A New Method for Bounding Rates of
Convergence of Empirical Spectral
Distributions

Sowrun Chatlerjod®
Stanford University, California
Arup Doset
Indian Stalistical Insiitnle, Kolkala

Abstract

The probahilislic propeetics of cigenvalies of random malrices whose dimension in-
ereases indefinitely has received considerable attention, One important aspeet iy fhe
exighenes and enlifcation of Lhe limiling spectral disteitbnnion (131 of Lhe eopirical
distrilnacion of cthe sgenvalues, When che TSI cadsts, 1t i nscful co know the rate at
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Sricljes teaoslorm. In chis ardicle we dueedies o new cechnigue of bownding Lhe gales
of convergence to the LSD. We show how our resules apply to specific cases such as
the Wipner matrix and the Sarple Covariance matric
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1 Introduction

Random malrices with increaging dirmensions are called Juvge direensional rendom
madrices [LIVAMa]. A nice review arlicle by 13ai (1999) discusses anme of the hislory,
technignes and results in the area of LDRMs. Additional insight in the meneral area
may be gained from the review works of Hwang (1986), Bose o, al, (2003} and the
Books by Mehta (1991) and CGarke (1988, 1985). Random mabrices have also drawn
ithe altenlion of malhemalicians for varions ressons. The books by Deill {19997 and
Kala and Sarnak (1999) deal with ihe mathemalical aspecis of random malrices.

Suppose s, 18 an » x n Hermitlan matrix with cigenvalues (characteristic roots)
Ao As-.e Ano1. Then the empirical spectral distribution (ESD) funetion of A, 1s
dofined as

n—1
o BT Z F{d < xt
i—l

The corresponding probability measure Iy s known as the ompiricel spectral mes-
sure, Noto that if {4, } are random, then F, and B are random: F, (i) is a random
variable for overy o« and for every clement in the basic probatality space FL0-) s a
disiribuion fgnction. Also, i Foand G oare bwo randome distribudion Mynciions, then
iheir Kolmogorov distance | — G| = aup,.gp #(r) — Gir]] is also a random vari-
able. For any distrilmtion funetion ¢ (which may be random} en lz, its {random)
charactoristic function is defined as e (2) = [ ¢"™dC(r). When talking about the
convergenee of distribution functions we shall mean weak convergenee, and use the
nolalion “F, = 0 as usual. Nobe Lhal sinee weak convergenee of probalilily
imeasures on B is melrizable, Lhe coneepl of “convergence in probabilily™ ia well-
defined for distribution finctions. Alao, it is well known that if £' is 2 contionons
distribution function, then F, = F if and only if ||Fe  Fla ¢ 0, and so if F'is

contimcns then Fr £ Fif and only if F, — Fla )

{42, i a sequence of square makrices wilh Lhe corresponding FSTY { B 1
{lypically with the dimension of 4, increasing with w), the Dermifing Swectoul Dis-
trifution (o measare) (LSD) of the sequence iz defined as the weak limit of the
soquence [}, if it exists. If the matrices are random, the limit is understood to be
in o probabilistic sense, erther “almost surely” or %o probabality”,

The expected spectrul distebulion furction of 4, s defined as F{F, (A1), This expec-
tation always exists and is a nonrandom distribtion function. The corresponding
probability measure is called the copected spocfral moasiere.

Thore are cosentially towe general tools available to cstablish the LED: the moment
imethiod and Lhe Slielljes teanglorm melhod. Glfen che expected dizeeilagdion funclion
ia easier 1o deal with. The weak convergence of £{F, ) then serves aa an inlermediale



stop in showing the weak convergence of F.

When 1he LA exisla, it ia uselul Lo konow 1he rale al which the convergence holds.
The main method to establish such rates is the use of Sticltjes transform. In this
article wo cstablish some general resulbs usetul in establishing the probabilistic ek
convergence of Ty from the convergenee of FBIF,Y and the corresponding rades of
conyergenee. We apply hese Lo estalilish some new rales of convergence. The rale
will be meagured in lerms of Lhe Tollowing Lwo quanlilies:

A(FG) = BIF Clw=E sup|F(r) Gr)
redf
and when & ig non randonm,

AF.G) = |E(F) — G o = sup|E(F() — Glr)

Tl
Griven o tandoin Tlermitian matrix A of order s, the empirical characteristic function
ol A is Lhe charvacleriglic Munclion of the empirical gpeclral dislribylion of A2 Tel us
call il 2. From Lthe speciral decompoaition of 4, i1 is easy 1o see that

T
wl(l) = ;1.1‘“}‘“)

where n s the order of A and ¥ denotes 375, il ¥ oas usual, We shall henee
lforih dead wilh thie gpeclval measore of A Theoogh Wis charaeierisiic Tunclion.

Chir approach i3 to obtain bounds for Var(e(t)) and then nsing Esseen's lemima or
otherwise, doeduce the concentration of the spoctral measure near its moean, and also
et the magnitude of concentration using the bounds,

To de dhia, we nesd Lo be able o expreaa Lhe random malrix 4 as a [unetion of
independent real random variables @, 29, ... , &y, where s is large, Then for each
t, o(t) is also a function of =y, 72, ... 8, Lypleally, we show that this function is
slowly varying, that is, cither the partial derivatives are bounded by small oumbers
it sup novm, o Phe expected walue of the norm-sguared of V(] s gmall. This,
lollowwed Ty an application of a Poincaré Lype inegualily [when we have a bound on

Vi) o) o an Blron-Siein bype inegualily {when we have bounds on the parliala)
will produce a bound on Var{p(t)).

The bounds on the partial derivatives and the gradient of (&) (as o function of

WL oo b)) are oblained by using Lhe identily
At il a4
‘l:-""[ ::I = —{r (itd_ﬁﬁ-;l)
thiry ir g

. it o f "
coupled with the careful use of the fact that 9 15 o unitary matrix. Tt may be
mentioned that in none of our examples shall we need to compte ¢ explicitly.



W shall crnploy the albeve approach to o fow cxoamplos, meluding laege dimensional
Wigner and Sample Covariance malvices, and oblain improved rates ol convergence
under guitable conditiona. Simulation resilla auggest Lhad owe bounds for Var(e{(])
have the correct exponent for 1 in all cases.

Wi now introduce some notations. For a complex vandom varnable X, its varianee
i delined Lo be F|X — F;{X}F. Ferr 2= 0 deline Lhe probabilily densily
1 —ecos b
frp(r) = —————.
1) r Lz
Lot Ifr, b the cormesponding distribution function, The charactoristic function of
Ty is given by () {1 — %]-’ilil < L). Note thal [ |op(i)]dt T

FPinally, the congefution £ = of & and 7 1s defined in the nsual way. That is,
FxGlx)= [Flz ydGly) =[Gz y)dF(y).

Now suppose we have a complex mattix A which is a (componentwise) difforentiable
funclion of & real or comples gealar varialle w0 The following Les simple Temimae
will be uselul. We omil itheir proofs.

Lemma 1 If A{u) s an elemenfwive differentiobe map frore B o T inle T then
el A JA
—tr(e”) =1 | ——e
VI ) )

Lemma 2 If A is Hermitian and t 45 real, ther o {5 o unitary matriz. In par-
ticalar, for any vector z, |¢™a| = x|, (where |- | denotes the Buclidean norm) and

also all entrivs of e hove modules < 1.

2  Mauan Results

Wi firgt catablish o bound on the expected Kobmogoroy distanes. This will e
evenlually used o estallish rales of convergence Tor The T5ST)

Theorem 1 Suppose F' 15 a rondom distribution function on & usth frondom) char-
acteristic function p. Swppose Var(e(t)) < OF for cach £ Jf & iy o nomandom
distribution function on 2. sueh thal supgep |G| < A | ihen
e e I
AN Lf‘l-_ If;} < Ejl._-f'l- {';} A1 L(?l;‘l
w

where A and AT are as defired in e mdroduciion.

Proof Lot Fy = E{F), and let 5 be the characteristic fimetion of Fy. Then by
assumption,

Elip(#) — ni#)] = vCltl.



Dy Lemia 1 (Eescen's lemina) of Feller (1966, page 5107,

|F_G =2 F*HL—G*H;_. an — ==,
MNow

|8 =« He — G Hyllse < |[Fye Hpy — G e Hylloo + |74 Hy, — = He ||
< |Ey = Fllae + F 2 Hp — Fyx Hy ||

50 by applying the inversion formula (see Feller 1466, page 182-181) and the bypoth-
cels about Var(o(t)).

i gy |2]
[TES)

s
Combining all these observations, wo have

AY(F,G) < 2A(F,G) + 255 22

" Wi

Choosing L* = 12AC =% gives the desited conclusion. L

BEMARK 1: The lollowing resit linking the convergence ol experied Kolmaogoroy
distance with the convergence of the characteristic function may also be proved by
a similar convolution argument. We omit the proof.

Theoremn 2 Let { K, n = 1} frandom) avd I feonvandom) be disteibudion fenctions
on [k, with charecteristic funetions {gq,n > 1}, and @, Suppose F is differentinble
ceeryuhere with bounded derivative. Thenr the follmeing ore equivalend:

(a) A (F.. F) >0

(bl wnlt) — () in probabidity for cach t € R

(¢} Plpn(t) — 8] — O for each L

Note the condition on the variance in the statement of Theorem 1, The following
result on hound for variances of funetions of independent raudommn waiables s wsefal
while applying Theorem 1 o TST Parl (L) [ollows from parl (a). The earlies
veraion of part (a) is crediled Lo Heellding (nnpublished work) and dilferent veraions
are dne to Efron and Stein (1981}, Steele (1986) and Devrove (1991). A proof may
be found in Gyorfi of al. (2002),

Theorem 3 (Fifron-Stein bype inequalily).
fa) Suppose Zy.... 2, 27,00 L 2 are independent m-dimensional random tectors



where Z; has the seme distribution as Z7 for all i Suppose that f o (E™) = C
walisfics T I{Zl, S Z“:l 2o Then

1“1,1'[_?[2. ._Zﬂfljl < EZE”['E-I ,En} f{Z'|, ._z,!ﬂ_|._zk._zh+|._.,. ,Zﬂ]ll'.
B

flj If o 3% — I as Lopselttz one cach coordinate with Lipschits constands M1, Mo, oL M,
teen for independent sguore infeyrable reol rondom variables X, X, 000 0 X,

Var(F(X). Xy X)) < M Var(X;).

e

Boetter results can bo obtained if Xq, X, ... . X, are Lid. fom a distribution F
which has the following propoerty:

POIN  There crtedy o consband K 2 0 suek el 8f X ~ F, and g B — T 45 a
(tarally) absotulety rontinumes mop, then Var(g( X)) < KBy (X2

HEMARK 2: Such incrqualitics are known as “Toincard Incqualitics” in the litera-
ture. It may be noted that (o) if X satisfics POIN with constant &, then for any
¢ € 3, X satisfics POIN with constant Ko, and {b) for any distribution funetion
galislyving POIMN. the variance inequalily holds Ror abselulely continuous Tunelions
g & — [ as well. There 1s a huge literature on 'cincaré and isoperimetric in-
caualitics for probability measures, and we hasve included some of that inocur list of
reforences. The fact thar the one dimensional Gaussian distribation satisfies POIN
has been o part of folklone and has beon knewn sinee 19308, Sce for exaauple Dedkner
(1889 Thal the mullidirmensional Gaussian diguriboglion also salislies POIN has
Been known since 19503, See lor example Brascamp and Liel {1976). AN il ribu-
tions with log-concave densities (e, densities of the form 4! where {7 is 2 concave
function) satisfy POIN. A complete characterization of all absolatcly contionous
distributions which satisfy POIN is available in Muckenhoupt {1972),

The nexl resull, which LTows Tome The Tlron-Siein inggualily s very well known
and is provable under weaker assmmptions. See Ledoux {2000).

Theorem 4 IF X Xo. o0, Xy, are fndependent and solisfy POTN with Poineard
eonstants bowunded by I, then for any €' map f: B — O,

Var( f{ X NS KBV X0 o X))
where | - | denotes the Buclidesn norm,

Now we demonstrate an application of the above rosults fo find rates of convergence
for sore random matrices:



Example 1 (Wigner Matvices), A Wigner matriz (Wigner {1955, 1938}) of order
aoand seale parameler o 15 & Tlenmitian malvis of order n, whose enlries above Lhe
thiagenal are independent complex random variables with sera mean and variance o2,
and whose diagonal elements are i.i.d. real rancom variables. This matrix is of con-
siderable interest to physicists. Soveral rosults on its LSD and rados of comvergenc:
of the TEETY are known, Wigner {1953) assumed the entries o be Ld. real Gans-
gian and eslablished Lhe convergence ol (7,1 Lo the semi-croular Taw.  Assuming
ihe exislence ol [inile moments of all orders, Grenander (1963, pages 179 and 208)
established the convergence of the ESD in probability, Arnold (1967, 1971} obtained
almost sure convergence assuming independence of the cotrics and finiteness of mo-
ments. Bal (1999) ceneralised the rosult of Arnold (1967) by considering Wimner
matrices whose eotrics above the disgonal are not necessarily identically distribautoed
and have moomwomend reslriclions excepl Lhal they have linile varianee. There i o
related resull of Trotler [1984) alan. Boutel de Monvel, Kharunshy and Vasilehnk
{19496} obtained some other generalizations of Wigner’s resulta with weakly depen-
dent Gaussian sequences,

Tor our purpose, we ghall lake (he elemenia o e veal. Suppose thal B, i3 a Wigner
matrix with random independent entries (X J;:} having commeon varianece 1. We shall

= . 2 B 2 4 o
drop Lhe auperacripl # lor ease of nodalion. Tn many ailuations, the LED ol v Y207,
exiats and is given by the famous semi-cirele law

T ofi® S
Flo)= 5 | =L 50
2 -
Consider the following “hasic assumptions™:

(W1} F(Xp) 0. FB(X3) 1.
(W2) sup,;;, EX} < oc.

(Wi) »F (ijf{ i :_\(_ny.-'u}) = of{n?} for any ¢ =0

Lot F, be the BSD of v Y2905, Dal (19934) proved that under the above assamnp-

biong, AFLFY Ol l.-'f‘lj which was improved by Tai, Wiao and Tsay (1997) Lo
1 — ¥loe = Opln L4 In Bai, Miao and Tsay (2002}, this was lurther improved

to ||l £ — £l = (Fp(n~%7),

Suppose wo strengthen the thivd assumption to

(W) B (X5 T pani ) ofn?) for any e >0,

Then they also showed that Afs, FY =1 }(ﬂ_—l;'?]_
Further, suppose that the basic assumptions hold and in addition assume that

G



(W35} sup, supy, BX % < o for every k= 1
Then ||[§, = I" . — Oin 275 1) almost, aurely lor every = (L

Wo will show hoere how our results may be applicd under minimal conditions to ob-
tadn weakor vate results, and under stronger conditions, new and stronger resulis.

Tix any o = 1. Suppose we wrile Lhe elements ol Rrln 1172 g Luples of Lhe [onm
{#j%). where j 1ins from 1 fo n, and for each 7. & 1uns from 1 o . Then, we
can have a map Wo, : EH12 0w B sehich takes a tuple (@) to the Wigner
matrix whose (. &)-th cotry is n-_1-“'2-:1j;n if 7 = k, and n_'-""’a,,:.__?- othorwise. Then
Wik = E’;-}E-“ is o constant matrix whose (5, k)-th and (&, j)-th entries are n= 12
all elher t-nl.riP'% are zero. Thus, il we lix some £ € T and deline @b Lo be che empirical
characteriatic finction of W, evaluated at #, then if follows from the results of the

proceding scetion that

i =5 Hr ('Im1 B ot ) = (-iﬁl-'i"-,i'ihﬂ“m?") !

fhitp f}ﬂ?}-

arwel

Now. il we let /2 = e and denote its elemenis by b, 1t lollows thad

el ity +byy)  Zithy
Mty g ity T AT

Tha lagt cquality helds becanss 7 is symmetric. Thus,

Zldﬁm 29y Wby 2 A2
= nd

a=k A

The lagl equality lollowa Teom Lhe Tael What 12 s uaitary.

(It is worth mentioning that it is a well-known result that for any Lipschitz fimetion

£ E = € if we define T¢(W,) = n™! Z;‘ CFUAG), whete Aq, A, ... Ay are the
eigenvalues of B then VT (W] 2o f”ilp Bee. lor example. TTorn and

Johimaon {1983 or Simon {1979). Tor the case ol complex enlries. a shimilar resull

holds, too. See Guinnnet and Zeitonni (2000%). Applying these observations to the

seenario where gy, are random. and noting that sup_y. cq & lz) ="', wo have:

Theorem & If W, i a random real Wigner snatric whose enfrics on and above
the digyonal are sedependend and salisfy POIN weil Ponicaré consfants waiformdy
hownded by K, fhen Varle, (1)) < 4-!'\’.",2;"'-112. onseguently, by Theorem {, if
denotes the semieirenler o, then

8O 2K

A*(Fy. F) < 2A[F F) | g

- i -
where F, denotes the empivical c.df of n=-2W,,,



In this context, it should be mentioned that peneral bounds for P{4{ f{T,)) —
EOrif (WL = 6 where [ is a Lipschilz funelion, may be oblained by using the
resitla of Guionnel and Zeilouni (2000, Theorem 1.1, However, il f i3 nol convex
{as is the case here), then the stronger assumption that the distribution of the en-
trics satisty o logarithmmic Soboleyv ineguality instead of POIN is roguired for those
Bounds to hold, Those bounds would amply the variance bound on The cropiviacal
charvaclerizbic Tunclion thal we need. TTowever, sinee [ in chis problem s nol convesx,
anidl dince we are only inlerested in variance bounds Tor applying Theorem 1. 1the
atronger assimption seems ko be innecessary.

A,

Now note that by Lemma 2, the olements of ¢ are bounded m modulus by

1, amd thiz implics

ol
ﬂ"." m

= 2#ln7E
ﬁrr,j;f

e

So, i we don't assume POTIN, wie can still have the following result under remarckabily
weak condilions, by invoking Theorema 3 and 1

Theorem & If W, is a random real Wigner mateiz, whose enteies on and above Hhe
diggonal wre independent with vortance wntformdy bounded by 1, Hen

4t

) 44# 5
Var(ipn (1)) < —5 > Var{zge) < -

Jzh

Menee #f Fy denoles the empiriced ood L of o AW wnd F denoles the vemscieular
s, Lhes

142
AYFL F) < 3A(F, F) | Sl;?eiz n L,

REMARK 3 A recent result of Gotze and Ulkhomirov (2008) which appeared af-

ter this article was submitted supercedes Theorem 3. There it is shown that if

Ma = supg F-'.-'X;-i',‘:._ then AR, M < (f."‘r}f;"lz'rr. L2 71 Turther Lhe observaiiong are

(Gaussian, Lhen Gélze and Tikhomirov (2002) show thal A(F,, 1) = O(n 29 The

aremn 6, however, seems o be new.

Example 2 (Sample covariance matrices). Suppose X s o real pox o matrix with
entrics g, which are . real vandom variables with mean wevo and unil varianee
Tel & ﬂl.YXT. Tt case. Lthe enlrigg are Lid. noemal, much ig koown alwonl Lhe
dhiglribiution of eigenvaluesd of 5 and velaled malvices. See Anderson (1984}, The
L5D of S was first cstablished by Marcenko and Pastur {1967). Subsequent work
on & may be found in Grenander and Silverstein (1977), Wachfer [1978), Jonsson
{1982}, Yin [1986). Yiu and Krishoaiah (1985) and Dal and Yin (1988a). Ty, =



pfn— y £1(0,1 then the BSD of 5, converges almost surcly to the law F{-) with
the Maréenko-Paslur dengily

Vb l(s o) ifea<z<h, |

] el herwise

where a = aly) = {1 - /47 and b = bly) = 11+ /5] It can be casily shown that
the density is bounded by A = |74l y) i

Tn cases whore y o= 1, the LeD exists but has a point mmass at the origin. If ¢ = 0,
then g scaling and o cenbering are regquired Toe che TETY of &, bo exisl. See T
{1999} or B3ose el al. (2003) o the precise reaulis. We do nol congider 1hese cases.
For vorsions of this result under variations of the above conditions, soc the above
reforences,

Ag inihe cage of Wigner malrices. the Stielljes tranglorm melhod was used o de-
rive rales of convergence resnlls. Bai [1933h) proved thai A{F, 1) = Oln Ly e
(3{n =79 depending on how close yy; is to 1. The same rates were obtained for con-
vergenee in probability of Fy to Fy in Baid, Miao and Dsay (1997). The most recent
rosulls are by Bai, Miao and Yao (2008) who prove several results under the condi-
i wiven in Toarmple 1. Toparticalar it follows fromn thir results that i g, romains
Brrunded away Mo 1 and suilable combinations of the aliyve condilions hold then
A*(Fo. Fy) — Ofn =21 1Fa=Fyl o — Opln %) and ||y =Fylloc: — Ous.fn 2514,

Now considoer 5 as o function of the eotrics of X, Clearly,

08 % .
U5 _ Liyxr | xy?y

G =
Tk rﬂ':r.'_]; P )

whove Y= 80X /it Now the matrix ¥ ohas 1 at the (7 E)th position and 0 else-
where, e Y t‘_jl:”l&'iﬂ where g r s Lhe peveclor with 1 al Lhe gelh pogilion and O
clsewhere, Thus, if @4, denotes the kth column of X and ie?, denotes the empirical
characteristic fmetion cvaluated at £, then

‘
.,
'Ejm_‘,".r.'

P (LS e
= {t{np]” 'tr{YX ST Yf"'cf"""'}
= it{np) " rle; at et + ;r-.;gc;{;ﬂc"lsj
= itlnp) Hrke e, + el £ 0y
Eﬁ!’-.ﬁkj

T

where we have written zp; for the jth component of the vector 2, 1= ey Note
that sinee ¢ iy nuitary, ||z = | 2.4-



Now suppose @) are Tandow wariables, Then using the preceding observatioms, woe
have

nep

S let < g = i Sl = g Sl
d.a?;,. T  nipt = ST e 2 ik

and so, under the assumption Vi, k, Tl < M2, i follows that

4 ’Lﬁz

E|Vyt,
np

Applying Thecems 4 and 1. we immedialely have the lowing resull:

Theorem 7 If {w} are fndependent and selisfy POIN amith Poincaré constonds
bounded by K and sccond moments bounded by M, then Varip,(t)) < J‘I‘-‘-ﬁ--*z Con-

sequently, f y = pfn € ((L1) and Fy, denotes the Maréenko-Pastur distribution with
perarieter y, hen

S(6) 12 ER1 A 2 142

A Fpp. Fy) < 28(Fy 0, ) S n

where Fo, denotes the ESD of 5.
{Mole thal il X i= a mean «ero random variables salislving POIN wilh conatanl &

then antomatically EX? = Var(X) < K. So we can put M = K if the entries have
ZUTO ICALL )

T we dan’l, assume POIN bul instead impose Wi k. ] < M as. Lhen

: 2AM|¢
|:j:‘“w | < 20l¢np) k]l = 20t () x| = ”JL}

Thus, if the variance of 1, is bounded by 1, then

AMPE M

Var(iga(t)) - np =
iy T

Heinre we gel

Theorem 8 Suppose y = p/n ¢ (0,1} ond g ore independent with meoen 2ero and
vartance bounded by 1. Suppose M is suel thet Pl < M) — 1. Then

A : s : sy a0
AY(Fup Fy) < 28(F 0, Fy) | B A g

where F, o is the EDF of 5, as before.

11



REMaARK 4 Again, it is proved in Gitze and Tikhomivey (2003) that under finite
twelllh moment, A{F, . F,1 Ofn 22} Towever. Theorem 8 still appears 1o be a
new rasill.

Example 3 (Anti-loeplitz matrix). Suppose (@, ©1, 5, ... F 18 o sequence of mum-
bers. The anti- Teeplitz matriz of ovder v defined by this sequence is A — (e 23 med o))
Wisually,

HH Higl xre at Taa— |
T H i) e T — HA)
A, = Ly H 51
L Tw—1 0 ] Tt My—g

From the results of Bose and Mitra (2002) and Bose, Chatterjoe and Gangopadhyay
(20003}, it follows that if {x;] are 1.1.d. with mean zero and varianes 1 then at cach
arpuinent, the BSD of X, = nE A, converges in Lo to the LD with density f
given by

Fle) = |elexpl—2%), — <2 < 2.

Hence the ESD converges to this distribution in probability.,

Lot B = ¢4, Denote clements of B by by, and the empirical characteristic fimetion
of Ay, evaluated at € by o, s usual, Then it can be chedked by our usual techuigue
thal

By _ il Sy
dzy nyn A

ita =2k ol n

for k=0,1,... ,2n 2. Thus,

By o P E 202
2] iﬁﬂ? mo Y wlf =0

T i g—2—k mnd o

We used the Canchyv-Schwarzs inegquality, noting that for each &, there are at most 2n
pairs of (i,7) such that ¢ 7 2 = kmod n. The last cquality holds due to the fact
that 3~ 5 |b[* = n, 18 we observed hoefore. Now we can show, as before, that if @y,
are Lid from a dengity satisfying POTN, then A7 (F,. F < 2A{F,. F) +1“_}|:-.r¢_1.-"1:|.
Mule bhad o Phis case, Lhe gigenvalues cun be explicilly oblained and using their
fovin, under suitable conditions, A(f5,. #) is o a much amaller order than n 1=

In the next two cxamples on Hankel and “locplitz matrices, the cxistenee of the
LD wore open problems, vory rocently settled by Bryve, Dewbo and Jiaog (pri-
vato cotnmunieation). ITowever, neither the closed for exprossions of the LD ner
iLhe convergence rales are knowi. Our melhod, however, applies very sasily Lo give

1.



bounds like A*(F,, F) < 2A(F,, F1—On " (asswining that the dmiting distribu-
tion has a bounded dengity}. We hope Uiz will congiderably ease the task of finding
ihe convergence rates aller the limiling digiributions are identilied.

Example 4 (Hankel matrix). A matrix of the form B, = ({#z,—;—2)) (under the
satne notabion ag in the previeas example] 3s called a Tlankel matric. Note that the
mabeix is symmelric. The ebieclive s Lo invesligale Lhe limiling bebaviour of Lhe
speciral distribulion of o Y28, As we sald belore, Lhe existence of 1he T.8D has
heen settled. The computations for our method are very similar to the previous
cxample. In fact, here

andd s, exactly sinilar compulativons as belve show (hal under POTN we can again
gel AR S 2ARL )+ Ofn 1) O Lhe ai oare sl with mean wern and
varaince 1 and #' has a boundsd density.

Example 5 {Toeplits iattix). Under the same notation as before, the o oo -
brix T, (Lrg—y 1) is called & Toepditz mafrix ol order n. Some Lheoretical resulls
and sinmlations of Bose, Chatlerjes and Gangopadhyay {2008) showed thal it s
plansible thai the LSD of n~1/27, exists when the variables form one Lid. se
quence. Recently Brye, Demhbo and Jiang (private communication) has shown that
the LSD cxists, 1s unimodal and oonnormal,  Exaetly the same kind of compa-
tabions ag o the preceding examples show that o this case, toee, ander POTN,
AP T < BAR F1+Oin l-“"'=:|._ again il Lhe Tindling distribution has g bounded
density.
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