PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS

By R. C, Bose axp K. R, Nag,
STATISTICAL LANORATORY, CALCUTTA.

§!1. INTRODUCTION.

I. In agricultural field experi i the efficiency of Fisher's well known
randomized block and Latin square designs, is found to deteriorate when the rumber of
plots per block, or per row and column, goes above, say, tem or twelve. The advent of
factorial (complex) experiments, where the number of treatments tried out in the same
experiment became large, owing, cither to the inclusion of several factors or of large
number of levels of a small numLer of factors, or of both, brought in lfs wake large residual
errors per plot, thereby lowering the accuracy of C To
this growing difficulty, various devices were brought into practice, of which the rost
itnportant and widely practised arc the split-plot designs, which sacrifice information usually
on certain main cffects, and the confounded designs, which sacrifice information, partially
or totally, on cerlain, usually unimportant, high-order intcractions,

But if the experiment is non-factorial in structure (i.e. a single factor experiment) and
yet having a large number of variants, it will be highly desirable to keep the size of a
block (i.c. number of plots in a block) within efficient bounds. The nced of such a large
scale single factor experiment is felt most keenly when preliminary sclection has to e
done from a large number of new strains of a-crop. Thus if we have 100 varietics to be
tested, all in the same experiment, it is hichly detrimental to the precision of varietal
comparisons to have 100 plots per block. Here, the idea of confounding of high order
interactions, which proved very fruitful in factorial experiments, has, apparently, no place,
as we cangot reckon our comparisons in terms of main effects and interactions. On the
other hand coniparisons between every pair of verictics are the essential point of our study
and not comparisons among several groups of them,

2. Yates came to the aid of the cxperimenter in two great advances. His first
advance* brought him to a type of design which he called *“quasi-factorial.’” This can work
only if v, the number of varicties, is a factorisable number.  Thus, Yet v=p. q. 7.
Yates now considers the v varictics as all combinations of a number of factors (uon-c“stcnl)
at levels p, g, 7, cte.  He can then confouni the main cflects and interactions of these quasis
factors, excepting the all-factor interactions, by srranging the p varicties in a hyper-dimen-
sional lattice and assigning to various blocks the varicties occurring in lines parallel to the
edges of this lattice. He thus gets v/p blocks of p plots, v/q biocks of g plots, »/r blocks
of 7 plots, cte.  The unequal size of blocks is a draw-back, as additional complications set
in, owing 1o the nccessity of getting weightad cstinates of varietal cffects.  Higher block
sizes can also Le olstained confounding a lesser number of interactions, which will be pg, qr,

etc. or, pgr, pgs, ctc., cte., , by taking in a Mock varicties occurring in 2-Mlats, 3-flats,
. parallel to the ) )i ﬂ.\ts of his m«li I lattice, When p=q=r= ... , SO
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that v=p®, the analysis beconmes simpler, as the block size remains constant, being cither
b, P <. or 21 plots per Llock, If p in this case, happens to be a prime number
or a power of a prime number, it will be possible to cqfound not onty main effects and
2=, 3=, s (m—1)-factor interactioes but also the m-factor interactions. It will then
lead to the symuretrical quasi-factorial design where every pair of varieties will oecur
together in an equal number of blocks, thus giving the same precision 1o comparisons
between every pair of varictics. But if the confounding is confined to main cflects only
or main efects and certain of the interactions only, some varicties never occur together
in the same blocks, so that comparisons between pairs of such varictics are less securate
than comparisons letween rairs of varieties which occur together,

3. The next advance of Yates' led him to the discovery of a more general type of
design, \\'hiéh, while not imposing the condition that » should be a factorisable nnmber,
shares the property of symmetry obtained in symmetrical quasi-factorial designs. These
uew designs came to be called “*balanced incomplete block designs.’”  Here the v varictics
are replicated r times in b blocks of k plots such that every pair of varictics occurs together
inM=r (k~1)/(r=1)] blocks.

Fisher and Yates' have recently tabulated such among these desigus as are likely to be
of use in practical work (i.e, designs in whichk £7510). A unified mcthod of constructing
these designs is discussed by one of the authors (R. C. Bose) in a forthcoming paper! in the
Annals of Eugenics.

The balanced incomplete block desiens are by for the best among all types of incom-
plcte designs.  But these designs are rather scarce. The only alternative incomplete desizns
hitherto available are the quasi-factorial designs, Here also if the block size shonld remain
constant, the number of possible convenient designs becomes very limited.  This compara-
tive scarcity of designs with same block size forces on us the utilisation of quasi-factorial
designs with unequal block size, The defect in the latter designs ariscs at the stage of
analysing the data, owing to the need for making ad ! ¢ for possible inceuali
ties in error variance, of plots belonging to blocks of different sizes. Theoretically, there
is no difficulty in analysing the data, if this refinement is ignored, which can be permitted
in practical work, only if the block sizes are nearly equal.

4. In this paper we are introducing a general class of designs with numerous possible
and practically nselul solutions, limiting ourselves to a constant block size. These designs
will go  long way in putiing out of usc the quasi-factorial designs with unequal block sizes.

The balonced incomplete block designs, and the quasi-factorial designs of P varietics
in blocks of #™-1 plots are special cases of our designs. The latter designs in blocks of
$'(k<m—1) plots do not fit into our general class, but belong to another general class which
we call “hyper-dimensional designs,” It is proposed to discuss the latter class in another
paper,

Only a small number of representative designs of the general class are included in the
present paper, Ly way of bringing out the potentialitics of this class of desians, A general
ion of all arithmetically possible designs with the corresponding combinatorial
solutions wherever available, svhick are likely to be of use in practical experimentation, has
been taken in nand and will be published in a subseq icati
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5. There are two problems involved in the analysis of data of any experitnenta] design,
namely, the problems of cstimation and of tests of significance (collective and several),
The method of getting efficient cstimates of varictal cffccts has.been indicated for the
general case of designs of our type, and actual expressions obtained for two important
specinl cases. For test of significance, collectively, of all varictal effects, the sum of
squares due to voricties, has been obtained for the general case, in an clegant form,
Similar expressions are given for sum of praducts due to varicties, when more than one
character is the subjutt of study. Lastly, for testing significance of difference in estimated
effects of any pair of varicties, the method of getting the variauce of the differcnce has
been indicated for the general case and actual expressions derived far the special cases.
The expressions for the Efficiency Factor arc also given for the latter cases.

§2. RELATIONS BETWEEN TiIR PARAMETERS OP PARTIALLY EALANCED INCOMPLETR
PLOCK DESIGNS,

1. Consider any v varictics or treatinents, to Le arranged in b blocks with k plots each
(cach plot being given one treatment, and no two plots in the same block receiving the
same treatment). The arrangement will be called a partially balanced incomplete black
design if the following conditions are satisfied.

(i) Every variety is replicated r times,

(if) With respect to cvery given varicly, the remaining ones fall inta groups of
%, M3, ... nm cach, such that cvery variety of the i-th group occurs exactly 4 times, with the
given variety, the numbers 4 and n, being independent of the varicty with which we start,
Without loss of generality we will assume 4>4,,,. The sct of nuinbers 1,, 2,, ... laere all
unequal and may include 0, but n,, n,, ... #a must all be non-zero and may be equal or
unequal. Two varieties occurring together 4, imes, may be colled i-th associates. Each
Lelongs of course to the i-th group with respect to the other.

(ii©) Given any two varicties which are i-th associates, the numnber of varictics common
1o the j-th associates of one, and the k-th sssociates of the other, is independent of the pair
of i-th associates with which we start. This numberis denoted by pyu. Clearly phyx phyy.

In the particular case when m=1, our design reduces to the Lalapced i'ncomplc(e block
design of Vates. The quasi-factorial dezign of Yates, with w=p=, k=p""is also a special
casc of our design, with

h=o—i, m L (p=1 r=m, b=mp.

It will be scen, however, in §4-=l. that there are numicrous other designs, besides
these, which belong to the class of partially balaneed incomplete block designs.

2, The numbers v, b, 7, k ; 3y, &, 10 da 1y, Ny, ... na may be called the parameters
of the first kind, and the numbers p' (i, 7, k=1, 2, ... m) the paramecters of the second kind,
belonging to our design.  Thus there are 2m + 4 parameters of the first kind, and m(m +1)/2
parameters of the second kind (since p'w and p'y are identical),

From the condition (f) it is clear that

bk=vr w 12:20)
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Since with respect o cuy variely, the remaining =1 foll inlo zrougs of n,, ny, ... na,
itis clear that
==yt e + e o {221)

Consider any particular varicty 0. It occurs in r blocks. In cach of these blocks there
are (k= 1) other varicties. Yence any particular variety is a member of 1 (k- 1) pairs. Dut
the ny varictics which are the i-th associates to 8, each yield 4 pairs. Hence we have

rk=N=n, L+n, L+, . +ng 1 . (2722)
The relations (2:20), (221}, (222) show that only 2m+ | of our parameters of the first
kind are independent. We can conveniently take these independent parameters to Le

Ay 4y oo 2a g ny, my, o maand k. Of course the independent parameters cannot be chosin
at will, due 1o the restriction that every parameter must be integral.

Each of the v verictics, has my i-th associates, so that we get vny pairs.  But each puir
is counted twice, once from each end. Hence the number of pairs of i-th associates is
mf2. The total number of pairs is then

Pt dnn)=} v (v-1) . 223
as it should be.

3. Let us next consider identitics involving both paramcters of the first as well as the
second kind. Let 6 and ¢ be any two varieties which are i-th associates. Then ¢ is con-
tained among the group of ny varicties which are i-th associates to 8.  Among the remaining
m -1 varicties of this group, there are exactly p's varicties which are k-th associates of ¢.
Ilence

E pamphut Pt e s F a1 . (233)
a1

Again if j5%i, then among the ny varicties which are j-th associates to 8, there are exactly
P varictics which are at the same time k-th associates of ¢.  Hence

oo+ Pla=ay (iF5)) e (230)

Eophampht Pt
k=1
Taking togcther the relations (2:30) and (2-31) we have

Ww=m =1 or n, according as i=j or i£j o (232)

N A3

Ngain consider the group G, of n varicties which are i-th associates of a given variety 6,
and tie group G; of the ny varicties which are j-th associates of 8. Every varicty belonging
to Gy has got exactly p'y k-th associates smong the varieties of the group G;.  Again every
variety belonging to G) has exactly p'w k-th associates among the varictics of the group Gi.
Hence the number of pairs of k-th associates, which can be formed by taking one varicly
from the group Gy and one variety-from the group G, is, on the one hand, m p'x and, on
the other hand, n, py. Hence

W p=ny pa e (203D
this cquation Leing true for all values of i, §, k. Of course when i=j, the equation becomes
automatic and gives no relation between the perameters of the first kind.
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4. Uur zext problem is to determine the munbier of independent parameters of fhye
second kind, the parameters of the first kind being given. The numbers ply for a fixed
i, can be arranzed in the form of a watrix of degree m

P
My
P
. (240

Par Pz Pas s Pan ]

This matrix is a symmetric matrix due to the relation pa=py. Thus exactly
m (m#+1)/2 of the m*(m+1}/2, p's are involved in this matrix. We may call the matrix
(240}, the matrix, (M), Giving i the m values 1, 2, c.vevevvnne. » 1 we get the m matrices
), (M), vy (Ma).

Tite significance of tIn relations (2-32) then is that the marginal totals of the rows as
well es of the columns of cach of these m matrics is fixed. In fact the total of the j-th row
or column of the matrix M, is m—1 or ny according as i=j or iz%j. Consider now the
significanec of the relation (2:33), with rcfcrence to these matrices. If the clements of
the matrix (M) are all known, then the relations (2:33) fix the el in the i-th row
or column of all the other matrices (M,), (M)), ...... (M) (M) . (Ma). Since the
marginal totals in (M,) are fixed, the clements of the first row and column become fixed, so
soon as the other elements are given. Taking into account the condition of symmetry,
the number of independent p's in (M,} is m (m=1)/2. The elements of (M,) now being
known, the elements in the first row or column of (M) are fixed. Also since the marginal
totals are-fixed, to complerely fix every element of (M,), we need only know the clements
in the last (m=2) rows and columns of (M,). Thus the number of independent p's we
get from (M,) is (m—1)(m—=2)/2. The eloments of (M) and (M;) now being fixed, the
tlements in the first and second rows of (M,) are fixed. Since the margmal tolals are also
fixed, the number of independent p's obtained from (M,) is (m—-2){m—-3)/2. Procceding
on in this way we find that the number of independent paramcters of the second kind, when
the narameters of the first kind sre given, is

m (m—1) (m=1) (m=-2) (m=2) (m-3) _ m{m*=1)
z * 2 + 2 "7 e

3 G . (2741)

We (hus find hat given the paramicters of the first kind there are exactly m(m®—1)/6
independent paramcters of the second kind.

When m=1, i.c. when our design is a balanced incomplete block design, there is no
independent parameler of the second kind. \When m=2, there is one independent para-
meter of the second kind. \When m=3, there cre four independent parameters of the
second kind,

5. For cvery arithmetically possible design with parameters of the first kind
by v v, kdy, by, L day my, 1y, .. na and the associated parameters p' of the second kind,
there is a complimemtory design with same number of blocks and of varictics as before, but
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having =k plots per block and b—r replications of each variety. The A's of this design
will be b—2r more than the 3's of the first design.  The n’s and plu will be the same for
both designs. For given values of b and % it is sufficient to consider designs with k<»/2
os (e complimentary designs can be obtained automatically from them.

§3. ANALVSIS op THE DESIGNS.

). It is now well recoguised that the method of estimating block and varictal efects
and of testing them for significauce are closcly related to the method of estimating partial
regression cocflicients and of testing their significance, in a sample of n observations of
a normally distributed variable y and depending on p observed variables x,, x,, x,
following any distribution law,

Supposing the variables to be all measured from their means, let by, by, .ou. by be
of the unk ‘n partial regressi fhici Bus Bay covinnn £, cstimated on the
ption that y is distributed normally about Y, where

Y fx,+ By xp # covnenean v + By X, we (3'10)
The logarithm of the likelihood of any assigned values of 8, B3y .cvcvisenns By is
given by
=Sy =B X, = ByXs = e crrvrrene vere = By x) (311
Maximising the liketihood, which comes to minimising, with respect to 8,, B5,... ..8,,
the expression
Sy = Bix = Baxy— .o rereriernes =By X! . (312)
we get the following normal equations to find out the maximal likelihood cstimates
of the f’s namely, b, (i=1, 2,..... p).
by S (6,) + by S(x, X3) + covvrrren 40,805, x) = 8x,y) )
by S(eyxs)+ by S (x") + e + by Sy ) = S(ay y) l

: - (313

by S(xux,) + b2 S (s X} + weveenss + by S(x)Y) = S(x,3) I

If, instead of solving equations (3'13) directly, we make, following Fisher!, p such
scts of p cquations, by replacing S(x, y) by 1 and S (x ¥) (i%)) by 0, in the i-th sct of
cquations, aud denote the solutions of by, by, .vere by in the i-th st 95 ¢, Ciae oo oo Cion
we get the following symmetrical matrix of solutions for b, by, ......e.. by

LT T T T 1Y )

L TR T ) tn

€ €aa €3 Cx (314)
n tn [ TPV IR
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“The vahies of by, by unes wene by that witl satisly cquations (3:13) are given by
bym ey S5, 3} s S0 ¥) + e + 6y S(x, ¥) e (3115)

The importance of this auxiliary sct of solutions represented by the ¢'s lies in the
fact that variance of any lincar expression of the b's can be casily expressed in terms
of the ¢'s.

Thus
b s 2
v (‘:II. b,) - (.‘.‘..5: L, :.,) Viy . (316)
We are more concerned in practice, with the following special cases,
Viby=caViy . (31D
V(b = b) = (cu = 24 + ) V{y) e, (3°18)

The sum of squares due to the fitted regression cquation (i.c. duc to by, by, ......
b, collectively) is
S(byx, + byxy o RS + by xp)* W (319)

which can be simplified to

by S{ary 3} + by S{xy ) + .. .+ b, S(x, y) e (31,10)

(31, 10) connot be split into scparate sums of squarcs, attributable to cach of the
cucflicients b,y by cveve.n. By, OWing to their nou-orthogonality. 1f it is necessary to test
the significance of the ceefficients, say, ba., by, the valid procedure is to find

a regression cquation between y and x,, xy, I8 byers Byegy eeveenane ba-; be the
partial regression caxficients obtained by solving
byey S0 byy S(xy x) e o + by S(x, xa) = S(x,5) )

broy S(xy 52) + byog SGY)  eovsiosree, + ey S5y xa) = Slr13) l
H H H v (31,11)

v+ by S(x%) = Slxay)
ba., I8
eeere ¥ bay S(¥uy) e (3.0,12)

byt S(vy Xm} + byey S{xgxa) + .

The sum of siquarcs due to b,.,, by

Byoy S(x¢¥) + byey S(x3 ¥) + ceveiae

The difference between (3.1, 10) and (3°1, 12) is the appropriste measure of the sum
of siuarcs due (o busy, baias

-

If obscrvations on another dependent variable y* are also taken simultancously, for
the same n individuals, we can fit partial regression crefficients b,, b, by, of ¥
on x,, Xy, wreieee Xy

The sum of products due to the fitted regressions wilt be

S(by Xyt by 3y + cesrinnr F By X} (D) Xy # By vy F i, + V1)
=0y S(xy 3" + by S(xy ¥) + sverrerines cinininn + b, S(vy 3)
=V, S(x, y) + by Sra ¥ F ceeninnn s + My S(x,3) .. (371,13)
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2. Coming now to our own problem, we have got ubscrvations yy of the yiuld,
say, of the i-th varicty in the j-th block. Let us postutate that m is the hypothetical
mean, v, the effect of the i-th voricty, which we gssume to remain tbe same whatever
be the block, and b, the clfect of the j-tn block on every one of its plots, irresprctive of
the varicty occurring in any plot, On this postulate of additivencss of the block and
varictal efects, we have

Yy=m+ b+ v+ e {3020)

where the b's and v's are subject to two limiting constraints S(b)=0, S(v)=0.

Our problem s to determine efficicut cstimates of m, b, and v, on the assnmption
that z, is distributed according to normal law fibout zero. To get maximal likelihood
cstisates of m, by, and 1y, we have only to minimise S(e?y) over ol the observations.
We bave therefore to minimise

XE(yy=-m-=b -1 . (321

subject to the following lincar restraints on the b's and v's, namely,
by + by + e + By = 0

| 322)

VotV e veveaene 0y =0

limiting the degrees of freedom of blocks and varicties to b—1 and v~1 respectively,

The process of estimating m, by, by, ...... byy ¥y Ty e 2y Ly minimising (3-21)
subyect to the conditions (3:22) may now be looked upon as a partial regression problem by
introducing b+ v+ 1 pscudo-variables x, x5, «ot veee Xngeg SUCH that an, by, by, coneee by,

. vv Will be the partial regression cocflicients of y on this set of variables. These
variables with the exception of x,, will have the arbitrarily chosen valucs | or 0 in different
plots. x, will always have value I. Thus in the plot correspurding to yy
=1 o= xaa =1

w (3

and all the other variables will bave value 0,

If we denote by G the grand total of y in the N{(=bk=1r) plots of the experiment,

By, B,, . By the block totals and V,, Vy, ... Vv the varicty totals of y, it can casily
be scen that
Sixyy =G
S{xy) =B, - (329)
S{xs ) =V, f

Since m is the regression ceefficient of y on x,, b, the partial regression cactficient
of v on xy, and 2 that of y on xy,,, the sim of squares due to the fitted constants
IO P by, vy, g0 e 2 B3, by (3.1,10),

mGHby Byt by Byt coeevenne, + by b2y Vit 2y Vo viiee e #10 Vi (3-25)
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whete m, by, by coareenee § V14 Dgp coesnpans AFE 01 of the following normal equations:
Nm ™ we = Gy
k{m + b) + sum of v'sof block I = B,
k(m +b,) + .2=B,
k(m+ b))+ e w b =D, . (3726)
r(m + v,) +sum of s of varicty 1 = V,
rim + v,) + w2=V,
r(m+ )+ o=V,

aud the restraining equations (3-22)

In practical probl we are i d in testing the significance of varictal effects

only. To get the appropriate measure of the sum of squares duc to vy, Pg, seeveress o
we should now fit the partial regression of y on x,, x, .. Any alone. 1€ mry, by,
Byet seesvanss baey be the estimates of the partial regression coefficicnts, ignoring the vari-
ables Xag secernessins Xieoy the sum of squares due to these cwflicients is

M.y G+ by By + byy By + wvve v # By B 327
whefe Megs Biey vereenes baey 8r¢ solutions of the normal equations :—
Nm, .. =G
E(my + by.) =B,
E (m.y + byy) =B, . (28
k(my + b)) =B,
and, as before,
byy + by ¥ cncriisisinecee + by = 0
(327) thercfore reduces to
|
T (B + B + ceeviienriaens + BY) @)

The approptiate measure of the sum of squares due to varictics is therefore (3-25) minus
(3-20), which, on substituting for b,, by,......bs in terms of v's from cquations (3-26), reduces
1o the clegant expression

o

3 m0 E210)

where Qv=3—sum of the r block means of that variety, i.e. Q) is sum of the 7 yickls of
variely i, cach corrected by its block mean,

The values of v, vy, v, hsve to be obtaimed from cquations §326). In the
general case of m, 1's the explicit expressions for v cannot be casily obtained,
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No i 7 ion can therefore be given for the sum of squares of varietics,
directly in terms of known yiclls. In every experinient, the adjusted varietal means
(G/N +v) have to be given for the individual comparisons among varicties. It will be
presently scen that the solution of v will involve only Q's besides the parameters of the
design.  Once v, is deterimined, the sum of squares follows immediately.

3. If another character is studied on cach plot, say, ¥y, and if 3", Q' be the varictal
cflects, ete., for that character, it can similarly be scen with the help of (31,13) that the
sumt of products of the two characters y and 3/, due to varietivs, is

90 =390Q (3-30)
thus providing an indcpendent check on the caleutations,

4. Coming now to the solutioa of v, T3, ceeveees . 2y it will be easily scen that Qs
independent of m, by, by, . . b Let Sw, denote the sum of the n,, v’s which are
first associates of v, 11, the sum of the ny, v's which are sccond associates of v, ete. Lot
ZQ,, be the suin of the Q's cor ding to the n, varietics comprised in Zv,,, and so on.
We then get,

EQuer (k=1 v~ Zoy = T1y— o ~du Y0 (3:40)

(340) consists of v cquations. In solving for » we imposc, as condition for analys-
ahility of the design, that we should be able to eliminate Xvy,, -n,, v St as such and

not the individual v's viithin cach i ‘The ions di in the
previous section satisfy this condition of analysability,

Suppose n, is the bhiggest among ny, nyy . eeerenne na. It is convenicnt then to
climinate X vy immediately, using the property, }-". w=0. (340) will then change to
kQumrik=D)+)])n+(=-1)3y, + =X =,

F e+ (=20) Trg g + (A=A Iy,
+ v + (4=A2) Svia (341
We find that
X0, = (r (A-1)+1] Iy,
=) (r Py S F Pl ST e P Sy de N Sa)
(=) (P Sty # P Stiat + ceeecniciinnns P Sty + PR S

+(h—1-) (P1m E00+ P ST F cerrcererns v+ Pow E0pt con P Nvg)
(342)

We thus sce that XQ, can be expressed as a function of the m+1! quantitics, v,
22915, Ty creensres EVyy eseee oo Svim and by climinating Svy, as before, it can be expressed
as a function of the m quuntitics v, Sv;,, Stisy seeees X0 jayy SV oy verees St We can

346



PARTIALLY BALANCED DESIGNS

similarly express £Q,,, XQ.,. <20, 4 2Q, X0, 03 functions of the above m
quantitics.  \We thus get m equations involving v, vy, 2vi cereer SVigess EigegseeceS0im
from which v, ¢can be solved Ly the usual methods.

The more uscful designs in practicol work will be those with m=2 or 3, The
detailed solutions of these two cases are worked out bLelow,

5. mw=2, If we clininate Xy, which may be profitably done if n,>m,, the
expression for v , the cflect of the i varicty, is

o] B,,
k
Q. B,
v = (3.50)
| All BII |
-
where
A= e(k=1)+2y
Ay = (=2,
351
B,y = (4=1y) (351)
Byy = r(k=1)+1;+02—}) (p*1 = P"u)
If n,>n, it will be more convenient to express v, as
Ql Bll
k
0u B,, . (352)
=
Ay B,
All BII
where
Ay = rlk=1)+),
Ay = 0y=1) Py o (353)

B,= -1
By = rik= )+ 1+ (i =2) (P'n—P's)

An B, Ay B,y
Let A= =

8. e always need to test the significance of the difference between any two varietal
effects, v and ;. It is important therefore to get the varisuce of »=v,. Varietics i ond
§ may be either first or sccond associates. The expression for the variance will be different
for each.
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We now revert to the idva that 2, and v, are of the nature of partial regression
coefficicnts, Due to the constraining condition Xv=v, the process explained in the
opening paragraphs of the present section §s upplicable to the equations, (3-40) only
after the following modification. In the right hand side of cach of theze equations,
we introduce a pscudo-variate v, and to the system of v cquations thus obtaned, we

h
add the constraining cquation X #,=0. From the cquations we now find cu, ¢y, ¢y in
1]
the uswal manoer,

1f we use the expression (3-50) for w,

1
o B,
“s o= T " I
-1 Ba
- +— b
“= % (i and j, Ist. associate.) e (360)
”
- TI B,,
1
L - re B,
Yy " (W 2, )
-mooy,
Corr ling to the exy ion (3-82) for 7,
1
-— B,
N R "
wmetw "
- T' B,.
L - —‘:— Bll .
Cu= ry (i and j, Ist. asco.iate ) . (36)
Ny
- LB,
L3
Ik - ] 1
Y (5 s2nd )
"
l""_;" B,,
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1f o* is the variance per plot, the variance of diflerence between estimated cffects of
two varictics which ure first asrociates, follows from {3*18) as
V(m-1) = 2k (B, B,y o"/A
=2k D, /A . (362)
and for 1wo scoond associales as
V(vy—1) = 2k (B,,+ B,)) o'/A
=2k B, o'/A v (363
Since Byy= By, +1, =1, and 3,31, it will be obvious that (3'62) is smalter than (3-63).
This is as it should be, ay greater the association between tao varictics the more precise
is their comparison.

7. Since there are vn, /2 comparisons of the first kind and vn,/2 comparisons of the
second kind, the mean varfance of all comparisons is

-1 B -
vo o 2k ot _2e ot | 2 0
== -1 | ALy B,, l =1 AL B,, | PR (3:70)
A ) An B, ?

1f the experiment was conducted ia ordinary randomized blocks, utilising the same
number of plots as here, the mean variance will be 20”/r where o' is the standard crro.
per plot in blocks of v plots. Ve should naturally expect ¢ < o' Ignoring this expec-

ted gain in ision, the relative eflici {or the efficiency factor) of our design is
- A, By, | - | Ay B, | L
e el | &2 mal|_ewlRy m|i-s @
T T ] » ' Tk v-1 1, | I
- B,, -y B,

8. Putting A\, =X=r{k—1)/(v=1) in (3-71) it reduces to (1 -1/k) /{1 = 1/v) which is
the cfficiency factor of Yates® balanced designs,

9. We shall also derive the efficiency factor for the most important among Yates®
quasi.factorial designs, namely, of p* varictics in blocks of p plots. If s orthogonalised
bx p squaresare uy.\! inthe design (0gsg p—1,if pisa priulnc or power of a prime ; s=0or
Vil p=4l+2;% { or 2 for all values of p not of the forin 41+ 2), the paraincters hecomne

v=p, b =p(s+2), r=(s42), Lk=p
a=1, wy=(p=1) (s+2), 13=0, my=(p=1) (p—s-1)
pH(s42) (s=1)  (s+1) (p=s=1) \®
M= ( )
(s+1) (p=2s—1) (p—s-1) (p=12-2)
(s+1) (s+2) (s42) (p—s5=2)
ru=( )
(£+2) (p=2-2) s+(p—s5-2)
The ciciency factor of this design follows, on substituting in (371), as

P E o= (P ) (s+1) |
EF = (PH1) S+ D+ (s+2) - (390

*IL is couvemient to give the values of phy and g% In mairix form, Thus plyg is the element
inthe first row, and the second column, In the matrix for phy,
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Yates has worked out the efficiencies for the designs corresponding to s=0, 1 and p—1,
Pl Pl _ .

namely 5¥3 ' b1 nndpi-l . In the last case the design becones completely

balaneed, with A=1,

10. m=3. Supposc ny is the biggest among the n's so that it is profitable to get rid
of Sv,,.  \We have then the following tliree equations involving v,, S, and Sv,.
A 7+ B,y S+ Cy Svy= Q
An 0+ By S0, +Cyy Sv,=XQ, I (3:101)
Ass it Byy Sy + Gy X9, =3Q,,
where
Ap=r{k—1)+1,
An=04=1) (n,= ') = (s=2y) p*y
An= (=) (1= ') = (s =1,) PP

Byy=d, -3

Ba=rlk =1+ 4+ R =h) (P = 10 + (= ha) (Pra— P e (3102)
By=(a=5) (F1a=Pa) + Ra=23) (P'3a=P')

Cia=di—hy

Caa=(a=1) (P =P"0) + (e 20) (P~ p")
Caa=rlk=1)+22 4 (a=h) (Pha= 1) + (s =2)) (Pea—p'sa)

If we climinate Zu,y, the cocfficients there, may be called Ay, Ay, cte. und if Xy, is
climinated we may write A,,, A,,, ctc., with values corresponding to (3:102)

The estimate v, of the cffect of the i-th variety, is

Q B, Cu As B, Cy
w=k |X0 By Cu |[+| Ay By Cy o (3103)
0, D, G Ay B, G,

Two alternative expressions for # can be obtained if n, or ny happens to be the
greatest of the w's,

Let us denote by A the deterininant of the denominator of (3:103). To get the
variance of the difference between the cffects of two varicties § and j, we huve the
following auxiliary solutions:

-1 B, o,
v
w== —:' - %’- B, Ca
(3:104)
- ._,; B,, Cu
® a B, Cis
aw=-3|8 B Cu
14 B,, Cys
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where

p=t=Tu M L]
v’ -

v’ v

- ny n n
y= =lo it M
v v v

according as i and j represent 1st, 2nd, 3rd associates respectively.

For two first associates,

Vin-)= 2 B+ B0 - Bus(Cor+ €| e (3108)
For two second associates,

Vig-v)= 2 [n,,(c,.+ C) = CulBur+ Bu) | e (3.108)
For two third associates,

V (o-2)= #[n,, C-Bar c,,] . (3517)

The mean variance of all comparisons is

o v~ B, G, , e ot
Vo= 22| =m Dy G, = 20% (3108
w-Na - -
-n, B,, G, e
and cfficiency factor is
l v-1 B, G, -t
-m By Cy |=—_2F o (3109

o =8
EF=02200.

-m B, G,

§4. CONSTRUCTION OF PARTIALLY RALANCED INCOMPLETE BLOCK DESIGNS.
S13rLE GEOMETRICAL CONFIGURATIONS.

1. Partially balanced incomplete block designs can be obtained by a variety of
different methods. The method and designs given in this and the following sections, are
intended to be merely ill i A )| jon of all possible designs with
1510, k510 and a unified theory of incthods of constructing them will be attempted in
a later paper,

Many interesting designs arc obtainahle by considering simple and well known
greometrical configurations. In fact the two-limensional quasifactorial design of Yales
in two groups of scts, belongs to this class. \We have simply to consider lwo groups of
p parallel straight lines, ‘Then straight lines form the Mocks, and their finite interscctions
the varicties. We shall now procecd to consider some other configurations.

as|
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(i) Consider the Pappus configuration of nine points and nine lincs, illustrated by the
following Fig. 1. Considering the lincs as blocks and points as variclics we have the

following nine blocks.

M, 2, 3, & 5 6, (78 9, (., 7,5, (2 9 6
n 8 6 | 7, 49 & 9% 5 @ 8§ 4

‘The paramcters are—
=0, b=9, r=3, k=3
A =1, n,=6, A=0, ny=2

re(Goo)re(o 3)

E. F.=8/11.

(i) Consider the Desargue Configuration of ten points and ten lines, given by the
following Fig. 2

Ve have the following ten blocks:

© L 49 (02 5 (0 3 6, 23 1 @ 1,8, 209
(5, 6 7 (64, 8, (4 5 9, (1 8 9
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The parameters are as follows :

=10, b=10, r=3, k=3
A= 1, n= 6, A,=0, ny=3
3 2 4 2
v, = 3 -

P (z 1 ) Py (z 0 )

40

E.F.= —

F 7

(i) If w js a complex cube root of umity, it is casy to see that the eight points with
homogencous ecordinates (1,0,0) (0,1, 1) (0,1,0) (1,»,0) (I,1,«") (1,0,&") (1,1, 1)
(0, 0, 1) lie three by three on cight straight lines. Calling these points 1, 2, 3, 4, 5,6, 7, 8
respectively, and taking points for varictics and straight lines for bLlocks we have the
following 8 blocks : —

61,6, (1,2,7), (2,3,8, .4, 1), 452, (56,3 6,7, 4, (2,8, 1).

In this design the parameters are—
ve8, b=8, 1=3, t=3
A=, n, =6,

(e ()

. 56
L F.= =
(iv) The simplest space configurations are provided by the regalar polyhedra, We
mav get partially balanced incomplete block designs from these by considering the faces
as blocks and points as varieties. We thus get the following six blocks using the simple
configuration of Fig. 3:—
(1,2,3,4; (5,6,7,9), (1,4,8,5, (2,3,7,0), (1,2,6,5, (4,3, 8.

‘The parameters are 88 follows : —
y=8, b=6, r=3, k=4
A=2, =3, 1,=1, ny=3, 1,=0, =1

o

o N O
- N
S - O
| ——
>
=
L
7~~~
-0 N
c N O
o O -
-
=
[}
VS
cCWweo
o0 W
[y —]
S
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(v) Similarly by considering the octahedron of Fig. 4 we get the following blocks:
(1,2,3), (4,5,6), (1,3,5), (4,6,2), (1,5,6), (4, 2,3, (1,6,2), (4,3,5.

‘The paramcters arc as follows : —

v=6, b=8, r=4, k=3
1 =2, n=4, Ay =0, ny=1
2 1 ( 4 0 )
1 = =
by ( 1o )n Py 0 o
0
E.F, = ™

(vi) Considering the jcosahedron of Fig. 5 we get the following blocks:—

2,3, (L3, 4), (1.4,5), (1,5,8),(1,6,2), (2,3,10), (3,411), (4,5,7), (5,6, 8),
(6,2,9), (2,8,10), (3,10, 11), (4, 11,7), (5, 7,8), (6,8,9), (7,8, 12), (8,9,12), (9,10,12),

(10, 11, 12), (11,7,12).
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The parameters are a3 follows : —
v=12, b=20, r=5, k=3
A= 2, n=5, A,=0, =6

(G2 e (G2)

{ri) Leta,, a5, a5, @, he the faces of a teteahedron with opposite vertices A, A,,
My, A, and similarly 8,, B, 81, B, be the faces of another tetrahedron with vertices By,
B, B,, B,. If A, Ay Ay, A, licon B8y, By, By, B, and B, licson «,, D, 0n a, and B, on
a,, then B, lies on a,.  Linch of the two tetrahedra is both inscribed and ecircumseribed
to the other. We thus get a configuration with 8 points and 8 planes. Take the
points as varictics and the plines as blocks. \We then get the following blocks : —

(B, A A0, (AB,AA), (AABA) (AA,4,B)
(A,B,B,B), (B,A,B,B), (B, B,A,B), (B,B,B,A)

The parameters of this design are—

=8, b=8, r=4, k=4
A=2, ", =6, 1,=0, =1
\ _( 4 1 ) = ( 6 0)
Pa=y o)t P o o
14
E.F. = T

§5. CONSTRUCTION OF DESIGNS (CONTINUED).
APPLICATION OF FINITE GEOMETRY.

It has been scen in the last section that ical config i in many i
lead to partially balanced incomplete block designs. The finite geometrics P G(N, p*)
and EG (N, p*) i.e., the Projective and Euclideau N-di ional geometrius associated to

the Galois ficld G¥ (p*) provide us with many interesting configurations leading to the
desired type of designs®.

‘The simplest example of a Galois ficld is provided by GF (p) where p is prime.  The
clements are 0, 1, 2,............p =1, To add or multiply any two clements, we make the
ordinary addition or multiplication and reduce the result {meod p).

Lvery element of GF (p*) for n>1 can be expressed in two forms, the additive and
the multiplicative form.  In the additive form the clement is expressed as a polynomial
of the (n—1)th degree, with integrul cocfficients less than p.  In the multiplicative form
every clement other than the oull clement 0, is expressed in the form x' (igp*-2).
To ndd two clements, we take them in the additive form, add as usuaf and reduce the
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cocflicients (mod p).  To multiply two clements we take them.in the mmitiplicative form,
multiply as usual and reduce by using the relation «*"'=1. We give below the addi-
tive aud multiplicative forms of the clements of GF (2), GF (2'), GF (3), GF (24,

GF(5*) and GF (3) [sce (1)].
() G F(2):—ay=0,a,=1, a,=x, ay=s'=1+x

() G F(2)i—a,=0, a1, ay=x, qy=x?, ay=2’=x"+1,
=x’+x+1, qp=2'=x+1,a=x'=x+x.

ay=

(iii} G P(@3"):~a,=0,a,=l, t,=x, a,=x*=2x+1,a,2x*=2x+2
a=x'=2,a,=2'=2x, ay=1*=x42,a,=x"m1+1

(i) G F(2'):—a,m0, a,=1, a,mx, ay=x", a,=2", @*=a'=x'+1,
x‘+x=x’+x+l,a,=x‘=x‘+x’+x=x‘+x’+x+l.
=x"matrxtextramsteat ], qp=at=xtrxltn,
o= Xt mxtdxt+ ytm gt 1, ran=
a,,=x"=x +x'=x'+x'+1,
=z =2+ x, ay=x"t=xt

=x+l,

¥ GF(E)i—a,=0,a,=1,a,=x,0,=2"=3x+2, a,=x"=3x"+Ix=x+1
xMtxm4x+2, q,=at=4x"+2x=4x+3,
4x'4+3x =3, a.=x'=.|3x. ay=x*'=dqx'=4x+1,
=4+ x=3x+3, 0,22 =3x"+3x=2x + 1,
@y =" =2xt 4 x =244, @, = x' 1= 20"+ dx =4,
=xmix, a,, =2t =42122x+3,
M=2u043x=4x+4, @, =1"=4x? +dx=x4 3,
M =xt =+ 2, a..=‘x"=x'+2x=2.
=2x, @y, =x1"=2x*=x+4,
T+4x =22+ 2, @y, =x"=20"4+2x=3x+4,
=22 =30 +4x=3x+ 1.

(v) G FQ')i—a,=0, a,=1, q, yay=x), o, =3'mx+2, a,=xtn x4 2x,
am?=x+200=2x" + 242, a,=x* =200+ &'+ x> xt b 2 4 1,
a=x" =+ x HxmaT4 2042, gy = xt = xt + 2+ 20 =200 42,
=x*=2x+2x=x+l,a, =1 =x"+ ¥, a,,=x" mx* } 2T=x+ X 42,
ap=x"=x®+x’+2x=x"4+2, q,=x’= ‘+2x=2 a=x'=2x,
n,,-x"=2t’. @y =x'=22"=2x+1, a,,=x'
=20+ x =2+ 2 + 1, 4y =" =+ 20 + x=2x" + 20+ 2,
=x"=2.v +2x' 4 2x=2x"+x+ 1, ay =M =20+ x 4 x=2x"+1,
a,,ﬂx"-x'+x='2x+2. ay,=x=2x142x,
@y xM =20 2x =2k 4 20 4 |, oy =P =227 + 20 x=2x7 1.

2. (i) Any ordered sct of N elements
(210 X5 cenncanininneerasonsinsaraes X3}

belonging te GT (p") may be called o point of the finite N-dimensional Euclidean
geometry EG (N, p*).  The number of points in EG: (N, p*) is clearly s¥ where s= "

ase
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ARl the points which satisfy o sct of N—m, consistent and independent lincar
cquations may be said to form an m-flat of EG (N, p*) represented by these cquutions.
(i) Again any ordered sct of N +1 clements
(X0 X ve cenrcveetesnnsresnens Xxa)
where the x/'s belong to GF (p*) and are not all simultancously zero, may be called a
point of the finite N-dimensional prajective geometry PG (N, p*), it being understood
that the st (), Tyieeeee v Xxsg) FEPresents the same point as the sct (y,, yy,.. Yia)

when and only when there exists a non-zero clement o of GF (p*) such that y,=ox, for
I=0, 2, s N+1. The number of points in PG (N, p*) is

¥ ¥a L

S8t costl=le —1)/(s=1)

All the points which satis{y a sct of N —m independent linear |
may be said ta form an m—flat in PG (N, p*) represented by these equations.

(i) Whichever of the two geometries EG (N, p*) or PG (N, p*) we are consider-
ing, we may as usual call a I-flat a line, and a 2-flat a plane. If we set

Ka % Mot Xomay
ANy, )= (s =Dls—D(s =1). .. ieens {8 -1)

1 m .
(6 =D =10 = 1) crrsrmesmnsn (=1

then we can show that the number of m-flats in PG (N, p*) js ¢ (N, m, 1) and the

number of m-flats in E G(N, p*) is ¢ (N, m, s)~9 (N=1, m, 3).

From the space EG (N, p*) let us cut out one point namely the origin (0, 0,
...... 0), and all the (N —m)-Nats passing through this point. Let us take the retained
{N =m)-Nats as our blocks and the retained points s our varictics, a variety occurring
in a block when and only when the corresponding point occurs on the corresponding
(N = m)-flat,

(a) Consider in particular the case N=2, m=1. The number of retained points
as well os of rctained lines is s*—1, where s=p®, Hence b=v=s"~1. On cach of the
retained lines there i s points, and through cach retained point there pass s retained
iincs, as the onc joining the point to the origin is to be rejected. Thus r=k=s. Two
points (varictics) are first or sccond associates according as the line joining them does not
or docs pass through the origin. To every retained point there are thus s” -3 first asso-
ciates, and £ —2 sccond associates. Thus ) =1, n,=s"—=s, 1,=0, n,=25=2. Let O bethe
originond P and Q be any two first associates. Then all points lying on lines other
than P O and Q O are common first associates of Poand Q. Thus p',, = (s—1)", In the
same way we can find the valucs of other paramcters of the sccond kind, We thue
get a design in which

veg'~1, bms'—1, y=s, k=3
hm),nmPes A, =0, nwsa2

- ( (s=1)? 1—2) o -y 0)
Ll (PP 0 u (o -3

{s"~1) (s*=2)

E.F.= WD -9+e-2 (7))

as7
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When s=3, we thus get a design which has been alrcady otherwise obtained.
{i) Let s=4. \We can ticn get a design with parameters—

volS, b=15, r=4, k=4

Lh=lLm=al2 =t n,=2

re(o0) e (00)

N 35
EF.= T
We have now to consider the geometry EG (2,2?). The co-ordinates of a point
are of the form (x,, x,) where x, x, are cloments a,, a,, @y, &, of GF (27). We have
alrcady seen liow these elements are added und multiplied.  The point (a,=0, a,=0)
has been cut out.  The IS retained lines then have the equations—

Xy=¢, Xy=¢, N 2a, xH 6, X,=a, X346, Xy = ay X3+ € (C=ay, @y, a,).

\We thus get the following blocks, using for shortness the symbol ij for the point
with co-ordinates (ay, a;).

(10,11,12,13),  120,21,22,23),  (30,31,32,33)
01,11,21,31),  (02,12,22,32),  (03,13,23,33)
(10,01,32,23),  (20,31,02,13),  (30,21,12,03)
(10,31,22,03),  (20,01,12,33),  (30,11,02,23)
(10,21,02,33),  (20,11,82,03),  (30,01,22,13)

(ii) Let s=5, we then get a design with parameters
vm2i, b=24, r=$§ k=5
A =1, 0, =20, 4y=0, n,=3

18 3 2 0
(- e
Py ( 3 0). 'y ( o 2)

552
o e
E I = 565
\We have then to consider the geometry EG (2,5). The co-ordinates of a point are
of the form (x,, x,) where x,, x, are the clements 0, 1, 2, 3, 4 of GF (5). The 24
retained lines have the equations—

A=, X4=C, X=X+ ¢, X, =2%+ ¢, X, =3x,4C, xymixg+c (c=1,2,3,4)

Using the symbol ij for tlic point (i, j) we therefore get the following blocks :

(10,11,12,13,14),  (20,21,22,23,24),  (30,31,32,33,34),  (40,41,42,43,44)
OLU1,21,3141),  (02,12,22,32,42),  (03,13,23,33,43),  (04,14,24,34,44)
(10,21,3243,04),  (20,31,42,03,14),  (30,41,02,13,24),  (40,01,12,23,34)
(10,31,02,23,44),  (20,41,12,33,04),  (30,01,22,43,14),  (40,11,32,03,24)
(10,41,22,03,34),  (20,01,32,13,44),  (30,11,42,23,01),  (40,21,02,33,14)
(10,01,42,33,24),  (20,11,02,43,34),  (30,21,12,03,44),  (40,31,22,13,04)

3s8
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In the same way corresponding to the values 5=7, 8, 9, we can construct h
designs with parameters given below, by using the geometries EG (2, 7), EG (2, 24,
EG (2, 3):—

(i) v=48, b=48, =7, k=7

=1, ny=421,=0, n,=5

P (3 nee(G mre

8
(i) ¥=63, b=63, r=8, k=8
Ay=1, 1, =56,1,=0, n,=0

0 6 6 0y o _ 1083

Pa=(% o) #=(% §)EF=ozm
(%) o=80, b=80, r=0, k=Y

M=t m=12,1,=0, my=T
64 7 20y gL 5320
o= (% o) t=(T5 §)EF=3m

(5) Let us next consider the case N=3, m=2, i.e. we have to cut out from EG (3, $%
a point say (0, 0, 0) and planes passing through it, and then to idemify our varicties with
the retained points and blocks with the retained planes. For the design obtained in this
manper, the parameters are (putting s=p) :—

v=st=1, b=s'=1,r=4" ks
L=, m=g"=5%,=0,n,=5-2

mem (U7 12) = (50 L0)
(s+1) (s'=1) (s*=2)

EF = =) =2+ & <2555

As an exaniple let us take s=3. The parameters become
220, b=26, re9, k=0
A3, 0, =24,2,=0, n,=1

pe= (2 0) m=(% 0)

We have now to consider the geometry EG (3, 3). The co-ordiuates of any point are
of the form (x,, X, x,) where x,, xa, X, are the clements of GF (3) viz. 0, 1, 2. The
cquations of the 26 retained plancs can be written as

X\mE, X6, X =6 N2 X F X+ 0 X220 x4
2= x4 205+ €6, Xy =20, 4 2054 €, Xy 2 ayH G, 1y =2n e,
X=X+, Xym20,4+ 6, \y=X, 4 €, Xy =2+ ¢ (c=1,2).
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Using for shortness the symbol i j k for the point whose co-ordinates are (i, f, k) the 28

blocks come out as follows :—

(100,101,102,110,111,112,120,121,122),
(010,011,012,110,111,112,210,211,212),
(001,011,021,101,111,121,201,211,221),
(001,012,020,102,110,121,200,211,222),
(001,012,020,100,111,122,202,210,221),
(001,010,022,102,111,120,200,212,221),
(001,010,022,100,112,121,202,211,220),
(100,101,102,210,211,212,020,021,022),
1100,101,102,010,011,012,220,221,222),
(010,110,210,021,121,221,002,102,202),
(010,110,219,001,101,201,022,122,222),
(001,011,021,102,112,122,200,210,220),
(001,011,021,100,110,120,202,212,222),

(200,201,202,210,211,212,220,221,222)
(020,021,022,120,121,122,220,224 222)
(002,012,022,102,112,122,202,212,222)
(202,010,021,100,111,122,201,212,220)
(002,010,021,101,112,120,200,21,222)
(002,011,020,100,112,121,201,210,222)
(002,011,020,101,110,122,200,212,221)
{200,201,202,010,011,012,120,121,122)
(200,201,202,110,111,112,020,021,022)
(020,123,220,€01,101,201,012,112,212)
(020,120,220, 1,111,211,002,102,202)
(002,012,022,100,110,120,201,211,221)
(002,012,022,101,111,121,200,210,220)

3. Designs can also be formed by cutting out one point say (0, 0, ...... 1) from the
projective N-dimensional space PG (N, p%) and all (N~-m)~flats passing through this
point, and then taking the retained (N —nr) —flats as our blocks and the retained points as
our varieties. The designs thus arising in the particular case when N=2, m=1, shall
arise otherwise in §7. Ve shall not censider them here,

(a) Let us consider the case N=3, m=1.
are (putting s=p*) :—

‘The parameters of the desiga that we get,

p=2+8 45, b= 1=t k=gt s+
L=s, m=s"+5", 1,=0, m=g-1

_ [+ O
re= (757 ,22)

s(s+1) (C+87+s=1)
sts+ 1) (S+8+5=1) +(s=1)

= (s’-::’l—s s&l)'

L F o=

Thus if =2, we have to cut out a single point (0, 0, 0, 1) {rom the projcctive 3-space
PG (3, 2) and all planes through this point. The blocks are then given by retained
planes, whose equations are

x,+x,=0, x3+x,=0, x,+x,=0, x +x,+x,+x,=0

Nyt xa4x,=0, x,+x,+x,70, x,+x,+12,=0 x,=0

Using the symbol ijkI for the point with co-ordinates (i, j, k, 1) the 8 blocks can be
written as

(0010,0100,0110,1001,1011,1101,1114),
(0400,1000,1100,0011,0111,1031,1111),
(0011,0101,0110,1011,1101,1110,1000),
(0101,1001,1100,0111,1011,1110,0010),

{1000,0010,1010,0101,0111,1101,1111)
(1100,1010,0110,0011,0101,1001,1111)
(0011,1001,1010,01L1,1101,1110,0100)
(1110,0110,1010,1100,1000,0100,0010)
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The paramcters of this design are—

v=14, b=8, r=4, k=7
L=2,n,=12,3,=0n,=1

10 1 12 0
re= ('Y 8) (5 0)
78
L. F. = o
(i) Let us consider the case N=3, m=2. The paramecters of the design we then get
are (putting s=p*) 1—
vms+stts, bust et s r=s"4s, k=gt |
N=1, m=g+5, 4y=0, uy=5-1
G =1 P+
po= (° .«‘-l: ’0 , l"u’( 0‘ ,gz)
EF. = (481 +35) (f+s0+5—1)
s (S"++3) (P + " +3= 1)+ {20 1) (F+s+1) =5

Thus if s=2 we have to cut out a single point say (0, 0, 0, 1) from the 3-space
PG (3. 2) and all the lines through this point. The blocks are then given by retained
lines. Ve thus get the following biocks: —
(0100,0010,0110), (1000,0100,1100), {1000,0010,1010), (0011,1101,1110)
(0101,1011,1110), {0110,1101,1011), (1001,1110,0111), (1100,t011,0t01)
(1010,1101,0111),  (0010,0101,0111),  (0100,0011,0011),  (1000,0011,1011)
(0010,1001,1011),  (1000,0101,1101),  {A100,1001,1101),  (0010,1100,1110)
(1000,0110,11108,  (0100,1010,1110),  (0011,1100,E111),  (0101,1010,1111)
(0110,001,1111),  (1000,0011,1111),  (0100,1011,1111),  (0010,1101,1111)
(0011,0100,01103,  (0011,1001,1010),  (1100,1001,0101),  (1100,1010,0110)

The parameters of this design are—

v=14, b=28, r=6, k=3
L=1, m=12,1,=0, n,=1

10 1 12 0
re=("? ) M= (% 9)
182
LE.F. = —=
4. (i) From PG (3, p*), let us cut out all points lying on a line, and all planes passing
through this line. Let our varictics be identified with the retained points, and our blocks
with the retained planes. Then we get a design with parameters (putting s=p%) :—

pmstdst, b= +a, r=P 4, kot
N=s+l =80, 4= =5t =
T | £ 0
= (520 0 ) (o ala)
sis+2) (s +5°=1)

EF.= s(s+2) S+ =)+ (s+1)" (s=1)
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Take in-particular s=2. Let us cut out points of the line x,=x,=0, and the plancs
passing through this line. The cquations of the retaived planes can then be written as—
X4 X, =0, N+, =0, Xy +a,=0, X+ X3+ x4 5, =0
Xyt Nyt x,=0, X+ X+ ,=0, X+ X+ x,=0, x,=0
X+t x,=0, X34+ x,=0, x;+x,=0, x,=0,

The 12 blocks are tlren given by

(0100,0110,1001,1011,8101,1111), (1000,1010,0101,0111,1101,1111)

{0100,1000,1100,0111,1011,1111),
(0101,0110,1011,1101,1110,1000),
(0101,1001,1100,0111,1011,1110),
(0110,6010,1100,0111,1011,110%),

{1100,1010,0110,0101,1001,11§1)
(1001,1010,01 [1,1101,1110,0100)
{1110,0110,1010,1100,1000,0100)
{1000,1001,0110,0111,1110,1111)

(0100,0101,1010,1011,1110,1111), (1000,0100,0101,1001,1100,1101)
The parameters of the above design are—

¥=12, b=12, 1=6, k=0
3=3,n,=8,1,=2, n,=3

4 3 8 [
m=(3 2). m=(o 2)
PP = 38
L. F.= -
(i) Agsin from PG (3, p"), lct us cut out all poiots lying on a line, and all lines

possing throngh points of this line., Let us identify the varieties with points and blocks
with straight lines.

v=s'+4], b=

y=g, k=s+1

=1, a= 4320, wy=g'=1
il N S| N 5 0
o= (521 o) m=(5 sL2)
s(s'+s'—1)

S+ =D+(s=1) (s+1)?
where, as before, s=p"

(8} Taking in particular £=2, and cutting out the'points of the line x,=x,=0, and
all lines passing through the poiuts of this line, we get the following 16 blacks.
(1000,0100,1t00),

(0101,10H1,1110),  (O110,1101,1011),  (1001,1110,0111)
(1100,1011,0111),  (1010,1100,0¢11),  (1000,0101,1101),  (0100,1001,1(01)
(1000,0110,1110),  (0100,1010,1110),  (0101,1010,1111),  (0419,1001,1111)
(1000,0161,1111),  (0100,1011,1418),  (1100,1001,0101),  (1£00,1010,0110)

The parameters of the above design are—
v=12, b=16, r=4, k=3
4h=1,n,=81,=0nm~3

m=(3 5) m=(3 2)
xJ
E.F.n_gT
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(b) In the same way if we tlake $=3, we can by using the projective space PG (3, 3)
construct a design with the following parameters :
v=36, b=81; r=9, k=4
Y=l, n,=27,1,=0, n,=8
_(18 8 _fs21 0
m=('s 5) re= (% 3)

105
S P, o= —
E. I 137

8. From PG (2, #") let us cut out all points on three non-concurrent lines, and all
lines through the points of intersection of these lines two by two, Let us identify the
blocks with retained straight lines and the varieties with retained points. We then get
2 design in which

v=(s=1), b=(s-1), r=5-2, k=3-2
M=1n=(5-2) (s-3),,=0, n,=3(s-2)
1o ($T-8s+17  3(s-4) _((s=d(s-9)  2(s-3)
= ( 3s-14) s, = ( 2s~3) (=)
s{s=1)* (s=3) (s=4)
(5=2)" [s's-4)+3
() As a particular case let us take s=5, We then get a design with the parameters
=16, b=16, r=3, k=3,
a=1, m=6,2,=0, n,=0

m=(3 8) m=(3 1)

. 10
EF. = oy

L F =

We have to consider the geometry PG (2, 5). The co-ordinates of every point are of
the fonn (x,, x5, x,) where x,, x,, v, arc clements of GF (5) vi=. 0, 1, 2, 3, 4. Let us
cut oul the three lincs x,=0, x3=0, x,=0, all points on these three lines, and all lines
through the points (1, 0, 0), (0,1, 00, (0, 0, 1), "The equations of the 16 retained lines can
then be pul in the form

A=ax,+by, a,b=1,2,3,4
We must get the following 16 blocks—
(112,123,134), (113,132,144), (114,122,143), {124,133,142)
(13,024,141),  (114,121,133),  (123,130,144),  (101,134,149)
(114,131,142}, (122,134,141), (111,124,132, (112,121,142)
(121,132,143),  (111,123,142),  (112,133,141), (113,122,031
Tu the same woy pulting =7, 8, 9, 11 respectively we can derive designs wilh para-
mneters given below,
(i) 2=36, =36, r=5, k=5
=1, m=20,1,=0, u,= 1§
_qi0 9 o (12 B\ oo SM
= (9 8) M= (3 g)imraH
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(iid) y=49, b=49, =6, k=6
M1, 1, =30,3,=0, n,=18

Po= ( 712y e (20 0); 5. F.m 1960

0 7 =3
(iv} v=64, b=64, r=7, k=7
=1, n,=42,2,=0, n,=21

26 15 0 12y o 720

m=(fs 5). M= (3 ‘B)EF= Feen
O] ©=100, =100, r=9, k=0

=1, n,=72, 1,=0, n,=27

50 21 56 10 1232
1 = t) IS 4
Pu={ 21 6)' [‘||='(m |o).L.F.=T77
§6. CoNSTRUCTION OF DESIGNS (CONTINUED).
Tug MeTiiop OF DIFFERENCES.

1. Tihe method of diffcrences has been extensively used by one of the authors (R. C.
Bose) to obtain balanced incomplete block designs!. We shall give here the application
of this method to the construction of partially balanced incomplete block designs, for the
simplest case, namely, b=v, k=r. Other applications of this method will be discussed in
a subseruent communication,

A set of elements is said to form n modul M, when tlrere exists a law of composition,
iz, the addition, denoted by +, satisfying the following axioms : —

(i} To any two clements a and b of M, there cxists a unique element s of M defined by

atbms,

(id a+b=b+a.

(i) a+(b+e)=(a+b)+c.

(iv) To any two clements a and b of M there exists an clement x belonging to A,
satisfying a+x=b.

On the basis of these axioms we can prove that the clement x in (iv) is unique. Also
there exists a unique element 0, with the property that ¢ being any clement of M, c+0=c.
If ¢c+d=0, we denote d by =c, a+(=c) may be denoted by a—c. The element x in (iv)
is then equal to b—a, and may be said to be the differcnce of b and a.

2. Consider a finite modul with exactly v elements. Suppose it is possible to find £

different clements,
Xyy Xy sereerees X

out of the v clemnents of M satisfying the following conditions : —

(i) Among the & (k=1) differences xy=x; (i, j=1, 2, w...e k, i5%f), just m of the non-
2ero elements of A are repeated 4 times (i=1, 2, ... m). Clearly in this case
mEngt. vt ne=v—1

TR YR X/ P ot e A= k(= 1)
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{ii) Denote by a',, o' + a'n, the njelenents of M, which occur just A times anong
the differences ay— v 2 ky i), Then amorg the m(n—1) differences
aa—a'e (u, 0=1,2 . m, wEn) every number of the set a, ay @y, should he
repeated exactly ply times (I=1, 2......m). Also among the nu, diffcrences o'y —a'y
(u=1, 2....0m, w=1, 2......m), the numbers of the set o'y o'y .. y occur exactly py
times (I=1 F=1, 2einiem, i54).

P SIS '

When these conditions are satisfied, we shall show that the design in which the v
varietics are v clements of M, and the v blocks are
X8, Ay b X+ 8 . (6°21)

where 8 is anyone of the clements of M, is a partially balanced incomplete block design
with v, b=2, k, r=k, n, 4 as the paranicters of the first kind and p'y os the parameters
of the second kind. ’

Since to cach clement 8 of M, there corresponds one block, we may call (6:21), the block
6. A variety ¢ occurs in a block 8, if and only if we can find an { such that x,+0=c,
Given i this cquation uniqucly fixes 8. Hence ¢ occurs in the Llocks c—x,, ¢=x,, ... ¢=xy,
and in these blocks only. Hence every varicty is replicated exactly k times,

Two varietics ¢ and d will occur together in the same block 8, if we can find u, v and &
satisfying

Xetb=c, Xet+8=d w (622)

Then x.~x,=c—d. The number c~d belongs to one and only one of the scis
(a'y, a4, a')), {a'), a'y,......a’,) a%,). Let it belong to (o),
a,, ). Then from the condition (i) we shall be able to find exactly ) pairs of
numbers {u, 7) such that xu=x,=c—d. When u and v are fixed, ¢ is fixed and is given
by 6=c—xe=d—-x,. Thus there arc cxactly ) blocks in which the varicties ¢ and d
occur together. We thus sce that the varicties ¢ and d are i-associates if c—d belongs
1o the set (@), a'yeeierenatly,)

Given that ¢ ond d are i-associates, let us find the number of varjeties which are

to ¢ ond j i to d, (is%f). 1 1 is an iassociate to ¢ and j-associate to

d then
c—t=d', d-t=a . {6°23)
where o' is some number of the sct (ay, a'y....... ...a's) and o« is some number of the st
(), 5, ). Then a'~a'=c—d= o number of the sct (o), oY, . )

Hence from the condition (if), we can find the pair (', a') in exactly p'y ways. ‘Thea ¢ is
determined by any one of the equations (6:23). Thus if two varicties are l-associates,
then the number of varietics common to the {-associates of one and the j-associates of the
other, is exactly ply. In the same way we can prove that if two varietics are l-associates,
then the number of varictics common to the i-associates of the two respective varicties is
exactly p'y.

3. The simplest example of a modul is the following. Let » be ony positive integer.
Then the clements of the modut are the integers
0,1, 2 serriecaininnns e =1
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To add any two clements we proceed as usual, but atways reduce the result (mod v).
Thus we say that a+b=s when and only when a+b=5 (mod v). This modul may be
called the modul of the classes of residues (mod ).

() Let v=15. Consider the modul of the classes of residues (mod §5). Thus our IS

varictics are 0, 1, 2, 3, . . . 14, Let
x=2l, 2,=2, x,=4, x,=8

Then the 12 diflerences x—x) (i, j=1, 2, 3,4, 17j) are 1,2,3,4,0,7,8,9, 11,
12,13, 14. Denote these by a',, a'y....a',,. Denote 5 and 10 by af,, o, respectively.
Thus the numbers of the sct (a', a'y,........a",,) oceur once and the numbers of the st
(a%;, a*;) occur zero times in the differences xy—x;. Call thesc scts, the sets I and If
respectively.  Hence Ay =1, 3,=0, n,=12, n,=2,

Now among the 132 differences a'a—a's (4, w=1, 2,........12, n5£1), the numbers of
the sct I each occurs 9 times, and the numbers of the sct If cach occurs 12 times, Among
the 2differcnces a’a—a's {u, w,= 1, 2, u5=w), cach numher of the sct I occurs 0 times, and
cach number of the sct I occurs once, Finally in the 24 differences a'e—a’s (u=1, 2,
“ 12, w=1, 2) each number of the sct I occurs twice, and cach number of the set [T
occurs zero times.  Thus by taking tlie 15 blocks

1+6, 2+0, 4+6, B8+o

8=0, L,...oun 14, we get a design with the parameters
»=15, b=15, r=4, k=4
=1, 1,=12,2,=0, n,=2
9 2 12
Pa= (2 o). Py= ( 0 ?)

3s
5, F, = =
EF=q

The complete design can be written as follows :—

(1:2,4,8), (2,3,5,9), (3,4,8,10) (4.5.,7,11), (5,8,8,12), (6,7,9,13), (7,8,10,14), (8,9,11,0), (9,10,
12,1), (10,11,13,2), (11,12,14,3), {12,13,0,4), (13,14,1,8), (14,0,2,6), (0,1,3,7).

(ii) Letv=31, Consider the modul of the classes of residues (mod 31).  Then our
31 varictics are 0, 1, 2, 3,............30. Let x,=1, x;=2, x,=4, x,=8, x,=15, x,= 10,
xy=23, 1,27, ¥, =29, x\p=

Thea among the 93 differences xi~—x; (i, §=1, 10, i#f), the numbers of
the set (3, 6, 7, 12, 14, 17, 19, 24, 25, 28) cach occurs 4 times, the numbers of the sct
(1,2, 4,8,15, 16, 23, 27, 29, 30) each occurs 3 times and the numbers of the sct (5, 9,
10, 11, 13, 18, 20, 21, 22, 26) cach occurs twice. Cull these sets, the sets I, If, III,
respectively.

Among the 80 differences a—~o' where a and o are any two clements of the sct 1,
every mumnber of the set I oceurs thrice, every number of the set IT occurs twice, and
cvery number of the sct IIT occurs 4 times. Again among the 100 differences B-v
where B is any number of the sct II, and y any number of the sct I1I, the numbers
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of the scts I and II1 occur 4 times cach, while the numbers of the sct IT occur twice.
Similar other results hold for differcaces of other types, Ilence by taking the 31 blocky

146,2+0,4+6,8+0,15+0,16+5,23+0,27+6,2940,30+0, (mod.31)
where =0, 1, 2,............30, we get a design with the paramcters

v=31, b=31, =10, k=10
A=d, n, =10, 1,=3, n,=10, },=2, n,= 10

3 2 4 2 4 4 4 4 2
w=l2 4 4| pu=|4 3 2| py=|4 2 4
»
3

4 4 2 4 2 4 2 4
s _ 100192
E.F. = 108005

(ifi) Let p=29, Consider the modul of residue classes (mod 29).
Then our varicties are 0, 1, 2,......... 28, Let

x,=0, x,=1, 03=7, x, =16, xy=20, x,=23, x,=24, x,=25

‘Then among the 56 differences xi— vy (i, jo=1, 2,.........8, i%)), the numbers of the
st (1,4,5,6,7,0, 13, 16, 20, 22, 23, 24, 25, 28) occur three times cach, while of the
numbers of the set (2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27) each occurs once.
Call these scts the sets I and IT respectively. ‘Then among the 182 differences of the
type a—a', where « and & are any two different numbers of the set I, cach number
of the sct T occurs 6 times, and cach number of the sct 1T occurs 7 times. Among the
182 differences of the type f— 8, where B and B’ are any two different numbers of the
set 11, cach number of the sct I occurs ? times, while cach number of the set II occurs 6
times.  Finally among the 198 diflerences of the type a= B, where a is a number of the
sct I and 8 is a number of the set IT, cach number of the sct I, as well as cach number
of the sct I1, occurs exactly 7 times. Thus by taking the 29 Llocks

6, 146,7+86, 1646, 2040, 23+0, 2440, 25+6, (mod 29)
8=0,1,2,3, .........28, we get n design with parameters
v=20, b=29, r=8, k=8
W=3, =4, dy= 1, ny=14
6 7 (17
pe= (3 7). m=(37 0)
LF =
§7. ConsTrRUCTION OF DRsIGNS (CONTINDRD).
MISCELLANEODS METIIODS.

1. If the number of varictics be a factorisable pumber, it can be expressed in the
form v=pg. Form a rectangular lattice with these varicties, having p rows and ¢ columas,
A design can be obtained with pg blocks. Every block has a variety associated with it and
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will comprise that varicty and sll varietics placed in the same row and column as that
variety. The following will be the paramcters of the design. We assume that p>4>2,

v=b=pq, r=k=p+q-1
L=p n=p=1
hy=gq m=gq-1
1,=2 me(p-1) (g-1)
p-2 0 0 [} 0 p=1
Pu= 0 0 q=1 = 0 q-2 0
0 g1 (p=-2)(q-1) -1 0 (p-1e-2)
[ p-2
Pa=| 1 0 q-2
p-2 ¢-2 (p-2)(q-2)
If 9=2, this degenerates into a design with only two iate-cl . The
are:
ymba2p, rek=pet
\=p n=p-1
1,=2 n=p
Pas= ( P:)z g ) Pa= (pfl l'o—l
: = 4p(p+2) (2p-1)
EF = 3perora
2. If in the above (threc 1) designs, we had formed blocks by taking all varicties in
the same row and column as that varicty, itself, the will be
v=b=pg, r=k=p+q-2
L,=p-2 m=p-1
h=q-2 ny=q-1t
,=2 ns=(p—1) (g—1)

‘The parameters of the sccond kind will be the same as in the previous design.
\When p or g=4, the design degencrates into o design with two A's.

Thus, let v=4p (p>4). The parameters then are:

v =d=4p, r=k=p+2
Aymp-2 ny=p~1
A=2 n,=3p

-2 0 L] -1
P'n=(po 3[,). I"nn(,,_l "2,,
. = 8P () (4p—1)

E-F. SPFa (T -9
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Let v=4p (p<<4). Then the parameters are:

v=b=4p, rak=p+2
,=2 ny=3p
Ay=p-2 ny=p-~1|

2p  p-1 _{3 O
ram (50 150) = (522
E.F. is the same as for p>4,

There are only 2 desigus in this serics, a3 p can take only two values, namely, 2 and 3.

3. If visa perfect square (=p") we cou get designs by forming blocks such that wita
respect to every varicly we form a block with all the varicties occurring in the same row,
columu and haviog the same Latin letter as itself in cach of s orthogonalised squares
(5=0, 1, 2, voecseeeeee p=1, according to the propertics of p). If each variety is included in
the block iated with it, the of the design are:—

v=bep reke(s+2) p=(s+1)
h=pts(s+]) n={s+2) (p-1)
Ay=(s+1) (s4+2)  my=(p~1) (p-s~1)
g = (PHIFD (=), (e 1) tb-s-1) ) pra= (BEDG2L G42) (p-s-2
EE ey == p=e-1 (p-s-2) PRT \(s42) (p-s-2), (p-s-2)"+3
The E. F. takes a complicated form, but, in special cases, i3 casily culeulated.
‘Thus for p=3, s=1, E. F.=2880/2989.

This design will degenerate into a series of Yates' balanced incomplete designs, if
p=2(s+1)i.e., p=2° s=28"~1. For other volues of p and s satislying this condition, no
design is known to exist, Thus s=2, p=6 satisfics the condition p=2(s+1), but the 6x6
square has ‘no Grieco-Latin square and so the design does not exist,

4. If in the above design, the varicty associated with each block is cut out from it,
“the parameters become—

v=b=pT, r=k=(s+2) (p-1)
M=p=2+5(s+1) n={s+2) (p-1)
Yy=(s+1) (s+2) ny=(p=1) (p-s=1)

and the parameters of the sccond kind remain unaltered,

The E. F. takes a complicated form, but, in spceial eaces, is casily calcwated,
Thus for p=3, s=1, E. F,=108/117,

This will degenerate into a series of Yates’® balanced incomplete desigus if
p=2(s+2).
Designs are possible only when s=1, #=6 and when s=2%="=2 amd p= 2",
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When s=0, the designs for v=p* discussed in §7°3 and §74 follow as special cases
of the designs for v= g discussed in §7'1 and §7°2, Ly pulling p=gq.

5. Let v=pq, where p>¢>1 and also p shonld be such that g orthogonalised Latin
squares exist for px p squares.
Let the varicties be orranged as follows : —
L 2 o r
(340 P2 2p

(g=D p+), (g-1)p+2.

In the first orthogonalised Latin square replace the $ letters by the varicties
1,2,. b, in the second square Ly the varietics p+1, p+2, ..o . 2p, etc,, and lastly
in the ¢ square by the varicties (g—1) p+1, (9=1) p+2, ..cocee , gP. Now superimpose
on the first square, the remaining q—1 squares. Each cell will now contain ¢ varicties
which will be a block of our design, with the following parameters :—

v=pq, b=p’, 1=p, k=g

=1 m=pig-1)

Ay=0 ny=p-1
o Ple-2) p-l o (Pl-) 0
P et o ). P ( o p—z)

(e—1) (pq-1)

e N TR T

6. Let 2=pg (P>2, ¢>1). Keep the v varicties in p sets of g varicties each.

Label the sets by p letters,  Arrange the letters in the form of o px p Latin square.  Strike
ofl any row (or column) of this square. Take as blocks the p colummns (or rows) cach

containing p—1 letters, and so q(p—1) varicties. The parameters are:
v=pg, b=p, r=p-1, k=q(p-N
Ah=p-1 m=g—1
A=p-2 m=q (p-1)

. _(a-2 °):=(° -1
P ( o ar-n)" "=t a2

p(p=2) (Pg~1)

ET. = (h=2) (Pg=1) __
Yo S E=a e DD

If p is a prime or power of a prime and if we write the px p Latin square in the
standord form, it is possible in some cases to get designs with 2 or more 2's, even if more
than one row or column is siruck off from the square.

7. Many designs can be oblained by the principle of duality between blocks and
varicties. In a known design of our type, or, of Yates' type, let us number the varicties a%
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120

werees ¥ and the blocks as 1, 2, ..neenns b

Now, calling variety 1, as block 1,

ete., and vice versa we can in some cases get a design with v blocks, b varicties, r plots per

Dlock and & replications of each variety.

Dcsigns with b= are self-lual with respect to blocks and varieties, so that we will not

get new designs from them.

The designs obtained by inverting some of the published designs of Yates, with bs&v,

are given helow,

Yates® design
(1) »=8,b=10, =5, k=3
A=2

pae (3 3) e (]

(2) »=10,b=15,7=0, k4

Pn= (

pae(3 9) mae(f Spun- 8

o (13 B) pae( f)mrei

l=2

3) v=13,b6=20 r=6, k=3
x=1

(4) v=19, b=57,y=9 k=3
A=l

{S' v=21,b=70,r=10, k=3

A=l

1
4

P= :f

Our design, on inversion
»=10, b=0,7=3 k=5
A=2,1,=1, n,=3, n,=0
3); Er =3
=15, bm10, r=4, k=0
L,=2,0=1,n=6n,=8

4 3 3\ p

4 ). Pu= (3 i ),):. F.= -

=206, b=13, 73, k=0
=1, hy=0, n, =15, n,=10

¥=57, b=19, r=3, k=9
=1, 4,=0,1,=24, n,=32

T
ve70, b=2(, r=3, k=10
A=1,04=0, u,=227, u,=42

) pum (g )ik F= 10

‘Though the five designs of our type obtained above will, on inversion, give designs of
Yates' type, the generality of our designs, on inversion, may give designs of the same type
as the original. There will be many cases where no dual design of ony sort exists, As an
example of our design having a dual design of the same sort, consider the following.

In §7-5 we considered the design

v=pg, b=p',r=p k=g

r>q a

which was obtained by a method which restricts that g=2 only if # is not of the form
4 1+2 and that ¢>2 only if p is a prime or power of a prime. It can be easily scen that

this is 6 dual of the gnasi-factorinl design

v=pY b=pg, r=q k=p 2
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where g—2 orthogonalised px p squares ore used to get the design. Thus for g=2 or
3, p=8,'designs of the class (1) can now be obtained, since designs of class (2) exist for
tiose vatues of p and ¢, though our gereral method of getling the former class of designs
precluded it

SUMMARY.

Recently Yates introduced two important types of non-orthogonal designs, namely,
the quasi-fa jal cnd the bal | )| block designs. The sccond was the
generalisation, of a special case of the first type of designs, namely, of the symmetrical
quasi-factorial design with p® varictics (trestments) in blocks of p* (k<m) plots, where
P is a prime or a power of a prime,

In the present paper we have gencralised another special case of the first type of
designs, namely, the unsywinctrical quasi-factorial designs, with p™ varieties in blocks of
p==! plots, where p can be any integer, Unsymmietrical designs with p® varieties in blocks
of p* (k<m=1) plots arc also capable of generalisation, which will be attempted in «
subsequent paper. Vates' Lulanced incomplete Llock designs wow appear to be the
simplest and the most cfficient sub-system within a general system of incomplete block
designs with equal block size,

Besides indicating the method of analysis of data appropriate for our partially
balanced incomplete block designs and of calculating their Efficiency Factor, three major
and g number of miscellancous methods of constructing the designs aré discussed, for the
sake of illustration only. Itis hoped to completcly enumerate (hose designs of our type,
which are likely to prove practically useful, in a later communication.
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