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RANDOM ORIENTED TREES: A MODEL OF DRAINAGE
NETWORKS

BY SREELA GANGOPADHYAY, RAHUL Roy! AND ANISH SARKAR®

Indian Statistical Institute

Consider the d-dimensional lattice £7 where each vertex is “open”
or “closed” with probability p or 1 — p, respectively. An open vertex
¢ is connected by an edge to the closest open vertex w such that
the dth co-ordinates of v and w satisfy wid) = v(d) — 1. In case of
nonunigquenecss of such a vertex w, we chocse any one of the closest
vertices with equal probability and independently of the other ran-
dom mechanisms. It is shown that this random graph is a tree almost
surely for d=2 and 3 and it is an infinite collection of distinct trees
for o = 4. In addition, for any dimension, we show that there is no
bi-infinite path in the tree and we also obtain central limit theorems
of (a) the number of vertices of a fixed degree » and (b) the number
of edges of a fixed length 1.

1. Introduction. Leopold and Langbein (1962) introduced a geometric
model of natural drainage network which they described as

wsing a sheet of rectangular cross-section graph paper, each square is presumoed
to represent a unit arca. Each square is to be drined, bt the dminage channel
from each square has equal chance of leading off in any of the four cardinal
directions, sulject only to the condition that, having made a choice, flow in the
reperse direction is not possible. Under these conditions it is possible for one
or more streams to flow into a unit area, but only one can flow out.

Subsequently Scheidegger (1967) introduced a direction of low. In his study
of Alpine valleys, he imposed conditions on the Leopold and Langbein model
by requiring that the drainage paths be in the “direction of high gradients
between watershed and main valleys.” Thus the drainage forms an oriented
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network, with a square emptying to one of its two neighbors in a preferred di-
rection. Howard (1971) removed the restriction of drainage to a neighboring
square and modelled a network to include “headward growth and branching
in a random fashion.” Rodrignez-Iturbe and Rinaldo (1997) present a survey
of the development of this field.

The random graph we study here follows the one described by Howard
(1971) with the caveat that a stream is not permitted to terminate or become
inactive. Thus we consider the d-dimensional lattice Z9 where each vertex is
“open” or “closed” with probability p or 1 —p, respectively. The open vertices
represent the water sources. An open vertex v is connected by an edge to
the closest open vertex w such that the dth co-ordinates of v and w satisfy
wid) = v{d) — L. In case of nommigueness of such a vertex w, we choose any
one of the closest vertices with equal probability and independently of the
other random mechanisms. These edges represent the channels of flow in the
drainage network.

Our main result (Theorem 2.1} is that, for d =2 and 3, all the tributaries
connect to form one single delta, while for f > 4, there are infinitely many
deltas, each with its own distinct set of tributaries. In this connection it
is worth noting that (Theorem 2.2} there is no main river, in the sense
that there is no bi-infinite river; instead, each tributary has its own distinet
source. In addition, for any dimension, we obtain central limit theorems of
{a) the number of sites where a fixed number v of tributaries drain, as well
as of (b) the number of channels of a fixed length [.

Similar tree forest dichotomies have been studied for the uniform span-
ning tree model by Pemantle (1991) and for the minimal spanning tree model
by Newman and Stein (1996). Ferrari, Landim and Thorisson (2002) have
obtained similar results for a continuous version of this model.

In two dimensions we obtain the main result by showing that the distance
between two streams starting at two different sites forms a martingale and
thereby invoking the martingale convergence theorem. For three dimensions
we employ a technique based on Lyapunov functions, while in four or higher
dimensions we couple the streams starting at two different sites with two
independent and identically distributed random walks starting at these two
sites. To show that there are no bi-infinite paths in the graph we utilize
the stationarity of the model and use a Burton- Keane type argument. The
limit theorems are obtained by checking that the random processes satisfy
the conditions needed to apply Lyapunov's central limit theorem.

The formal details of the model and the statements of results are in the
next section.

2. The model and statement of results. Let = {0, l}:"hE and let F be
the o algebra generated by finite-dimensional cylinder sets. On (2,0F) we
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assign a product probability measure B, which is defined by its marginals
a5

Pluwiw(u)=1}=1-P{w:w(u)=0}=p
for u € Z9 and 0<p=<1.
Let {Uyw:u,v € Z% v(d) = u(d) — 1} be i.id. uniform (0,1] random vari-
ables on some probability space (Z,8, ;). Here and subsequently we express
the co-ordinates of a vector u as u = (u(l),...,u(d)).

Consider the product space (2 xZ, F x §,P:= F, x p). For (w,£) €0 x E,
let V(=V(w, £)) be the random vertex set defined by

V(w,&) = {ue Z%:wlu)=1}.

Note that if u € V(w, £) for some £ € =, then u € V(w,£’) for all £ € = and
thus we say that a vertex u is open in a configuration w if u € Vw,£) for
some £ € =

For u € Z9, let

N, = Nu(w, €)

= {1‘) £ V(w, &) :v{d) =u(d) —1 and

d o
Z lu(i) —uli}| = min{z Jw(i) — u(i)]:w € V(w, &),

w(d) = uld) — l}}

Note that for p = 0, N, is nonempty almost surely and that N, is defined
for all u, irrespective of it being open or closed. For u € 29, let

h{u} € N, (w,€) be such that
Uu_-h[u]' (§) =min{ Uu,ﬂ(‘f} rv €Ny (w, £)}

Again note that for p >0 and for each u € Z%, h(u) is open, almost surely
unique and h{u){d) = u(d) — 1. On V(w,£) we assign the edge set £ =
E(w, &) ={{u,h(u)):uecV(w,&)}

Consider that graph G = (V, £) consisting of the vertex set V and edge
set £. For p=0,V = @ almost surely, and, for p=1, (u,v) € £ if and only if
u(i) =v(i) for all i #d and |u(d) — v{d)| = 1. Also, for a vertex u € Ww, £},
there is exactly one edge “going down” from u; that is, there is a unique edge
{u,v) with v(d) < u(d). Thus the graph § contains no loops almost surely.
Hence, for 00 < p < 1, the graph G consists of only trees. Our first result is

(1)
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TueonreM 2.1, Letl<p<1. Ford=2 andd =13, G ronsists of one sin-
gle tree P-almost surely, while for d = 4, G is a forest consisting of infinitely
many disjoint trees P-almost surely.

Regarding the geometric structure of the graph G, we have

THEOREM 2.2, LetD<p< 1. For any d= 2, the graph G confains no
bi-infinite path P-almost surely,.

Now for v =0, let S, be the number of vertices in V1 ([1,n]%) of the
graph G with degree 1# + 1. Also, for [ = 1, let L, be the number of edges of
Ly-length [ in the graph G with one end vertex in V1 ([1,n]?).

THEOREM 2.3. Asn— oo
(a) Sn—E(Sn)

—gi—— converges weakly to a normal random variable;
(b) Lo=Bla) converges weakly to a normal random variable.,

2
Finally, for d = 2, given that a vertex v is open, the following proposition

gives the exact distribution of the degree of v.

ProrosiTion 2.1, Given that o verter v is open, the degree of the verter

in the graph G has the same distribution as that of 14+ Y + X + Xo, where
Y., Xy and X are independent nonnegative random variables such that

V= 0, with probability 1 — p,
B with probability p,
forr=10,

forr =1

1,
P(X1>r) =P(X2>7)={ (1-p)"'(2—p)
23 —3p+p?)y
Thus the erpected degree of a verter, given that it is open, is 2.

REMARK 2.1.  Asin Lemma 7 of Aldous and Steele (1992), using the er-
godicity of the process, it may be shown that in any dimension, the expected
degree of a vertex, given that it is open, is 2.

3. Proof of Theorem 2.1. We fix 0 < p< 1 and for u,v € 29! consider
the d-dimensional vectors u := (u, 0) and v := (v, 0) and let (X7, —n) := h"(u),
where h™ denotes the n-fold composition of h defined in (1). For Z,(=
Zplu,v)) := X7 — X7, we first observe that it is a time-homogeneous Markov
chain with state space Z9-1; indeed, this follows on writing fZ = Bty
I = Enyy g =2} = U:n.r.l:...,m:-_-zd{xgj-l = Tn+l, XE#:‘, = Tn+l + Za+tl,
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X =Tn Xtz = Tn + 2n, .- Xl.'ﬂ =T, X ﬂ_,_ 2 = T0 + zp} and using the
Markovian property of the pmcms JEED. A = 0.

The connectedness or otherwise of the graph G is equivalent to whether
or not £, is absorbed at the origin. For d =2 and 3, we show that 2,
gets ahsorbed at the origin, 0 € 2! with probability 1; while for d > 4,
Z, is a transient Markov chain and hence has a positive probability of not
being absorbed. In this connection observe that instead of the above Z,
if we had considered a modified Markov chain Z,, where 0 is no longer an
absorbing state, but from 0 we move in one step to some fixed vertex u#0
with probability 1 and the other transition probabilities are kept unchanged,
then to show that the original process 2, is absorbed at 0 almost surely, it
suffices to show that the modified Markov process Z, is recurrent. A more
formal argument for this would require £, and £, to be coupled together
until they hit the origin, which occurs almost surely if the modified process
is recurrent. For the case d = 3, we will show that 2, is recurrent. The proof
is divided into three sections according as d =2, d=3 and > 4.

3.1. d=2. Fix i < j and observe that X' < X7 for every n = 1, where
AT and X;‘ are as defined earlier. Thus the Markov chain 2, := X X7
'mth Zy = 7 —i has as its state space the set of all nonnegative mt@gf'rﬁ ‘5111&1
the marginal distributions of the increments of X and X7 are identical
with finite means, {Z,:n >0} is a nonnegative martingale. Hence, by the
martingale convergence theorem [see Billingsley (1979), Theorem 35.4, page
416), Z,, converges almost surely as n — oc. Since {Z,, :n =0} is also a time-
homogeneous Markov chain with 0 as the only absorbing state, we must have
Z, — 0 as n — oc with probability 1. Since this is true for all i < j, we have
the result for d = 2.

3.2. d=13. Throughout this section the letters u, v in bold font denote
vectors in 2%, u, v in roman font denote vectors in Z2 and u, v in italic font
denote integers. Fix two vectors u:= (1,0) and v := (v,0) in Z? x {0} and let
Zp(= Z,(1,v)) be the time-homogeneous Markov chain with state space Z2
as defined at the beginning of this section. We shall exhibit, by a Lyapunov
function technigue, that this Markov chain Z, is recurrent, thereby showing
that £, is absorbed at the origin with probability 1

Consider the function f:R? — [0,0c) defined by f(x):= {/log(1 + ||x|3)
where || - ||2 is the standard Ly norm (Euclidean distance). Since f{x) — oc
as ||x|l2 — oc, by Foster's criterion [see Asmussen (1987), Proposition 5.3 of
Chapter I, page 18] the following lemma implies that Z, is recurrent.

LEMMA 3.1, For alln =0, there exists T' = 0 such that, for all ||x|2 =T,
we have

E{f{2ﬂ+l} - f{zn} | 2?1 =x) <.
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Proor. Letg:[0,0c) — [0,0c) be defined as g(x) := /log(1 + z). Clearly
glx) =0 forall z =0 and g(x) — oo as £ — oc. Also, for z,y = 0, the Taylor
series expansion yields

2 A
(@) 9@) -90) < (@ - )W) + TS g0 + LU g0y,

which holds becanse the fourth derivative

9(4], (q} —_— 3 N 11 :
(L+s)g(s) 41+ 5)'(g(s))®
15 15
B(1+s)'(g(s))®  16(1+ s)(g(s))
The first three derivatives of g, which we will be needing shortly, are

= < () for s = (.

1 1
§s) = 2(1+ 8)g(s)’
(2) . 1 B 1
9 = T oree) AT+ P GO
gH(s) = 1. + ? + - .
(1+35)%g(s) 41+ (g(s))?  8(1+ s)g(s))®

Note that, for all s large,

3
ST T .. DA
R Ty
Assuming for the moment that (we will prove this shortly), for some a0 = 0,
@) E(|Zta | = 1Zal2 | Zn =) = a+o(x/l7?),
(4) E((1Zn411 = 1Zal13)* | Zn =x) = 2a|jx]|3,
(5) E(([|1Zn4118 — 1Zal13)* | Zn =x) = O(|Ix[13),
as ||x|l2 — oc, and using the above estimates and expression for derivatives,
we have, for all 3:= ||x||} large and for some nonnegative constants € and
C'a,
E{f(2n+l} = f(zn}lgn =x)
- a+Ch/3 2013
T 2(14 Bhlog(1+3)  4(1+ 3)2y/log(1+ 53)

208 33
TR+ B2Vt B T (1+ B8P Iloa(L £ 0)
B 1 i 140, 1L UCB 208
T B+ B el B T YT T Tk T leg+ B))°
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The term inside the square brackets tends to —oc as  — oc; therefore, for
all sufficiently large /3, the term is negative. Thus to complete the proof of
the lemma we need to show (3)-(5).

Let Dy, == {v € Z?:||v||; < k} denote “L;-diamond” of radius k and 6D}, :=
{v € Z2:||v||; = k} its boundary, where ||- ||, denotes the L; norm. Consider
the probability distribution of the step size of the random walk, associated
with the tree generated by one particle, that is, the distribution of X:

=X =)

(6) o i s ifu=o0,
— — k=1 — . i
= L= #ilﬁD (1—p}) }, foruedDy, k=1,
k

where o :=(0),0} is the origin and #A4 denotes the cardinality of the set A.
For any k> 1 and ¢, = 0, define

mi(k) == Z ) pu
w=(u uxhell
and
m (k) == Z -u'iﬂ% Pu-
w=(u1 e Oy

Since (—u1, —u2) € Dy whenever (uy,us) € Dy, it is clear that, for every
k= 1 we hawe

. m(k) =0 for all odd i and
(7 m; (k) =0 whenever either i or j is odd.
Further, since #0D, =1+ 2k(k + 1) and #6D, = 4k, we have that, for all

even i,

0 < my:= li;f.n my(k) = Z Py
w:fuy g 282

N s i(1=p)* P11 = (1-p)**Dx)
< E(#wk}(ma{m :(u1,u2) € D }) 43D

— f ki(l i p}l+‘2k(k—l}(l - (1 = p}«lk}
k=1

=00

Similarly, when both ¢ and j are even, m; ;(k) — m, ; as k — oc, where 0 <
M= e -u'iu%pu < oo, Further, p, being the same for every u on 40,
the various quantities m; and m; ; remain unchanged if in their definitions
we had considered ws instead of w;.
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Moreover,

Rimy—my(k) <8 Y up,

il ey g VDY
m - i
< 3 Fa-puGD
j=k+1

as k — oo since the sum
m 3 a
ZJ-}I(J _p}1+gjtj—l} < 0o,
=1

A similar result holds for mg(k) and so we have
(8) ma(k) =ma+o(k™%) and mg(k)=mg+o(k™)  ask— oc.
Now we proceed to compute the expectations:
E(l| Znt13 = 1Zall3 | Zn =x)
= Y (Ix+a=bl3— |x|3)

abeE?

x 3 [B{XTH = X7 +a,

wedd
(9) Xl = X2 4 b| X =w, X =w+x)]
X [P{XP =w, X7 =w+x|Z, =x}|
= Y (lx+a—bl3—|k|3)
aheE?
wP{Xlexgu X =b| X 0= X0 =7
where we have nsed the translation invariance of the model.
To calculate the above sum we let k:= ||x||s/4. Note, for a,b € Dy, we

have P{X! = x+a,X! =b| X? = o, X? = x}0 = papy; thus, using (7) and
(8,

Ti(1):= Y (lx+a—bl3—[x[3)

a.be Dy

X ex 48, X =h|X%=a,X?=%)

(10)
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= 3 (a1 —b)*+2z1(a1 — bn)
a.bel,

+ (a2 — b2)? + 2za(az — ba)|papy,

= dma(k)mg(k)
= 4ma + ok~ 2) as k — oc.

Also, if b ¢ Dy, then, taking ||b|; =& + [ for some [ = 1, the occurrence of
the event {X! =b} requires that all the vertices in the diamond Dy ;_; be
closed and that at least one vertex of 8 Dy be open—an event which oceurs,
with probability {1 _ p}1+‘2(k+1— (kL) _ (1 — p}1+?(k+1}(k+1+ 1} Moreover, if
{X! =0} occurs, then X! must lie in the smallest diamond centered at x
which contains the vertex b; thus || X3 — X2 |2 < | X2 + [|X2 |l < (||x|l +
|lb]ly } + ||b||y = 6k + 2I. Now noting that there are 4(k +1) vertices on 6Dy ;
and that an argument similar to the above may be given when a g Dy, we
have

D)= Y (k+a-bli-|x]3)

agt Dy or bet Dy,
wP{X}=x4u X =b| X =0, X9 =7%)

11
" = 224{&: + I){(6k + 2£}? + {4};}?}(1 = .p}1+?(k+1—1}:k+1}
iz

% [1=(1=p)i*H)) =0o(k—2) ask— o0

This establishes (3) with a =4ma. . ) )
For (4), calculations as in (9) show that E((|| Zut1 3= 1Zal3)? | Za =x) =
T7(2) where, performing caleulations as in (10),

Ti(2):= Y (Ix+a—b —[lx|3)’P{X} =x+2a,X} =b| X¢ = 0,X? =x)
abell,

= z [(@1 — b1)? + 221 (a1 —b1) + (a2 — b2)* + 2x2(as — ba)*papy,
abell

= 8ma(k)mo(k) ||z |3 + dma(k)mo(k) + lﬁ{-nlg(k}}? + 4dma a(k)mg (k).
Now, as k — oc, from (8) we have ma(k)mg(k)|z|3 — malz|3 = 16(ms +

o(k=2))(1+ o(k~2))k? — 16mak? = 16k%0(k~2) +o(k—2) = o(1); also 4my (k)my (k) +
16{ma(k))? +4ma a(kymg(k) — 4my 4+ 16m3 + 4ma 5 > 0. This establishes (4).



] 5. GANGOPADHYAY, R. ROY AND A. SARKAR

Finally, for (5), we write E((||Zns1 |3 — [|Za]3)? | Zn = x) = T1(3) + T2(3),
where

Ti3):= Y (lx+a—blE - kB *P{XE =x+8, X} =b| X0 =0,X0 =x}

abell

= Y [(a1—b1)* +221(a1 —b1) + (a2 — ba)® + 272(az — ba)* pap
abell,

= Y pappllar —b1)*(2z1 + a1 —br )
abell

+3(ar — by ) (221 + a3 — b)*(223 + a3 — by)(az — by)
+3(a1 — b1 )(2a1 + a1 — b1)(2z2 + a2 — by) (a2 — b2)’

+ (a2 — ba)?(2za + a2 — ba)?)
=T11(3) + T12(3) + T1.3(3) + T1.4(3) (say).
Now,
Tha(3):= Z papular — b [(ar — b1 ) + Gz(ar — by )?
a,bely,
+ 1273 (ay — b1) + 8z)

= > pamp(ar —b) + 1201 Y papilar - i)’
H.,hE.Dk F-l,hEDk

= C3(k) + Ca(k)ari,

where C3(k) and Cy(k) are both polynomials in m;(k) and m; ;(k), each of
which converges to the corresponding polynomial in m; and m, ; as k— oc.
Similar caleulations show that T3 4(3) := Y, pep, PaPb{a2 — by )?[(az —by)* +
629(ag — by)? + 1223(ay — by) + 8] = Cy(k) + Cu(k)3.

Also,

Ti2(3) =3 Z Paph(ar — 51}? (a1 — le}g +4ry(a1 — )+ 41%]
a.be

x [2za(ag — by} + (an — h?}?]

=3 Y papblar —b1) (a2 — b2)?
a,be

+1227 Y papplar — b1)*(az — bo)?
abell
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= C5(k) + Co(k)xi,

where, as above, C5(k) and Cg(k) are both polynomials in my; (k) and m; j(k),
each of which converges to the corresponding polynomial in m; and m;
as k — oc. Similar calculations show that Tj4(3) := 33, ,cp, PaPulas —
bo)*[(ag — bo)? + dza(ag — by) + 4x3][221(as — b)) + (a1 — &r)*] = C5(k) +
Ci (k) 3.

Finally, calculations similar to (11} yield T3(3) := ¥ .¢p, or bgn, ([x+2a—
bl — |x|BPP{X)=x+8Xl=b| X0 =0,X1=x}=0(k"2) as k— oc.
This establishes (5) and completes the proof of Lemma 3.1. [

3.3. d =4, For notational simplicity we present the proof only for o = 4.
Throughout this section the letters u, v in bold font denote vectors in Z*, u
v in roman font denote vectors in Z* and u, v in italic font denote integers.
We first show that on 2%, the graph G admits two distinct trees with positive
probability, that is,

(12) P{G is disconnected } = (0.

Consider a random vector X € Z% defined as follows: for k =0, let A, :=
{veZ3:|v|: <k} denote the three-dimensional diamond of radius k and let
8A :={ve Z:|v|i1 = k} denote its boundary. As in (6), the distribution
of the random vector X is given by

ifv=aq,

B,
(13) (X =v) = { QpPHrll-[-g) v edh K5,

FAA d

where o := (0,0,0) and #A denotes the cardinality of the set A. It may
easily be checked that 3 ;2 P(X =v)=1.

Next, for a fixed vector w:= (u(1),...,u(4)) € Z*, consider the graph H :=
(VU {u},£U{{u,h(u))}). For n =0, let h™(u) := (g™(u), t) for g™(u) € 23
and t = u(4) —n € Z. Here we take h"(u) = u. Observe that for fixed u, g"(u)
has the same distribution as (u(1),u(2),u(3)) + 37, X;, where Xy, X5, ...
are iid. copies of X. Hence {g"(u):n > 0} is a symmetric random walk
starting at g%(u) = (u(1),u(2),u(3)), with i.i.d. steps, each step size having
distribution X. However, for v € Z! with v(4) = u(4), in the graph (V U
fu,vhE U{(u, h(w)), (v, h(v)}}) the processes {g"(u)}nz0 and {g"()}nz0

are not independent and so, to obtain our theorem, we cannot use the fact
that, with positive probability, two independent random walks on 2% do not
intersect. Nonetheless, if u and v are sufficiently far apart, their dependence
on each other is weak. In the remainder of this section we formalize this
notion of weak dependence by conpling two independent random walks and
the processes {g"(u),g"(v):n >0} and obtain the desired result.
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Far v=(v,0), given £ > 0 define the event

(14} A.H,E{V} — {g?’.‘" {\r} e gﬂ"‘ ({]} 4+ (ﬁﬂz[u.;] lll\&ﬂ:’[‘l“:]}‘
g(v) #g'(0) forall i=1,...,n"},
where 0:=(0,0,0,0).

LeEmMMA 3.2, For 0 <e < 1/3. there exist constants C, 3> 0 and ng > 1
such that, for all n =y,

inf F(A vil>1— G‘Tl_ﬁ,
FVIEA e VA 1oe ( ﬂ,E( )=

Assuming the above lemma, we proceed to complete the proof of (12).
We shall return to the proof of the lemma later. -
For i > 1 and n > ng, let ry(=ri(n)):=1+n + (n?P +- .-+ (n?P" and
take m = 1. For fixed v, we define
By = By(v}) :={g(v) € 9(0) + (Apnt+c \ Api-c)},

and having defined By, ..., B;_;. we define
B = Bi(v) i={g"(v) € ¢"(0) + (A picrser \ Ayt _oy)
and g7(v) # ¢/(0) for all 7_y +1<j < 7).
Clearly,
B{g'(v) #¢/(0) for all j >1)

(i)
(15) !
= lim JP( N Bj-)
T—+00 =0
i-1

N Bj)lP“(B;,}.
3=

Since P(By) > 0, from (15) we have that P(g’ (v) # g?(0) for all j > 1) >0
if 352, 1— B(By|Ni=p B;) < oo

For fixed [ = 1, let u; := A" (0) and vy := h7{v}. Now {(h"(0), h"(v)):n =
0} being a Markov process and, since g%(v1)(w,£) € g%(wi)(w, £} +(A 140\
A sty ) for (w,£) € Bi(v), we have

i
M B:i)

=t

- s Ie(s

I=1

Ilm‘(ﬁhl
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I [
;_:-ililfjp{gan}i (v1) e gin'V (1) + (A _strrprg VA atrion)s
(16) g*(m) #g*(v1) for all k=1,2,...,(n")*}
=infP(A o _(0)) >1-C(n?)™",

where inf; is the infimum over allu;, v, € Z* with g%(v,) € ¢"(w )+ (A a0\
A (1. ) and infy is the infimum over all u with g"(u) e (A 2ty VA 2t gy)
and the last inequality follows from Lemma 3.2. Thus 375, (1-P(5;| ﬂi—j, B;)) <

C Z}":l{-ngr}_ﬁ < 0¢, thereby completing the proof of (12).

To prove Lemma 3.2, we have to compare the trees {h"(0)} and {h"(v)}
and independent “random walks™ {0+ (37, X, —n)} and {v+ (37, Yi,—n)},
where {X;, X5, ...} and {Y;,Y5,...} are independent collections of i.i.d.
copies of the random variable X given in (13).

We now describe a method to conple the trees and the independent ran-
dom walks. Before embarking on the formal details of the coupling proce-
dure, we present the main idea.

From a vertex 0 we construct the “path” {0+ (%0, X;, —n)}. Now
consider the vertex v with v = (vg,12,v3,0). In case the diamond D :=
{ue Z¥:|jully < || X1} is disjoint from the diamond D' := {u € Z3:|ju —
(v1,v2,03) |1 < ||[¥a[1}, then we take h'(v) = {v + (Y1, —1)}. If the two di-
amonds are not disjoint, then we have to define h'(v) taking into account
the configuration inside the diamond 0. Similarly, we may obtain h?{v} by
considering the diamonds {n € Z%: ||u — Xy||1 < || X2|1} and {u & Z%: |ju -
g (V)| < ||Ya|l1}. Note that if, for each i =1,...,n, the two diamonds in-
volved at the ith stage are disjoint, then the growth of the tree {(h*(0), h*'(v)}: 0 <
i < n} isstochastically equivalent to that of the pair of independent “random
walks” (0+ (X X;,—n),v + (X0, Yiy —n)).

We start with two vertices u:= (u,0) and v := (v,0) in Z' with u,ve Z°.
Let {UP(z):z € Z%},{U3(z) :z € Z*} and {U}(z):2 € 2}, {U3 (2) :z € Z3} be
four independent collections of Lid. random variables, each of these random
variables being uniformly distributed on [0,1).

Let k, and [, be defined as

ky :=min{k :U}'(z) < p for some z € (u+ Ay)},
ly :=min{l: U} (z) < p for some z € (v+ Aq) }.
Now define m,, as
my :=min{m: either U}(z) < p for some z € (v+ An) \ (u+ Ay
or Uy (z) < p for some z € (v+ Ap )N (u + Ay, )}
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Also, define the sets
Ny:={ze(u+A;,):Ulz) <p},
Ny :={ze(v+Ay):U(z) < p},
N2:i={ze(v+An,)\(u+Ag):UT(z) <p}
Ufze(v+ A, )N{u+ Ay ):Ul(z) <p}.
We pick:
(a) ¢(u) € Ny such that US{¢(u)) = min{Us'(z):2 € Ny };
(b) ¢(v) e N} such that Uy ({(v)) = min{U3(z):ze N1}
() 1(v) € N2 such that Uy (1(v)) = min{Uy(z):2z € N2}.

Taking ¢"(u) = u, ¢"(u) = ¢(¢"*(u)), and similarly for (*(v) and 1" (v),
we note that the distribution of {((¢"(u),—n),(¢"(v),—n)):n = 0} is the
same as that of {((u +3;_; Xi,—n),(v+ 37, Y¥i,—n)):n >0}, that is, two
independent “random walks,” one starting from (u,0) and the other start-
ing from (v,0). Also the distribution of {{h,(u,0), hn(v,0)):n >0} and that
of {((¢™(u), —n), (12" (v), —n)):n = 0} are identical. Thus, the procedure de-
scribed above may be used to construct the trees from (u, 0) and (v,0).

Now observe that {(¢"(u), —n)} describes both the random walk and
the tree starting from (u,0). Also if Ay, N A, =@, then m, =1, and,
more importantly, {(v) =t(v). Hence the “random walk™ and the tree from
(1,0} are coupled and so are the “random walk™ and the tree from (v, 0). In

particular, this happens when both k, < [|lu—v||1 /2] and m, < [|ju—v||; /2].
Let ky =|lu —v|[1/2. From the above discussion, we have

P({C(v) #v(v)}) <P({(U{(2)) = p for all z € (u + A, )}
U{(UY(z)) >pforalze(v+ AL)})
=2P({(Uj'(z)) = pforall z€ (u+ Ag,)})
=2(1 — p)*i,
Since (1/ E}k‘q < #Ay, < 2k, the above inequality gives
(17) P({¢(v) = (v)}) 21 = Crexp(—Caflu—vIf})

for constants C; =2 and Cs = (1/2)|log(1 — p)|.
With the above estimate at hand, we look at the process {(¢"(u),("(v)):n =

0}. Without loss of generality we take u=o0. For £ > 0 and constant X >0
{to be specified later), define

Bus(v) ={¢™ (v) €6™ (0) + (Aparirar \ Daci-),

(18) _ .
1¢(v) — ¢*(0)|1 = Klogn for alli =1,...,n'}.
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This event is an independent random walk version of the event A, -(v,0)

defined in (14), except that here we require that the two random walks come
no closer than K logn at any stage.

We will show that there exists e = () such that

(19) slp P{{Bn,s{v}}c} <C3n™"
VELA 140 VD 1oy}

for some constant C'y = (.
Since (B, (v})* C E, (V)] UF, (v) UG, (v}, where

En (v):={||¢(v) — ¢'(0)||1 < Klogn for some i =1,...,n"},
Foo(v) = {C™(v) € 6™ (0) + A 20000},
Gre(v) = {Cﬂd(v} = Gﬁ‘ﬂJ (o) + A 21-0h

to prove (19} it suffices to show the following.

LEMMA 3.3. There exist a >0 and constants Cy,Cs, Cg > 0 such that,
for all n sufficiently lorge, we have:
(a) mlpﬂ__-mn[“_ﬂmn[l_ﬂ}IF”{Eﬂ,E{V}} <Cm™*,
(b) Sllp‘.rE['ﬁH[i"'l:]llllﬂH[l"E]}P{Fﬂ’s(v}} <Cyn™",
(€) SUPyea (14 o\A_1-ey) P(Cne(V)) < Gon™®.

Proor. First we fix v € (A 140 \A 1-0). Since {(¢™(0), ("(v)):n =0}
and {(31, Xi,v+ ¥, ¥i) in >0} have the same distribution, we have

Y X - (~«+Z}g)
i=1

i=1

P(En £(v)) =P{

EI{lognformmef=l,...,n,"}
1

:P{ZX}'_ZYJE(V"'&HMM} formlnet':l,...,n"}

i=1 i=1

*EIF”{ZX_?- —ZY;.-E{V-I—&HL“M} for some § = l}
=1

i=1

=IP( U {ixj—iig:zfmmme -:';1}).

ZE(V‘I"'E"H'IngrL} i=1 i=1

Now zj.zl(xj — Y} is an aperiodic, isotropic, symmetric random walk
whose steps are i.i.d. with each step having the same distribution as X — Y,
where Y is an independent copy of X . Since Var(X — Y) = 2Var(X) = 20°1
(where o := Var(X (1)) and Var(X) denotes the variance-covariance matrix
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of X] and 3 g3
(1964), page 308],

|1|QIF"(X — Y =u) < oc, by Proposition P26.1 of Spitzer

{2(1} llm |z|JP‘{ZX Zi:}j =z for some i = l} ={=1:'r‘»f'ar{X(l}}}_l.

j=1 =1

For v € (A iiva \ A u-n) and z€ v+ Ak, we must have that, for
all n sufficiently large, |z| = n'~%/2. Thus for all n sufficiently large and for
some constants 'y, Cy, Cy = 0, we have, using (20),

P{Eﬂﬁ{\?}}i Z P{ZXJI_ZIG.ZZerHOlne t:_}l}
zEL""l‘-ﬁH log n) =1 g=1
< G(K lﬂgn}‘qgﬂ(n—ﬁl—z}}
< Cyn—01-4/2),

This completes the proof of Lemma 3.3(a).
For the next part of the lemma, observe that, for sufficiently large n and
all ve ﬁnr_l fr) '".\ ﬂuﬂ[i -]

P =B+ 306, 1) ¢4, 00
=[P{ V"‘Z{X ~Y;) }_n‘zu+s}}
(21) = 1
EIP‘{ Z{X Y;) ;:..n‘-’tl+s}_.nul+z}}
EIP‘{ i{xj -Y)| > n?ul+=-}ﬁ}_

To estimate the above probability let X —Y = Z = (Z(1), Z(2), Z(3)), where
E(Z(i)) = 0 and Var(Z(i)) = 202. Then, letting ZLI{XJ- — Y; (i) denote
the ith co-ordinate of the process Z‘LI(X ; — Y;) and using Chebyshev's
inequality, we have
n‘2£1+=}
2 }

g

nd

> (Xi— 1@-}

i=1

~{0f%

n2(14+e) }}

i=
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n n2(l4e)
= SIP’{ }
=1

> (X =Y5)(1) >
_ 3n* Var(z(1))

(n2(1+=) /)2
EH'I 1

IL‘E

for some constant Cy; > 0. Combining the above inequality with that ob-
tained in (21), we have
f“
sup P(Fos(v)) < — 2
VELA 4o WD 1o}

which proves Lemma 3.3(b).
Finally, for the last part of the lemma, we have that if 0 < =< 1/3 and

VEA 11a \ A 1-q, for all sufficiently large n, ||[v|l; < n**=%). Therefore,

< .n'zcl—s}}
1

ﬂ-J
P{ Y (X -Y;) «-:||v||1+-n‘f'i‘—“}

1=1 1

il

P{Gre(v))} < IF“{ v+ Z(XJ" -Y;)

j=1

[

I
=

(22)

nd
{ Z{Xﬂ' =¥ < 211?':1_5]'}
=1

{0 -]}

E:ilP‘{ :—I(X Y}{1}| gn—?.s}‘

2 3

I.-"‘x

By the central limit theorem, as n — oc, Z;?J:I(Xj- —Y;)(1)/(v/20n?) con-
verges in distribution to a random variable N (say) with a standard normal
distribution. Thus

TP (X, - Y1) on2 Y
IP{ ;] < 3 —IP{|!~¢|«:: %0 }

(23)
&

|Z.‘J—1{X Y:J}{l}l v2n 2% N
{ yfﬁﬂryl 3o }I__ P {lJuw < e } g
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Of the terms in the above inequality, we have

— e \."'72‘?1 -?:L:*T}- 1 o
JOVE Van b=/ Lo (-2
a7 V-2 (3r) -1\ 2r 2
o 2v/2n~*(30) "
_— V"{E 1

and we use Berry Essen bounds [see Chow and Teicher (1978), Corollary
9.4, page 300], to obtain

|Z?:1{XJ_YJ'}{1}| V2n~= V2n~%
IP‘{ e < }—P{m{ - }

Z?il{xj ~¥;){1)  En 2 V2%
P{ V2an? <3 }— JP‘{N < T}

=10, =] fv<- v@}
v2on? n da - der

(24)

=

(25) -

4
A=Y
= 2sup|P Zj_l{ 2 il }EI — P{N <z}
zeR \.@':rn?
. CrE(Z{)
nigt

for some constant C'yp > 0. Combining (22)-(24), we have Lemma 3.3(c). O

Proor oF LEMMA 3.2. Let v:=(v,0) € Z% Observe that A, .(v) 2
B, (v)N{g'(0) =301 X;, g'(v)=v+ 3 Y] for all 1 <i<n'}. Hence

P(An(v))

= P{Bn__r{v} N {gi{ﬂ} = Zi;Xj, gvi=v+ Zi:‘i/j for 1<i < -11"}}

=1 j=1

=1 =1

HJ ﬂJ
XP{Q”J{H} = ZXJ.__E}“J{V} =y z}’j

=1 =1

B, (v}n {g‘i{ﬂ} = ZXJ-._Q"'{V} =v+ ZYJ for 1<i<n-1

i=1 =1

P{Bn;(v} N {g*’(m = ixj-, givi=v+ i}g for 1<i<n'— 1}}

/)
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= P{Bﬂﬁ{v} n {gi{ﬂ} = Zi: X,.d(v)=v+ Zi: Y for1<i<n'- 1}}

i=1 i=1
% (1 — Crexp(—Ca( K logn)*)),
where the last inequality follows from (17} after noting that, given B, _(v).
g'(0) = Z‘;-:l X; and g'(v)=v + Zjﬂﬂ hold for all 1 <i<n' -1, we
have ||_q'”4_'([l} - g”i_l{v}nl > Klogn. The above argument may be used
iteratively for i=1,...,n" — 1, and together with (19}, we have
P(A, (v)) = (1 - Crexp(—Cy(Klog n}"’}}”JIP{Bﬂ;{V}}
> (1— Cntexp(—CaK? logn))(1 — Cyn~)
> (1— Cin'*n O 1 - Gin™)
=(1- Cin~ 2K (1 Cyn ™).
Taking K such that CoK* > 4 [ie., K* > 8|log(1 — p)|~!], we have
P(Ans(v)) =1 - Cin~ K H _gpp—e
>1-Cn™?,

for some constant €' = 0 and 3 := min{a, CoK* — 4} = (0. This completes the
proof of Lemma 3.2. O

Finally, to complete the theorem we need to show that G admits infinitely
many trees almost surely. For k = 2, define D* (n, ) :={(u,u2,... ,0):1; € iy
such that n'=* < ||g"(w) — ¢"(u;)|x £311+s for ja,il i # j}. Define the event
A(n,e,mp,uy,.. ., u) := {n?0-%) < ||g"" (wy) — g™ (u;)]|; < n?+<) and gt(u;) #

g'(u;) forall t=1,...,n" and for alli # j}. Using Lemma 3.2, we can easily
show, for 0 < £ < 1/3 and for all large n,

'k

(26) inf{P(A(n,s,u1,us,...,uz): (g, 0s,...,m) € D¥(n,e))} =1 - 3

where (), is a constant independent of n (depending on k) and /3 is as in
Lemma 3.2. We may now imitate the method following the statement of
Lemma 3.2 to obtain

P{g'(w;) # g'(u;) for all t > 1 and for 1 <i#j <k} >0.
Thus, by translation invariance and ergodicity, we have that, for all & = 2,
P{G contains at least & trees} = 1.

This shows that G contains infinitely many trees almost surely.
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4. Geometry of the graph G. We now prove Theorem 2.2 for f = 2; with
minor modifications the same argument carries through for any dimensions.
The idea behind this proof was suggested by the referee.

For t € Z, consider the set N, :=G N {y =1}, the set of open vertices
on the line {y=t}. For z € N; and n >0, let Bf'(z) :={y € Npyn 1 h"(y) =
x} be the set of the nth-order ancestors of the vertex = € N;. Now con-
sider the set of vertices in N which have nth-order ancestors, that is,
M™ .= {z e N,: Bl (z) # @}. Clearly, M{™ € M™ for n > m and so R, :=
limg oo M () = = [Npmp M, (™ is well defined. Moreover, this is the set of ver-
tices in N, whwh have hl—mﬁmte paths. We want to show that P(R, =2) =1
forall t € Z. Since { Ry :t € Z} is stationary, it suffices to show that P(Ry = @)
=1,

First note that by the translation invariance of the model, P({#R) =
0} U {#Ry=oc}) = 1. Now suppose P(#BR; = oc) > 0. A vertex = € R, is
called a branching point if #(B{(x) N Ri41) = 2, that is,  has at least two
distinet infinite branches of ancestors. Note that this notion of “branching
point” is similar to that of “encounter point™ of Burton and Keane (1989).
As in their proof of the uniqueness of the percolation cluster, our proof
essentially uses the fact that it is impossible to embed a tree in a lattice.

We first show that

(27) [P{Origin is a branching point) > (.

Since P(# Ry = oc) > 0, we may fix two vertices x = (ry,1) and y = (y1,1)
such that

P(z,y € (By(0) N Rr)) > 0.
Thus the event E; :={B}(z) # @, B} (y) # @ for all n > 1} has positive
probability. Further, this event depends only on sites {u = (uy, u)1us = 1}
Now, consider the event E» := {(i,0) is closed for all i # 0 with —2max{|z:|+
Ly |+1} <i<2max{|z;|+ 1, |y;|+ 1} and (0,0) is open}. Clearly P(E;) =
(. Since £} and Fs depend on disjoint sets of vertices, we have

P(Origin is a branching point) > P(E; N Ey) = P(E; )P(Es) > 0.

Now, we define ry(n) := #(Ry N ([-n,n] x {0})) and ry(n) := #(B; N
([=n,n] x {1})). We arrange the points of Ry N ([—n,n]x {0} asuy, ...ty m),
in an increasing order of the & coordinates. By our construction of G, neither
Uy NOT U, ()1 Dor any of the vertices between them can be connected to
a vertex on N; which lies outside [—n,n] x {1}. Thus, each of the vertices
Uz, My - -y Uy (my—1 Will have at least one ancestor in the set Fyn ([-m,n]
{1}). Moreover, each of the branching points in wus,. e+ 1 Uy (n)—1 has at least

two distinct ancestors in the set By N ([—n,n]x {1}). Thus, if -r;?}{n} is the
number of branching points in [—n,n] x {1}, we must have

(28) ri(n) — (ro(n) — 2) =y (n) — 2.
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But, by stationarity, we have E(ri(n}) = E(rg(n})) for all n = 1. Thus, for n
sufficiently large, from (27) we have

0=E(ri(n) - ro(n)) > Erg”(n) — 4
= (2n + 1)P(Origin is a branching point) —4 > (.

This contradiction establishes Theorem 2.2.

5. Limit theorem. We first prove Theorem 2.3(a). The proof of the next
part of the theorem is similar and thus omitted. For simplicity in notation
we shall prove the result for f = 2; however, our method is also valid for
higher dimensions.

Fix v > 0. Let B, :=[1,n] x [1,n] be a box of width n and, for (i,7)
B, NZ2, define random variables Yi; as

§h 1, if the degree of the vertex (i,j) in B, NV is v+ 1,
h=t 0, otherwise.

Note for a vertex (i,7), ¥ ; = 1 if and only if there are exactly v edges “going
up” from (i, j} and one edge “going down” from it.

Let Y;ﬂ} =3 i (Yi; — E(Yi;)) and Sp =37, YJ.L”}. To prove Theorem
2.3 we need to show that the distribution of 5, /n is asymptotically normal.

Towards this end, first observe that, for fixed 7, {Y; ;}iz1 is an a-mixing
sequence of random variables; that is, forallm > 1, Ac o (Y1 ;. Yo,,. .., Y )
and B € (Ymin i Ym+nt14, ... ), we have |[P(ANB)—P{A)P(B)| < a,, where
o — ) as n — oo, Indeed, given A and B as above, define

E:= {there exists an open vertex in each of the sets

1 an ot b1
a a3 o _{_':_'{ = A T _{:{ o
{{t,;,r} m+4_:_m+ 3 },{{t,.?-l-l} m + R _t_m+2}1

T Hn A a1
N B oois an L il W
{{:,;-}—l} 111+2_t_n1+ g },{{t,_}} m + g <i<m4 1 }}

Now P(E) =(1— (1 —p)*®¥)* = 1 as n — oc. Also, given E, the event A
depends only on the configuration of the vertices {{i,j — 1}):i <m + 5},
{(,7) :i <m} and {(i,j + 1):é <m+ 3}, while the event B depends on the
vertices {(i,j—1):i >m+ 22}, {(i,j):i Zm+n} and {(i,j +1):i >m+F}.
These sets of vertices being disjoint, given £, A and B are conditionally
independent, a simple conditioning argument now vields that, for n large
enongh,

[P(AN B) — B(A)B(B)| < 5P(E°) < C exp(—Can)

(29)
for constants C'q, Cs = 0.
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Also observe that, for fixed i, {¥;;};=1 is a one-dependent sequence of
random variables; that is, for fixed ¢, Y;; is independent of Y; ; for j' #
j—=1,4,7+ 1.

Now, for some < d < 1 to be chosen later and for 0 < & < r,., where
i o= LF&%J' let

Anrt | yeind i)
Wi = Yo e 0+ Y gy nf i
LR yeln)
M1 = Y(k+1}|_n'5j+k+l‘
» . yin) R L
IR Ay I S, .0

First we show that, for any r > 1, there exists a constant C > 0 such that
(30) E{er*ﬂ} o }f?‘(ﬂ}}”' < Crin?.

Indeed note that, as in the proof of the first part of Theorem 27.5 of
Billingsley (1979), we have E{}fir‘ﬂ}}" — E{}qr‘ﬂ}}" < Kn? for some constant
K = 0. Now

r 4 r
(3) 2(540) = 3 eeionexomo),
k=1

klat=1

and using the fact that {}’F}} k=1 is a one-dependent sequence of random

variables, the Cauchy-Schwarz inequality and that IE'.YIW} = (), we obtain
after some elementary calculations

T 4
k=1
Here the term 2-:#‘IE'.{}:’1L'n ]'}" comes from the terms in the sum 377 4. g IE'.{KJ-W}YF} *

};Lﬂ}ﬂm}} when j,k,s,t are close to each other so as to have dependence
among all the four random variables making the product, while the term
r?IE'.(YIKﬂ} J' comes from the terms of the sum when j, k are close to each other,

st are close to each other, but there is independence between {Yj(ﬂ}, YF}}
and (Y™, Y™, This proves (30).
Now taking r = [n’|, and using the fact that I’Vfﬂ},l*'[v’?(ﬂ},... are iid.

random variables, we have from (30) that IE{M",E”}}" < Cn*? for all k > 1.
Also

4 Q

|n 2
var(r{) =2 310

=1
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) ol ey ) yin)
2 Tl =l
(32) = [ |E({™Y +2 3 Cov(y™, ¥
=1

- L_n,l;JE(Yll:n}}? " z(t_néj =7) GEN(Y]M}, }aﬂﬂ]‘}_

In the above expression,

n—ln—a

E(¥, ™) =nVar(Y1,) +23 Y Cov(Y, 1, Yors 1)

a=]1 t=1

n—1
=nVar(Yy,)+2 Z{-n, — 8} Cov(Y11,Y1461)

g=1

= 0(n) as n — oo,

where the last equality follows because from the a-mixing of the sequence
{¥i.1}+z1 we have 322, Cov(Y11,Y1) < CX 2, av < oo for some constant
(' = (). Moreover, by the Canchy-Schwarz inequality,

Cﬂ‘n’{}/l(ﬂ ]'1 }/?(ﬂ']'} < E{Ylﬁﬂ}}‘i )

Thus, from (32), we have Vm‘{ﬂ"fﬂ}} = O(n'*?) as n — oo and

(33) "»f'ar( p WF}) = O(n1—*HIHN = O(n?)  asn — .
k=1

Finally, for 0 < 8§ < 1,

i - 1 ). d

lim Y — —E(W™)

ol (Var 302, W)

T 2428
< lim Zﬂn—i = lim Cn® ' =0.
ﬂ—-:i:*::l T -

Thus by Lyapunov's central limit theorem [see Billingsley (1979), Theorem

27.3, page 312] we have that, for0 < 6 < 1, 1/(/ ©0, Var(W(™)) 0=, w(™
converges in probability to a standard normal random variable.

Now let , : =31 l-r;riﬂ}. We will show that

(34) Tn/m—0 in probability as n — oc.
Indeed,

E(p)? <3 Var(Y; i) +2n " Cov(Vix Yi)

i=1 =10
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<nVar(Y11)+ 2n z C exp(—Cai)
i=2
< Mn for some constant M = ().

Thus, using the fact that r, = O{n]_‘s} as n — oo, we have, for £ > (),
E(n2)  MnO(n'-%) 0

P(|p,| = ns) < = a8 n — 0o,
(|72 )< 22 2 2 =
This proves (34).
To complete the proof, we have to show that % — () in probability as

n — oc. First observe that number of terms in E, is at most [n’ |. Therefore
taking § = 1/2, from (30) we have E(E1) < Cn*. Hence, for £ > 0,

~
E(E”}—rﬂ as n — 0C.

nic

Theorem 2.3(a) now follows by combining equations (34) and (35) and the
fact that > 1" | W™ /n has asymptotically a N (0, s?) distribution, where

(35) P(|Ep| > ne) <

&% =Var(Yy1) +2 Z Cov(Y¥11,Yi1)
==

+2 Z Cov(Y11,Yi2)+2 z Cov(Y12,Yi1).

i=1 i=12

Note that to compute s* we use the fact that {(Yi;, Y1)}z is an a-
mixing sequence.

6. Degree of a vertex. To prove Proposition 2.1, observe that, given the
vertex (0,—1) is open, let
Y 1, if the vertex (0,0) is open,
0, otherwise,

Xy =#{(i,0):i< —1:(4,0) is connected by an edge to (0, —1)},
Xy =#{(i,0):4 > 1:(4,0) is connected by an edge to (0,—1)}.

Clearly the degree of (0,—1) equals ¥ + X; + X5. Now given the vertex
{0, —1) is open, the probability that the vertex (—[,0} is connected to (0, —1)
and that there are exactly r — 1 vertices in {(i,0):—{+ 1 <i < —1} which

are connected to (0, —1) equals (i: ]1 )p"'{l —pf" (1 —p)E-{(1-p) + 3p).

Thus B(X; > ) = 552, (121)p"(1—p) " (1= p)*= (1 —p) + 3p). An casy
caleulation now completes the proof of the proposition.

Similarly, in two dimensions, given that a vertex v is open, the distribution
of the number of edges of length ! “going up” from v is binomial with
parameters 2 and (1— §)(1 - p)*~1.
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BeEMARK 6.1.  From the above distributions we may caleulate the quan-
tities £(5,), Var(S,), s? and the related guantities involving L, required in
Theorem 2.3 for two dimensions.

Acknowledgments. We are grateful to Professor 5. Popov for his sngpes-
tions regarding the proof for d = 3 and to an anonymons referee for suggest-

ing that the Burton- Keane argument would yvield Theorem 2.2.
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