 is unique.

As in [28], we apply Theorem 4.1 of [18]. According to that result, it suffices to show that
E{¢(e)"} < oo, where ((¢) = [5 e XWdu.

Since ¢'(k) is negative and ¢(k) = 0, choose ¢ > 1 such that ¢(x/c) > 0. Hence

B{cer) <=8 { s 0 | = m { (s EX0) )

0<u<e 0<u<e

<e"E {( sup e_(ix(w_“(f’(i))) }
0<u<e

<ef ( ¢ ) E{e_”X(s)}eca‘z’(%) =P < ¢ ) (%) < 0.
c—1 c—1

The last inequality holds by virtue of Doob’s L,, inequality, as {e_%X (W) +ud(T

)} is a mar-
tingale.
Then, using Theorem 4.1 of [18], it easily follows that

P{Z >z} ~ Cx™", (3.1)

where
_E{Z" - (Z-¢(e)"} _E{Z" - (Z—-((¢)"}

¢ —KE {e=#X() X (e)} —ked!(K)

is independent of e.
We now continue by simplifying the constant C. Since ¢'(t) = e~ X®), we can write

—Co/(r) = —B{(Z — CO)" — (2~ )
_ éIE {/0 X7 _ C(u))”_ldu}

_ 1/06 E{eX0(Z ~ ()"} du (3.2)

€

Now observe that

7 — Clu) = e X / T (X)X () gg = o~ X 7.
where Z is a copy of Z, which is also independent of e=X®). Since also E {e_”X(“)} =
e (%) = 1, we have from (3.2),

Py =1 /OEE {e—”XW)Z“—l} du=E{z"1}.

3

Observe that, using (3.1), Z has (k — 1)-st moment finite, if K > 1. If 0 < kK < 1, since
X (1) has finite and positive mean, we use Proposition 2 of [3] which states that E {Z~'}
is finite and hence E {(1/Z)*~*} must be finite, as 0 <1 - < 1. O

Using the moment formulae from the previous section, the prefactor in the above theorem
can be simplified further by using Proposition 2.3 to express E { Z“_l} in terms of the
Laplace exponent ¢ when X (¢) has no positive jumps.

10



Corollary 3.1. Suppose X(t) has no positive jumps with Laplace exponent ¢. Assume
that there exists a € [0, 1], such that —¢(—s)/s'T% is eventually monotone and converges
to co. Assume furthermore that there exists a solution k > 0 to the equation ¢(s) = 0 with

¢ (k) € (—00,0). Then
P{Z >z} ~Cz™",
with

pe et 25 ek —k ¢(—k)
C = k R
~¢/(r) kH ko o(n— k)

if kK is not a positive integer, and
1 (k—1)!
—¢'(#) TT31 ¢(k)

otherwise.

C

4 Subexponential jumps

Throughout this section we set X () = —X(t). We assume that E{X(¢)} = —put,u €
(0,00) and that G(z) = min {1, [°P{X (1) > u} du} is subexponential. The latter con-
dition is equivalent to the requirement that min {1, fxoo v(u, oo)du} is subexponential, with
v the Lévy measure of X, cf. [13]. For further background on heavy-tailed distributions
we refer to Embrechts et al. [14].

The main result of this section is the following theorem:

Theorem 4.1. If G(z) is subezponential and if E{X (1)} = —p, pu € (0,00), then

P {log /OOO Xy > x} ~P {Sup X > x} ~La@) (4.1)

t>0 1%

and hence, we have

1
P{Z >z} ~ ;G(Iogm).

This theorem is proven in a number of steps. We first derive an asymptotic upper bound
for the tail behavior of ~
log Z = log/ Xy,
0

Our proof is inspired by a recent study of Zachary [33], who gave a proof of Veraverbeke’s
[30] theorem without the use of Wiener-Hopf factorization identities. Like in [33], we
define a sequence of stopping times {o,,n > 1} as follows. Choose ¢ € (0, 1) and let A be
some large constant. Let furthermore o9 = 0 and

op =inf{t > op_1: X(t) — X(op—1) > —(n —€)(t — op—1) + A},

with 0, = o0 if 0,1 = 00. Define further N = max{n : 0, < oo} and let for n > 1,

Y,, have the same distribution as the conditional distribution of X (¢,,) — X(0,_1) given
A
[}

p—e’

the event {0, < co}. Finally C' = log We can now present the following important

distributional inequality.
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Lemma 4.1.

N
d
logZ < C+ Y [C+Y;H].
=1

Proof. Write, as in (1.1),

2 a /01 eX(“)du + eX(ol)Z,
0

and observe that the first term on the right hand side is less than ed/(p — ¢€). Since
eX(@1) = () if 01 = 0o we obtain the upper bound

Z < e“+e (UI)ZI(O'l < 00).

This implies,
log Z < < C +[X(o1)" +1logt Z]I(01 < o0)

and since the right hand side is positive, we have

d _
logt Z < C+[X(01)" +log" Z]I(01 < 00),

where log™ x = max(0,log z). Iterating this inequality then yields

logZ <logt Z < C + f: [(X(0n) — X(00-1))t + C] I(0n < 00)

n=1
implying the assertion of the lemma. O

The second step of our analysis is to investigate the tail behavior of Y;. Define ¢ =
P{o; < o}. Note that P{N =n} = ¢"(1 — q), for n > 0. Recall that Y; depends on e.

Lemma 4.2. If G is long-tailed, then

. ]P){Yl > ZE} 1
] _ < .
il Glx) ~ qlp—e)

Proof. Write

I (s
P{Y; >z} = 6ZP{X(01)>:U;n<01§n+1}
n=0

IN

IZIP’{ sup  X(u) > x; X(n) <—(,u—6)n—|—A}

n<u<n+1

0<u<l

< ZIP’{ sup X( )>x+(,u—5)n—A}.

We now invoke the following result which is stated as Lemma 1 in Willekens [31]. For
u >0 and any ug € (0, u),

IP’{ sup X (s) > u}]P’{ inf X(s) > —uo} <P{X(1)>u—wup}. (4.2)

0<s<1 0<s<1

12



Thus, setting H (ug) = 1/P {inf0<8<1 X(s) > —uo} we obtain, for 0 < ug < x — A,
H S
P{Y; >z} < ((;LO)ZIP{X(I) >4 (p—en—A—uo}
n=0

H(uo) =
ﬂu—@G()

Since this holds for any ug as * — oo, and H(ug) — 1 as ug — oo, we are done. O
We are now ready to prove the desired upper bound.
Proposition 4.1. If G(z) is subexponential, then

P{log Z 1
limsup{ocg;(m;x} < ;

Proof. By Lemma 4.2 and long-tailedness of G(z), Y;" 4 C is stochastically dominated by a
subexponential random variable which has tail G(z)/q(u—¢). Combining Lemmas 4.1 and
4.2 with a well-known result for geometric random sums with subexponential summands
(see, for example, Corollary A3.21 in [14]), we obtain

]P{C’+ SN (C+YH) > m}

P{log Z
lim sup { Og(x; 4 < lim sup Gla)
B S O
q(p—e) p—el—gq
Now first let A — oo (so that ¢ — 0) and then £ — 0. O

This concludes the proof of the asymptotic upper bound. We now continue with a lower
bound. The proof of the lower bound relies on the following result, which seems to be new
in the present setting.

Lemma 4.3. Define 74(x) = inf{n € N: X(n) > x}. For everyy € R,

lim P{X(r4(z)) —z >y | 7a(z) <oo} =1

if P{rq4(x) < oo} is long-tailed (as function of x).
Proof. The result is obvious for y < 0. So assume y > 0. Observe that
P{ra(z +y) <oo|1a(x) <oo} = P{ra(x+y)=r7a(z)|7a(x) < oo} +
P{ri(z) < Ta(z +y) < oo | 74(z) < o0} .
Since
P{ra(z +y) = 14(2) | 7a(w) < 0o} = P{X(14()) — 2 >y | Ta(w) < oo}

and P {74(z) < oo} is long-tailed, it suffices to show that the second term converges to 0
as x — 00. Thus, write

P{ri(z) < 14(z +y) < o0 | 74(x) < 00}
= P{re +y) < 00 X(rale)) < 2+ | ralz) < o0}

_ /O " Pl + ) < 0o | X(ra(@)) — 2 =
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Ta(x) < oo}]P’{)_((Td(x)) —zedul| () < oo}

= /Oy_P{Td(y —u) < oo} P{X(14(2)) — z € du | 74(x) < 0}

< /OyIP’{Td(O) < 0o} P{X(rg()) — 2 € du | 74(x) < o0}
= P{r4(0) < 00} P{X(7a(x)) —z <y | 7a(x) < o0}
= P{m4(0) < oo} P{ry(z) < gz +y) < 00 | 74(z) < 00} +
P{74(0) < 00} P{14(x + y) = 00 | Tq(x) < 00} .
Hence,

P{74(0) < oo}

P{ry(z) < 1a(z +y) < oo | Ta(z) < 00} < P{ra(z +y) = oo | 7a(x) < 00} .

P {74(0) = oo}
Observe now that P{74(0) < oo} € (0,1) and that P{ry(x + y) = oo | 7q(z) < 00} — 0
since P {7y(z) < oo} is long-tailed, which completes the proof. O

The above Lemma states that the overshoot X (74(z)) —x converges to oo as & — oco. This
is exactly what is needed in the proof of the lower bound:

Proposition 4.2. Let G(z) and P{74(z) < oo} be long-tailed. Then

Pllog Z 1
lim infM > —.
BN G

It is not known to us whether long-tailedness of P {74(z) < oo} as a function of x is implied
by long-tailedness of G(x), but both conditions are satisfied if G(z) is subexponential, cf.
Veraverbeke’s [30] theorem.

Proof. Let Z be an independent copy of Z, independent of X (t),t > 0. Write
P{logZ >z} > P{logZ > x;74(x) < oo}

P {log/ XOdt > Ti(z) < oo} .

v

a(z)
Using the strong Markov property, this is equal to

P{X(Td(w)) +log Z > z;74(z) < oo} ~P{ry(x) < o0},

using the previous Lemma, since P {74(z) < oo} is long-tailed. Since P {r4(z) < oo} =
P {sup,ey X (n) > z}, we conclude, using Veraverbeke’s Theorem (see e.g. Theorem 1(i)
of [33]),

P X(n) >
fmint FU08Z > 2} o PRSP X () > 2} 1
proving our assertion. [

The above results imply that P {log Z > 2} ~ (1/u)G(x). To conclude the proof of Theo-
rem 4.1, we need to show the appealing asymptotic form P {log Z > x} ~ P{sup,-, X (t) >
x}. For this, it suffices to show that

P{sup)_((t) > x} N]P{Sup)_((n) > m} (4.3)

t>0 n>1

14



since, due to Veraverbeke’s theorem, the latter supremum is tail-equivalent to (1/u)G(z).
Surprisingly enough, we could not find this result in the literature. Asmussen [1, Corol-
lary 2.5] only proves a version of Veraverbeke’s theorem for continuous time under the
assumption that the jump process associated to the Lévy process has bounded variation.
A recent paper by Kliippelberg et al. [24] relates the tail of the supremum to that of the
ladder height process. The following result settles the issue in complete generality, since
subexponentiality of G implies subexponentiality of SUp,,>1 X (n), using Veraverbeke’s [30]
theorem. For a more general discussion, see the forthcoming paper by Foss et al. [16].

Proposition 4.3. The following are equivalent:
1. supysq X (t) is long-tailed,
2. sup,,>1 X (n) is long-tailed.

Moreover, both imply (4.3).

Proof. We use an argument similar to that in Willekens [31]. Set 7(x) = inf{t : X(¢) > z}.
Note that, for any zg > 0,

]P’{supX(t) > x} < P{supX(n) >z — x0}+]P>{sup)‘((t) >zsupX(n) <z —xo}.

t>0 n>1 t>0 n>1
The second term on the right hand side is clearly smaller than
P {T(l’) < 00; inf X(s) — X(r(z)) < —xo}
s€[r(z),7(z)+1]
= i X (s) < —
P{r(z) < oo} P {ogilX(s) < .CC()} ,

where we used the strong Markov property in the last step. Combining the two formulas
and noting that sup,.o X (t) > sup,,>; X(n) we obtain for any ¢ > 0,

IP’{supX(t) > x—xg} ZIP’{Sup)_((n) > x—xo}

t>0 n>1

> P{supX(t) > x}]P’{ inf X(s) > —:co}.

t>0 0<s<1

With this result, it is easy to see that both 7. and 2. imply (4.3) and also 1. and 2. imply
each other. O

We would like to remark that the equivalence (4.3) does not require that the mean of X (1)
exists. Thus the explicit results of [10] can be combined with Proposition 4.3 to obtain
tail asymptotics for sup;~ X (t) when E {X (1)} is not finite.

5 A compound Poisson process

In this section we assume that X (¢) is a type of subordinator, in particular, a compound
Poisson process with positive jumps, and prove the following result:
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Theorem 5.1. Assume that X(t) = Zji(f) B;, where N(t) is a Poisson process with rate

7
A and {Bj,i > 1} is an i.i.d. sequence of non-negative random variables. Then

P{Z>z}~E {eAG‘Blz} e (5.1)

if and only if E {e’\efBIZ} < 00, which is the case if and only if E{1/B1} < cc.

Various cases in which the assumptions of this theorem fail are treated in the next sec-
tion. Under certain additional assumptions, the prefactor in the above theorem may be
expressed in terms of g-hypergeometric functions using techniques as in [21]; we omit the
details.

To prove Theorem 5.1, we consider the following set-up: we use the random equation
RL Q + M R. If we use the stopping time 7, which is the first jump time of the compound
Poisson process X (t), then the above random equation becomes

AZ L7 4+ Br(\Z), (5.2)

where Z on the right hand side is independent of 7 and B;. Thus we may assume that
P{0 < M < 1} =1 and that Q has unit exponential distribution so that the tail of ¢? has
unit Pareto distribution.

We aim to find conditions under which the following analogue of Breiman’s Theorem holds:

P{R >z} ~E{M}P{Q > 2}. (5.3)

Breiman’s [8] theorem states that, if U is regularly varying of index —v,v > 0, and V
is independent of U such that E {V**9} < oo for some § > 0, then P{UV >z} ~
E{VY}P{U > z}. As mentioned in Section 1, this result becomes relevant after writing

R 4

e e?eME  Fortunately, the ‘extra’ ¢ is not necessary when U has a Pareto distribu-

tion. We can even get a necessary and sufficient condition for the equivalence. This is
summarized in the next lemma.

Lemma 5.1. Let U be independent of the non-negative random variable V' and satisfies
P{U >z} = =%z > 1, where a > 0. Then P{UV >z} = O(z™%) if and only if
E{V®} < oo, in which case

P{UV >z} ~E{V} a2

Proof. Clearly, we have,

IP’{UV>x}:/OOOIP’{U> z}d}P’{ng}:xla/oxyadIP{ng}—i—IP’{V>x}.

Since, the integral in the first term on the right side is increasing and positive, z*P{UV > x}
is bounded if and only if E{V} is finite and z®P{V > x} is bounded. This proves the
“only if” part.

Now if E{V?} is finite, then 2P {V > 2} — 0 and hence P{UV > z} ~E{V*} 2~ O

We apply this to our random equation (5.2). The first step is to derive a criterion for
E {eM R} to be finite. This is provided by the following proposition.
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Proposition 5.1. Assume P{M =1} = 0. The following are equivalent:
1. E{eMR) < 0,
2. E {eMQ} < 00.

Proof. That 1. implies 2. is trivial. Assume now that [ {eM Q} < 00. Let M,,,n >0 and
@n,n > 0 be mutually independent i.i.d. copies of M and @ respectively. Then we can

0o k
MREY" Q[ M.
k=1 =1

Further, since P{M = 1} < 1, there exists an n € (0, 1) such that P{M > n} € (0,1) and
E {eMQ;M > 77} < 1. Define the sequence of random times 7,k > 0, as follows. Let
70 =0, and, for k > 1,

write

T = inf{n >Tp_1: M, < 77}.

Then, write

n Tk

00 k [ee) Tk [e%s)
MRi;lej[lMizz 3 QnHMis;n’“ S QuM,.

k=1n=7,_1+1 =1 n=T7i_1+1

Set C), = Z%’“ QnM,,. The sequence {C, k > 1} is i.i.d. Note that

’I’L:i’k_l-’-l

E{eMQ;M §n}
< Q0.
1 —E{eMQ; M > n}

[e.e]
E{ec’“} = Z E{eMQ;M > n}mle{eMQ;M <n}=

m=1

Since E {e“1} < oo, there exists a finite constant K such that P{Cy > 2} < Ke .
Now, define a random variable C’ such that P{C’ > 2} = min{1, Ke *}. Note that, for
s€(0,1), E {escl} = % Since we have the stochastic ordering C; < C’, and x — 5% is

a convex function for any s > 0, we have E {escl} < % Thus, it follows that
o0
E {eMR} <E {ezzil ”k_lck} = H E {e"k_lc’“} .
k=1

. k— k=1 .
Since E {e” 1Ck} < %, we obtain for k > 2,

oo} k
log E {eMR} < logE {ecl} + Zlog (ﬂ)
k;ozol
= logE {ecl} + Z[nk log K — log(1 — nk)}
k=1
This sum clearly converges. O

If @ has an exponential distribution with rate 1, we have

Lemma 5.2. Assume P{Q >z} = e~ and independent of M. Then E{eM?} < oo if
and only if E{1/(1 — M)} < oo if and only if E{1/(—1log M)} < occ.
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Proof. Write

E {eM@) — /01 ﬁdP{M <m}.

The second equivalence is plain from the asymptotic equivalence —logx ~ 1 — z as x —
1. O

Theorem 5.1 now follows by combining the results in this section.

Proof of Theorem 5.1. We use the above results with R = A\Z, Q = A7 and M = e 51,
Exponentiating both sides of (5.2), we have

XZ 4 A7 NP1z

e e e

Since 7 is exponential with rate A, e’ has a unit Pareto tail. So, using Lemma 5.1, we
have the required result if and only if E {e/\eiBIZ } < 00. And, finally, since 7 and Bj are

independent, using Proposition 5.1 and Lemma 5.2, E {e)‘efBIZ} < oo holds if and only
if E{1/B;} < 0. O

6 Other subordinators

The previous section showed that the tail behavior of Z is exponential if X (¢) is a com-
pound Poisson process with positive jumps {B;} such that E{1/B;} < co. The goal of
the present section is to consider what may happen when these assumptions do not hold.
Consider the case E{1/B;} = oco. This is not an unreasonable assumption, since it is
satisfied when B is exponentially distributed with rate b. This is the same as Example B
of Carmona et al. [9] with a =\, b =0 and ¢ = 0. Hence Z has Gamma distribution with
scale parameter A and shape parameter b+ 1 and we have

AN,

This example and the result in the previous section lead us to conjecture that the tail
behavior of Z may be influenced by the left tail behavior of B;. The following Theorem
confirms this.

Theorem 6.1. Let X (t) be a compound Poisson process with rate A and positive jumps
{Bi,i > 1} with Laplace-Stieltjes transform (. Suppose that P{B; < x} ~ bz as = | 0.
Suppose furthermore that

K= ﬁ(l — B(k))e"* € (0, 00).
k=1

Then

P{Z >z} ~ (Az)be®

1
Ke bt

as x — 00, where v is Fuler’s constant.
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A sufficient condition for K € (0,00) is that P{B < x} — bx = o(z'*?) for some & > 0.
As expected from (6.1), the prefactor Ke~® indeed reduces to I'(b+ 1) by (2.2), if 3(s) =
b/(b+ s).

The proof of the above proposition is based on an Abelian-Tauberian approach. In par-
ticular, we first determine the rate of growth of E{Z"} /n! as n — oo, then apply an
Abelian theorem to obtain the behavior of the moment generating function around s = A
and finally relate this to the tail behavior of Z using a Tauberian argument.

This type of argument seems perfectly fit for the present problem, since explicit expressions
for all moments are available, cf. Section 2. Furthermore, a probabilistic technique based
on, for example, a change of measure argument seems far from obvious.

Proof of Theorem 6.1. Note that ¢(s) = A(1 — ((s)). Using the Abelian theorem for
Laplace-Stieltjes transforms, we get 3(s) ~ b/s as s — oco. Consequently, we have log(1 —
B(s)) ~ —b/s as s — oco. Using (2.4), we also have

n! n! n!
NI, 28 VT (L= B(k) — Atp(n)”

E{Z"} =

Now observe

logp(n) = log(1 —B(k))
k=1

= —blogn+ Y [log(1— B(k)) + b/k] — by + o(1)
k=1
= —blogn+log K —by+o(1)

as n — oo. This implies
p(n) ~ Ke 071 4+ o(1)).
Consequently, using the direct half of Karamata’s theorem (Proposition 1.5.8 in [5], which

also applies to sums),

n

3 LIRS S S YR
p p(k)  b+1Ke ™

Now use Corollary 1.7.3 of [5] to conclude that

= (3 b s\ —(b+1)
Bl -3 BT (-3 e 0

Define 1 (z) = e*P{Z > z}. From (6.2), the Laplace transform of ¢ is given by

1 07 rb+1) _
3 sE{e 1} A ob S , ass]O.

Hence, the Laplace-Stieltjes transform of ¢(z) behaves like )\b%s_b as s | 0. Again,
from Carmona et al. [9], the density k of Z exists everywhere and satisfies the differential

equation
k(x) = )\/ kE(u)P{B; > log(u/x)} du.
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This implies that k(z) < AP{Z > z}. Thus, ¢/(z) = e (AP {Z > z}—k(z)) > 0, implying
that ¢ (z) is a monotone function. This implies, by Karamata’s Tauberian theorem (see,
for example, [5], Theorem 1.7.1),

(Az)"

~ " as T — 00.
Ke v

()
O

We finally consider a class of subordinators which are not compound Poisson processes. In
particular, we consider subordinators which have Laplace exponents which are regularly
varying at infinity: ¢(s) = s“L(s), where 0 < a < 1 and L is a slowly varying function. A
special case of this class are the completely right-skewed stable Lévy processes. Since in
particular ¢(s) — oo, the Levy measure of X (¢) has infinite mass, and thus X (¢) leaves 0
immediately. Thus, one can expect tail asymptotics for P{Z > z} which are considerably
lighter than exponential. This is confirmed by the following Theorem, which provides
logarithmic (rather than precise) asymptotics. The proof involves studying the asymp-
totic behavior of — logE {esz } as s — oo and then obtaining the result using Kasahara’s
Tauberian theorem, cf. Theorem 4.12.7 in [5]. We obtained a proof along these lines, but
during the preparation of the final version we found out that the same result is stated as
Proposition 2 in [27], where it is applied to obtain a law of the iterated logarithm for an
increasing self-similar Markov process. We only state the result.

Theorem 6.2 (Rivero [27]). Suppose X (t) is a subordinator with Laplace exponent ¢(s) =
s“L(s),0 < a < 1, with L(-) slowly varying at infinity. Then, as x — oo,

—logP{Z > a} ~ (1 - a)g™ (x),
with g~ (z) the right-inverse of g(z) = x/p(x).
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