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Abstract

Evans—Hudson flows are constructed for a class of quantum dynamical semigroups with unbounded generator on UHF
algebras, which appeared in [Rev. Math. Phys. 5 (3) (1993) 587-600]. It is shown that these flows are unital and covariant.
Ergodicity of the flows for the semigroups associated with partial states is also discussed.
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Résumé
Les flots d’Evans—Hudson sont construits pour une classe de semi-groupes dynamiques quantiques i génératewr non bormé

sur une algébre UHF, définie dans la référence [Rev. Math. Phys. 5 (3) (1993) 587-600]. On montre que ces flots préservent
I"unité et sont covariants. L ergodi~ité des flots associés i des états partiels est également discutée.

1. Introduction

Quantum dynamical semigroups, 1o be abbreviated as QDS, constitute 8 natral generalization of classical
Markov semigroups ansing as expectation semigroups of Markov processes. A QDS {T;: 1 = 0} on a C*-algebra A
is a Cy-semigroup of completely positive maps T; on 4. Given such 2 QDS, it is interesting and important o look
for a dilation in the sense of Evans-Hudson, i.e. a family of +-homomorphisms 7, :.4 — A" ® BIM(LYEL ko))
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where Ky is some separable Hilbert space and (-} denotes the symmetric Fock space, satisfying a suitable quan-
tum stochastic differential equation. This problem has been completely solved for QDS with bounded generators
by Goswami, Sinha and Pal [2.4], where a canonical Evans—Hudson flow for an arbitrary QDS with bounded gen-
erator has been constructed. However, only partial success has been achieved for QDS with unbounded generator.
1t is perhaps too much o expect a complete general theory for an arbirary QDS. [tmay be wiser to look for Evans—
Hudson flow for special classes of QDS. In [3] for example, the authors gave a general theory of dilation for QDS
on g C*-algebra A, which is covariant with respect Lo an action of a Lie group and also symmetric with respect 1o
a given faithful semifinite race. However, in the present article, we shall try 0 construct an Evans—Hudson flow
for another class of QDS on a UHF C*-algebra, studied by T. Matsui in [6]. This construction has some similarity
with the earlier one, but the action of the discrete group Z¢ instead of a Lie group action as in | 3] makes the present
model somewhat different from that of [3]. We have not only proved the existence of a dilation in Section 3, we are
also able to prove in Section 4 that the Evans-Hudson (EH) flow is indeed covariant with respect to the Z9 action.
Some ergodicity properties of the flows are also discussed briefly in Section 5.

2. Notation and preliminaries

T. Matsui [6] constructed a class of conservative QDS on the UHF C*-algebra 4 generated as the C*F -completion
of infinite ensor product '3'.."?-}5“' Muy(C), where NV and o are two fixed positive integers. This C*-algebra can
also be deseribed as the inductve limit of full mawix algebras { My« (T), n = 1} with respect o the imbedding
Mpye © M ywir by sending a 10 a @ 1. The unique normalized race i on A is given by tix) = N—INTr{.r}l, for
x € My=(T), where Tr denotes the ordinary trace on My=(C). For x € My(C) and j € Z¢, let x¥' denote an
element in 4 whose jth component is v and rest are identity of My (T). For a simple tensor element a € 4, ket
a;jy be the jthcomponent of a. The support of a, denoted by supp(a) is defined to be the set {f Zd. daipy # 11
For a general element a € A such that a = Z;L cpity with ay, s simple lensor elements in 4 and ¢,"s complex
coefficients, we define suppia) :=|_J,, .y supplay) and we set |a| = cadinality of suppla). For any A € 74 let
A4 denote the s-subalgebra generated by elements of 4 with support A. When A = {&}, we write 4; instead
of Ay Let Ajge be the s-subalgebra of 4 generated by elements @ € 4 of finile support or equivalently by
[z x € My(D), j € ). Clearly Ay is dense in A, For k € Z¢, the translation 7 on .4 is an automorphism
determined by tp(x') := xV ) ¥r & My () and j € 29, Thus, we get an action t of the infinite discrete group
Z4 on A. For x € 4 we denole 7p(x) by xp. The algebra 4 is naturally sitting inside hy = L2{A4, ir), the GNS
Hilbert space for (4, tr). 1t is easy o see that 7 extends 0 g unitary on hy, to be denoted by the same symbol 7,
giving rise lo a unitary representation t of the group Z9 on hy, which implements the action 7. It is also clear that
this action extends as an action of Z¢ by normal automorphisms on the von Neumann algebra 4",

We also need another dense subset of 4, which is in a sense like the first Sobolev space in 4. For this, we need
to note that My (C) is spanned by a pair of noncommutative representatives (U, V3 oof Zy ={0, 1, .., N—1}
such that UY = V¥ =1 € My(C) and UV = wV U, where w € C is the primitive Nth root of unity. These
L7,V can be chosen to be the N x N circulant matrices. In particular for N = 2, a possible choice is given by
U=g, and V =g, where o, and o; denote the Pauli-spin matrices. For § £ F4 and (., Al e G=Ey % Ey.
we set ajap(x) = [UDVIP 2] ¥x € A, xlli = g p 0w s ()] and C'(4) = x € A: x|y < o). Itis

easy to see that |x*| = |zj(x) = |x] and since C'(A) contains the dense #-subalgebra Ay, C1A) is a
dense t invarant s-subalgebra of A Let G = H,u‘:—;’.ﬂ' (5 be the infinite direct product of the finite group G at

cach lattice site. Thus each g € G has jth component g, = (;, f;) with a;, f; € Ly. For g € G we define
its support by supp(g) =1{j € Z%: g, # (0,0)} and |g| = cardinality of supp(g). Let us consider the projective
unitary representation of G, given by G 3 g Uy =[]0 U yiFi e A For a given completely positive
map T on 4, we formally define the Linbladian
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£=¥ L
keEd

where Dpx = rpfplr_gx), ¥x £ .4,
1
with Lox) = —5 {T().x} + T(x), (2.1)

and [A, B} = AB + BA.
In particular we consider the Lindbladian £ for the completely positive map T,

oo

Tr:= Zﬂ;‘.m”, ¥r .4,
n=l

associated with a sequence of elements {ay, }yzo in A, witha, = ZHFG oy, g Uy such that Zf::] ng_g Ec‘,r_gt[gtl =
oo, Matsui has proven the following in the paper referred eadier [6].

Theorem 2.1. (i) The map L formally define above is well defined on C'( A) and the closure £ of £/ i.A) is the
generator of a conservative QDS {F: 1 =0} on A,
(il) The semigroup | P} leaves C'(A) invariant.

The semigroup Py salisfies
I
Px)=x+ f P,(L(x))ds, ¥xe Dom(L).
0

Since 1 €C'(A) and £(1) = £(1) =0. it follows that P,(1) = 1,¥t = 0.
Following [6], we say that £ isergodic if there exists an invariant stale r satisfying

Pix)—drix)l| =0 ast— oc, ¥re A (2.2)
I vl

In [6], the author has discussed some critera for ergodicity of the QDS B Some examples of such semigroups
associated with partal states on the UHF algebra and their perturbation are given.

For a state ¢ on My (C) and k € 29, the partial state ¢y on A is determined by ¢y (x) = iz bxpee. for
x = XXy, where xgy € Ap and xpye € Agye. We can find a natural number N' and elements {L"™: m =
Lot NV in My (C) such that

N’ N’
p) =Y LxL™ VYxeMy(@© and Y LOLOM =1,
m=I| m=I
Form=1,..., N7, let us consider the element Lt[]m] € Ay with the zeroth component being L', Now for k € Z¢
andm =1, ..., N', wriling Lr"] = Ik{L:[]m]}’ the partial state gy 15 given by,

N
gelx) =Y L xL™ VxeA

m=1
By (2.1). the Linbladian £% corresponding to the partial state ¢y is formally given by
=Y e,

kezd
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whene

LY (x) =y (x) —x =

I-JI-—-

i Lm.l] [.IM] +L£m]"[_r1L;m]]_

It follows from Theorem 2.1 that £2 is defined on C'(.A4). Moreover, the closure £ of £2/C'(A) generates a
conservative QDS Pf on A given by

ﬂ¢( l_[ xm) = l_[ {d(xu) +e " (xi — dlxa)) |-

keA keA
We note that the map & defined by,

o(IToe) - ([T Lo
ked ke A ke A

extends as a state on A which is the unique invardant state for the ergodic QDS Pf. For any meal number ¢, we
consider the perturbation

L = 0% +elix), Yrell(A.

Itis clear that £ is the Linbladian associated with the completely positive map

N’ oo
el
Tix)= E LE"] .rL;m] +r E afxa;, Yxed
=l =0

and by Theorem 2.1 it follows that the closure £ of £ /C'( A) generate a QDS B’ Moreover, one has

Theorem 2.2 [6]. There exvists a constant ¢y such that for 0 < ¢ < ¢y the above QDS P/ is ergodic with the
invariant state ' satisfving

|27, <26 g, 3
(2.3)
" Prl"]{.r}' — @")(x) 1" = %c_[l—g feals Ixli, Vre LA

Remark 2.3. The invariant state @' coresponding to the ergodic QDS PI“] is given by
od
@' (x) =P (x) +c'f @ (L(F () dr, vxel'(A).
0
Let us conclude the present section with a brief discussion on the fundamental integrator processes of gquantum
stochastic calculus, introduced by Hudson and Parthasarathy [5]. Let k = L3R, ko) where ko = F(29) with the
canonical orthonormal basis {e;: j € Z4oand ' = Toym(K), the symmetric Fock space over k. For f € K, we
denote by el f) the exponential vector in I7 associated with f:

e{f}_@v‘;— [Jr]1

nzzil

where f" = f® f®---® f forn > 0 and by convention ') = 1. For f =0, e(f) is called the vacuum vector

H-Copics

in I7. Let C be the space of all bounded continuous functions from Eo to kg, so that £(C) = {e(f): f e} is
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total in " (k). Any f € L* (B, k) decomposes as f = Y _=a frex with fi € L2(Ry). We take the freedom to
use the same symbol f to denote the function in L2{E. , ky) as well, whenever it is clear from the context. The
fundamental processes {A7: i, j € Z9} associated with the orthonormal basis {e;: j € Z¢} are given by
Al =aggpa fori#0,j=0
=a), s, fori=0j#0
= A'“JR.:I.I..-FE""-' Wy | fori, i# 0
=tl fori=j=0,

where M, is the multiplication operator on L*(.) by characteristic function of the interval [0, ¢]. For details
the reader 1s referred o [10] and [ 7).

3. Evans-Hudson type dilation

In this section we investigate the possibility of constructing EH flows for the QDS on UHF C*-algebra, discussed
in the previous section. Although the question is not answered in full generality, EH flows for a class of QDS are
constructed.

Letr=3  .gcgly € Asuchthat 3 legllgl® < oc. The Lindbladian £ associated with the element r, i.e.
associated with the CP map T, T{x) = r*xr, ¥r € A, lakes the form

Lix)= ) 8 (xIre +ridelx), (3.1)
kezd
where rp ;= () and b‘g,b‘; are bounded dervation on A given by
Sy =lr.] and 8 (x) = (8 () =Irf.x]. ¥re A (32)

It follows from [6] that the closure £ of £/CY.A) is the generator of a contractive QDS F on A, In or-
der o construct an EH flow for the QDS P;, we would like to solve the following QSDE in B{L*{A, ) ®
B(r (L* (R, ko))):

djiey="3" ji(8(0) daj() + Y i (8;(x)) da’(0) + e (£0x)) de,
Jed JEE fj_}}
X =x@1p, xeAg.

Let us first look at the coresponding Hudson-Parthasarathy equation in L*{ A, tr) @ I'(L*(E. . ky)), given by

dif; = I Z [J"_rdﬂj{f} - J"J'dﬂj-{f}l] - é Z r_}‘r'_,-dr] L,

Jexd jezd
(3.4)
Uhix) = 1;_2.3.{'-
However, though eachr; € 4 and hence is in B{L*(A.1r)). Eq. (3.4) does not in general admit a solution since

(u, Z r'_}‘r_;u) = E [l jue ||I Yu € L2(A, tr),

jezd jexd
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15 not convergent in general and hence ZJ- <a @ e does not define an element in 4 & Kp. For example, let r be

the single-supported unitary element U™ & 4 for some k € 29 so that r; = U™/ is a unitary for each j e Z¢
and hence
i F
Y lrjul®= ) lul? = o0,
jezd jezd
However, as we shall see, in many situation there exist Evans—Hudson flows, even though the corresponding

Hudson-Parthasarathy equation (3.4) does not admit a solution.

Remark 3.1. There are some cases when an Evans—Hudson flow can be seen to be implemented by a solution of a
Hudson-Parthasarathy equation. For example, given a self adjoint r € 4

; i 1 S
dv, = V;I Y (S dag(t) — Sedaf(n) — % > .s;.s;m}, Vo=1,
keZd keZd
where 8 is defined by Sp(x) =[rg. x] for x € 4 € LA, tr), admits a unique unitary solution and
= Vi ® 1}#‘}*
gives an Evans—Hudson dilation for Py [8.9].
Let a, b € Zy be fised and W = U“V? &€ My (T). We consider the following representation of the infinite
product group G == []; zs L. given by
Gags W= I—[ w9 where g= (o).
jeEd
Foranyye A, y=3 gl and forn =1 we define
Inly) = legllal”.
gel

Now we consider r € 4, r= ZgFL? cg Wy such that ¥ e Ec'g,llgl'l < oo [is clear that & ({r) = Zg:—ﬁ’ leglizgl <
oo, We note that any © € g can be wrillen as v = Ej,eg o Uy, with complex coefficients o satisfying ¢, = 0
for all h such that suppif) Msuppix) is empty. So

fhy(x) = Zrcﬁ,:iﬁ;‘* oo fornzl,
el

and it 15 clear that

Palx) < 121" ) lenl € &
el

where ¢, = |x[(1 + Zm-f; lew . Let us consider the formal Lindbladian £ associated with the element r,
L= Ls
keZd

where Lg(x) = 18] (x)rg + rfdp(x).
For n = 1, we denote the set of integers {1,2, ... ntby lyand for 1 < p<n, P={{1.l2, ..., .flrp} < [, with
Iy <lz<---<l,, we define a map from the n-fold Cartesian product of Z9 o that of p copies of Z9 by

k(L) = (ki Kz, ..o k) > K(P) i= (hyy koo ke



I Goswami et al. / Ann_ I H. Poincaré — PR 41 {2005 ) 5(5-522 511

and similarly, £(P) = (g1, £, .- ... &1, ) for a vector E(I) = (£1, £2,. ..., &) in the n-fold Cantesian product of
{—1,01}

For brevity of notations, we write #(P) = ¢ € {—1,0, 1} to mean that all £;, = ¢ and denote k(I,) and £(1,)
by :{_'{n}l and £{n) respectively. Setting 4; = ﬁ;, Ly and_éik depending upon £ = —1,0 and 1 respectively, we wrile
Rik)=rgri, ---ry, and Sik.5y= hs'" b‘;: for any k= ({ky, k2, ..., kp)and £ = (&), £2.....£p). Now we have
the following us.cful lemma,

Lemma 3.2, Let v, x and constant ¢, be as above. Then

(i) Foranvn = 1,

Z"a‘{ﬂn}, En))(x)| € (201(r)c,)"  Yx € Ay

k()

where £(n) is such that g £ 0, ¥l € [,
{il) Foranvn = 1 and k (n),

Ly, Ly (x)=

Ml,_,

Z Y R(K(PO)) §(kn).Epy(m) (x)R(K(P)),
=l 1

i PCl |[Pl=p
where £ pyin) is such that 5 p(P) = —1 and £;py (P )= L

(iil) Foranvn 21, p<n, P C I, and £{n) such that £ P) contains all those components equal to ), we have,

Y8 (E ), Em) )] < el 281 () )" < (14 Irl)" (201 (r) )"

kil

(iv) Letmy,ma = 1; x, v € A and Eimy), £ (ma2) be two fived mples. Then forn = 1 and E(n) as in (iii}, we
have,

> |8 (k(n). &) {8 (K" (m1), & (m1) )x) - 8 (k" (m2), &7 (m2) ) () } |

k-[.lr]..E’[m: ].E”[mz]

<214 ||r|)

Dv4my iy 4y

{21}[{1'}{'_[-_}-}

where ¢y y = max{cy, oy }.

Prool. (i) As r* is again of the same form as r, it is enough w observe the following:

letu,, s x| € @01(r)e)" Vx € Aue.

In order to prove this let us consider
Z Z Igel -+ Icgillenl | [Ti Wen - - - [ 72y Wey. Unll- |-
okl B MEG hEG

We note that for any two commuting elements A, B in 4, [A, [B, x]| =8, [A,x]]|. Thus, for the commutator
[z, W, .-ty Wo, . Ui ll - --] to be nonzero, it is necessary to have (suppig;) + ki) Nsuppih) 5 ¢ for cach i =
| M ot n. Clearly the number of choices of such k; € Z9 is at most |g;| - |h]. Thus we get,

Y gl £l € Y legdleg licallgal - lgillAl"2" < (281(r)ex )"
kg kg B, ... 816G held
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(i) The proof is by induction. For any & € Z¢ we have,

1
Le(x) =5 Y 8 (Ir +ride(x),
" kezd

s0 it is trivially true for n = 1. Let us assume it to be true for some m = 1 and for any ko) € 29 consider
L1 Lty - - Ly (). By applying the statement for n =m we get,

1 o S i
Loy Lt Lty(X) =g D o (8, AR(K(PO)) 5 (kim). £y (m))(0) R(E(P)Y) 1,

2
p=i 1, PEl, |Pl=p

+rp b | RIECP)) 8 (k(m). 2 py(m) ) (x)R(E(P)) }].-
Since rg's are commuting with each other, the above expression becomes
! I Y E ¥ = -
ST A Y [R(EPOY s B(kGm). Epy(m)) ()R(K(P))r,,.,
- p=01,...m PCig: |Pl=p
+ri RECPO)) 8, 8(k(m). & py (m) ) ()R (k(P))]

1 : %5 (F = I
T ¥, Y R(KPOYE(k(m + 1), Epy(m + D) (xIR(K(P)).
p=01,...m+1 PClgq |Pl=p
(1) By simple application of (ii),
. 1 2 o .
k. em)x) =55 > Y RPN @) 8 (kin), Eg.m () (D) R(K(Q)), (3.5)

g=1,...p QCP: |Q]=g
where £ py(n) is defined o be the map from the n-fold Cartesian product of {—1,0, 1} to itself, given by &(n)
£(o.py(n) such that 5 g_py(Q) = — 1,50, py(P\ @) =1 and F(g_py (I \ P) = (I, \, P). Now (iii) follows from (i).
(iv) By (3.53) we have,

il :
LHS = - > > Y | REP Q)
k) B (my) B (mz) 9=0.1,....p QTP |Q|=¢

x 8(kin). &g py(n))[8(k (m1). & m)) (x) -8 (k" (m2). 2" (m2)) (») R (k(Q)) |-

Now applying the Leibnitz rule, it can be seen o be less than or equal to

P = -
";E X X 2. pI o a(kry. Eeg, my(L)E(K (m1), & (m1)) (x)]|

T R E ) B ng) g=0.1 . p QEF | Q=g =010 LERy: [LI=]
x |8(k(L). &g, (L)) [8(K"(m2). #"(m2)) ()]
Using (iii), we obtain,

{1+ " P! n! T P
oS Y = Y ey () T @)
ap Al T _
- i L L N ! L
x (14 |r))" " (28 (r)e, )2
.‘_:H: 2Jr{1 . "r"}z‘lr-;-"“-Huz{zﬂ'[{f'}f'_l-_ j~I}.lr+.lr.u-|-.|ug_ 0

Now we are in g position 1o prove the following result about existence of an Evans—Hudson flow for QDS P,
associated with the element r € 4 discussed above.
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Theorem 3.3, (1) For ¢ = 0, there exists a unigue solution j; of the QSDE,
dji(x) =Y j@0dajm)+ Y jidix)dal(n) + ji(Lx)dr,
jezd jezd
jolx) =x @1r, Vi€ A,

such that j (1) =1, ¥t =0,
ib) Forx,ve A and u,vehy, f,eel,

{we( ), jrtxyive(g)) = {ji(x*)ue(f), ji(vIvelg)).

(c) j, extends uniquely to a wnital C*-homomorphism from A inte A" @ B(I).

Prool. We note first that 4, is a dense #-subalgebra of 4.

(a) As usual, we solve the QSDE by iteration. For i = 0, < 1y and x € Ay, we set

@) =x®1r and

I

i =x@ 1+ [ 3300 w) days) + 3 AV (600) dafs) + 7 (Bo) .

n Jedd Jjedd

Then for u € hy and f £, we can show by inducLiﬂn, that

i) — "V Juel )| < g e ” lue(H] Y Y 8k, 2m) )],

i £t

513

(3.6)

(3.7)

(3.8)

(3.9)

where ¢ = 2e¥r10)(] 4 ||f||§c}l, with yritg) = _,I”“{l + || Fis)|*)ds. For n = 1, by the basic estimate of quantum

stochastic integral [ 10,7],

||{jil] m]{.r}}ue{j}

112
” ||! Za () daj(s)+ Y 8;(x)da] h}l+ﬁ{.r}ld1.]ne{j}"

n JeEd jezd

<2010 e( )| lzua ol + X [+ £l f1+ 0] s

jeid Jjedd

<eslen || Z 3ol + [ 8s60] + 1 oul |

_||l.'—..*

Thus (3.9) is true for n = 1. Inductively assuming the estimate for some m = 1, we have by the same argument as

above,

"{j;lm-"l]{.r}l uu]{x}}“e{j}"

[m]{a (x)) — jf:-”{a (x))] daj (s,) + E[j“”]{ﬁj{x”

il _.l'.:.b jeZd

el

+[Jr[""]{£{.r}l} [‘” ”{ﬁ{_r}l}]ﬂim]i!e{f}"

=3 5(x)) ] da ()
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< zcrflrulfl Z ||[_.f“"]{h;{.r}l} j.,[: l]{h;{x”]“eu.}nz

] _.l'.'—.L.

+ Z VL™ (85 x0) — 2 (87 00)) Jue () |

_.lF.L

* "[_,r[m]{ﬁ{_r}} —‘r"l: l]{'ﬁ{x}}]“ﬂf}nz {1 i+ ||.-|F.{~'"m}||2}d"m

<c; [lel[;“'“{a () = iV (s5 ) Jwel )|

jekd

+ Z"[;“"]{aﬂx}}—;‘“" D (8 0)ue )| + | [ Lix)) - jim- U{E{x}}l]ne{,f'}"]]_d-‘u'm.

jezd
Now applying (3.9) for n = m, we get the required estimate for n = m + 1 and futthermore by the estimate of
Lemma 3.2(iii),

(tgc )2

¥ o

Thus it follows that the sequence {j,“”{x}ue{f}} is Cauchy. We define i (x el f) o be limy, o~ f,""'we( f), that
15

[ = 5"V o Juel )] <3"——=—ue(H] (1 +1Ir )" (1 + 281 (r)ex)".

jue(f)=xu@e(f)+ Y (i 0 — iV () |ue( ) (3.10)

nz=l

and one has

s
Lir(x)ue f)]| < ||ue(f)] [uxu + Z‘”{ H}} (1 1) (1 + 281 (r)ey)’ ] (3.11)
nzl o

Unigueness follows by setting,

gi(x) = ji(x) — j(x)
and observing

dgdx) =Y qe(8T(0))da; () + Y gil(8;00) dali) + g L)) dr,  golx) =

jezd jedd

Exactly similar estimate as above shows that, foralln = 1,

o Cored )] < 22 ” lue(H Y- 3 8kt ).

k[.lt] Elnl
Since by Lemma 3.2(iii) the sum grows as nth power, g;(x) =0¥x € 4., showing the uniqueness of the solution.
As 1 e e with £g (1) = E:{l}l = &g 1) = 0 it follows from the QSDE (3.6) that (1) = 1.
(b) For el ), ve(g) € h @ E(C)and x, v € A, we have, by induction,
Uit (x*yue( ). ve(g)) = (ue( ). j™ (x)ve(g)).

Now as n lends Lo oo, we get

{ir (x" el £, ve(g)) = {we( ). ji (x)ve(g)).
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We define
@ (x,y) = (el ). ji(xyyve(g)) — i (x el ). ji(y)ve(g)).

Setting (Ze(D), netl)) = (Be. id), (id, 8¢), (3).id), (i, 8)). (Le.id), (id, £q) and (8], 8¢) for I =1,2,....7 re-
spectively, one has

|®:(x, ¥) |
I Sg-i LT}
< ) f f f D 1@ (e, ) - Gy (DX g ) -+~ e ()Y [dsg -+ dsuy
L.y B b ek
Vnzl, (3.12)

where ¢ = (14+ 10" 2)(| fllac + l2]lo). By the quantum Ito formula and cocycle properties of structure opera-
tors, ie. £(xy) = x£(y) + £(x)y + g 8 (x)8(y), we have,

@, (x.y) = fz{qb_\.{ﬁk{x},_v} + @, (x, 8 (1)} fils)ds +f Yol (5. ) + @, (x. 8] () }2e(s) ds
0k [

HE fZ{ﬁﬁx{ﬁn'[xLF} + @ (x. Le(y)) + @ (8] (x). 8 (1) | s,
0 *

which gives the estimate for n = 1:

I

EXER RIS f Y @ cethix), me)n) |ds. (3.13)
k

I=1,...7]

If we now assume (3.12) for some m = 1, an application of (3.13) gives the required estimate forn =m + 1.
Al this point we note the following, which can be verfied easily by (3.10), (3.11) and Lemma 3.2{iv).
(1) For any n-tuple (I, b, ..., fyin {1,2,...,7)

D i, ) -+~ Gy (00 - i, () === i (D) () ) ved ) |

|-
< Coun [(1+ 1P 1) (14 201(Pes o)} | vete) | (3.14)
where forany g e C

. n (g2 ; L aym

Coxy=1 +J§l3 "”“jﬁ.—{{l + eI+ 28 (e )}
(2yForany s <tp, p = nand £(p),

Y Lis{otkip). & p )i }vele)]| € Co [ (1 + 1P I)(1+ 201 (r)en v )} [ veie) ] (3.15)
Eip)

(3) Since &, (x) =, (x*) and {5(k(p), £(p)) (x) }* can also be written as §(k(p), £'(p))(x*) for some '( p), we
have

Y listotktpy. & p)i) ) uel )] € Cran{ {1+ 171) (1 +201(r)ex )} |uel )] - (3.16)

kp)
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For any fixed n-wple ({,, ..., 1), 1t is easy 10 observe from the definition of @ that
D 1@ (g, ) - - Gy (1w, e, () - - (1))
ki)

Z lueeC 3] - | ds(Ga () - = s 1)x - i (L) - - gy 1 )3 ) vedg) |

+ IIL{{n (o) -+ Gy (0)(x)) " fae ()] - | s (e, ) - -3y (D)) ved) ] -
The estimates (3.14), (3.15) and (3.16) yield:
D 1@ (e, W) - Gy (), i ) o -1, (1)) |
Ein)
<O+ 1rI)(1 4+ 2010 e ) e )] - | vete) | (Corn + Crxn Conn)
= c{(1+ 171 (1 + 2010 )ex ) P
with C = |lwe( £ - lrelgh{Ce x v +CrxyCoxyh
Now by (3.12),

|@:(x, 0| <

{?:J cre) {{1+",”H1+7§|{,}Cn}}‘” ¥nzl,
n!

which implies @ (v, v) =10
(c)Let &£ = ¥ c;u el f;) be a vector in the algebric tensor product of hy and £(C). If y € A . v is actually
an N s N1 dim positive matrix and hence it admits a unique square oot /¥ € AL . For any x € .4, . setting
y=4/x[T —x sothat y € 4, .. we get
i E|* = (e, jeg) =3 éiejlie el ). jr(y)ujedf7)
= cicjlue(f). i (Ix 1 —x)use(f)) (by (b)
= |lx- 1£1° — (£, jr(x)E).
where we have used the fact that 1 € Ay, and ji (1) = 1. Now let x € A, be arbitrary and applying the above for
x¥x as well as (b) we get,
Lir&]* = (e jex)g) =Y éiejlie el ). jrlxujedf;)
=Y _cicluie(fi), ji ("2 je(f) = (. je(x*x)E) < I¥x | - 1€ 17 = Ix1*- 1517
ar
lieog] < 1x0- 180
This inequality obviously extends to all £ € hg @ . Noting that j (1) =1, ¥r, we get
|| () | i = el and | i)l =1L

Thus j; extends uniguely o a unital C*-homomorphism satisfying the QSDE (3.6) and hence is an Evans—Hudson
flow on 4 with Py asits expectation semigroup. That the range of j; isin A" @ B(I") is clear from the construction
of ;. 0O



I Goswami et al. / Ann_ I H. Poincaré — PR 41 {2005 ) 5(5-522 517

We have also obtained an Evans—Hudson type dilation for the QDS Pf associated with the partial state ¢y, 1t
may be noted that the generator £ of Pf satisfies

E¢ {.r::' Z Z[L[JH] I,JH] [JH] [ L L) :|1 ‘i".r e Ah;;.;_- .

T m=l

Now we have the following,
Theorem 3.4, Let £9 and .ﬁ¢ be as diveussed earlier Then:

(a) Foreachk € Z¥ and t = 0 there exists a unique solution .'rﬂh Jor the QSDE,

N’

m{x}l =1 ( Z[LD”] xl;]]) dag (1) + m[k]( Z[.r[;] L“"]]) dﬂ:{f}l + nﬁh{ﬁf.rl;]}ldr,

m=I1 m=I

(3.17)
Jolxml =2 @ 1, Yag €4,

g

as a unital s-homomorphism from Ay into Ay @ BT ). Moreover, for different k and &', i;rl anl i;rl commute

I
: k (- .
in the sense that, l]‘:: ]{.rm}l arnl l]‘:: ]{.r;_-'::l commuite for every xpy € Ap and xp € Ay

(b} There exists a unigue unital w-homomorphism gy from Ay into A" @ BIT) such that it coincide with l]‘}:h on
Ags

ic) ny extends uniguely as a unital C*-homomorphivm from A into A" @ B ).

Prool. (a) For any &k € Z¢ and r = 0 let us consider the QSDE (3.17). Here we have only finitely many nontrivial
structure maps on the finite dimensional unital C*-algebra Ay, satisfying the structure equation. So there exists a
unique solution r;,m as a unital #-homomorphism from Ay into A4; @ B(I7). Since for different k and &' the asso-
ciated structure maps commute and for any xgy € Ag and xpy € A, Lo term absent in d{nﬁk]{x[k]}nr[y]{x[y]}}, it
follows that r;r;'t]{x[k]} and nﬁr]{x[ka]} commute.

(b) For any finite A € Z¢, ¢ = 0 and simple tensor element x4 = [[;. 4 %) € A4, the map nﬁm ziven by

A k
m M (x ) = I—[ e ()

ke A

is well defined from A o A4 @ B(7) as nﬁm's commute. Differentiating r;ﬁ"“{_rd} with respect to «, it follows
that 5"(x 1) satisfies the QSDE,

[A]{_rd} Z [A]( Z[L[ml )dﬂk{”_i_znm](Z[ L[m] )dﬂ:{f}-i-nrm]{ﬁf-r;ﬁ}ldﬁ

ke A =l ke A m=1
" (3.18)
-'f.‘r:[] "xA)=xa®1r.
We now want o show
i;rﬁ""]{_r_r} = r;ﬁ"”{.r} - i;rﬁ"“{_v}l, for simple tensor elements x, v € .4, (3.19

> % : & i 4 1 1 & =
Since each 7 ® is unital and 727 aprees with 4t for sinple tensor elemants in Ay whenaver A is:a finite
subset of A’, it is suffices to show ( 3.19) for x, y € A4, where A € 24 is a finite set. For x = [, 4 ¥ and
¥ = [leea Yty € Aa wehave,



518 I Goswani etal. / Ann. L H. Poincaré — PR 41 {2005) S05-522

A A
m ) = [ Trwyen = [T o Guoyw)

keA keA
k k k
= [T " i oy = [T e ) [T ™ v
ke A kedA ke A
Similardy
7t (x*) = (0 ()" (3.20)

Noting that any element x € Ay can be written as a linear combination of simple tensor elements {Uy: g € G}
say ¥ =3 o0, U, with ¢, =0 when supp(g) is outside supp(x) = A, we define

m(x) =Y cgm " (Up).
geli

Forxand y € Ajge, withx =3, o collp and y =3 o o Up, such that supp(x) =supp(y) = A,

ne(xy) = m( Y c;,c-hugux,)

g, kel
= Y coenn (U =Y coenm™ WeIni ™ (Un) (by (3.19)
g el ghel
B r‘"( Z%”ﬁr) A (E“’U"’) = ne (X))
peld el

It follows from (3.20) that g (x*) = (ge(x))* ¥x € Ay Thus o is a unital #-homomorphism from 4, into

A" ®@B(I).
() We recall that A7 is closed under taking square oot, as already noted in the proof of Theorem 3.3(c). Thus

for x € Ajge, /|1x|*1 —x*x € AT . Since n, is a unital #-homomorphism on A,

losz®
ne(lx )1 — x*x) 20 = dx*x) € 271 = 0] < 1207 = [n@0)] < ).

So ; extends uniquely as a unital C*-homomorphism from A into A" ® B(Ir). 0O

4. Covariance of the Evans—-Hudson Hows

In this section we shall prove that the Evans—Hudson flows constructed in the last section are covariant. Let B
be a C* {or von Neumann) algebra, G be a locally compact group with an action & on 5. Let {Ty: + = 0} be a
covariant DS on B with respect 1o o, ie.

ggoTix)=Tiowg(x), Viz0 gelG, xebb

Then a natural question arises whether there exists a covariant Evans—Hudson dilation for {7} }. The question is dis-
cussed in [ 1] for uniformly continuous QDS. There is no such general result for QDS with unbounded generators.
We shall show that the Evans—Hudson flows { ji} and {n; } constructed in the previous section are covariant with
respect to the actions T and A of Z9, where & will be introduced later in this section.
It can be easily observed that

Getj=tife; and §tj=1;8)_ ;. ¥j kel (4.1)

and we have the following lemma,
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Lemma 4.1.

(i) Lzj(x) = 1;L£(x) ¥x € Dom(L),
() Frrj=r1;F, i.e. P ix covariant.

Proof. (i) We note that C'(.4) is invadant under 7 and thus for x = C1A),
1
L(rj) =5 3 iz @) +ride(zj(x)
T ked

1 i
== 3 T n - nCnEo (0 (by (41)
2

ke
1
= ;IJ'I Z a‘;_j{_r}r}_j +rf__|l..’.'fk__|.-{.r} = r_,-{ﬁ{x}l}.
& ket

For x € Dom({), we choose a sequence {x, ) in C'(.4) and an element y € 4 such that y = £ix), xn converge Lo
x and L(x,) converge to y. As 77 is an automorphism for any j € 7 T (xy) and 7;L0(x,) converge o 7;(x) and
7;(y) respectively. Since x, € C'(A) and L£(t;(xy)) = 7;L(x,), we get

ti(x) e Dom(£) and Lrj(x)=1;L(x).
(i) By (i), forx e Dom(£) and 0< 5 < ¢ we have,
j‘ FiotjobP_ox)=Fo Lo TjobP_glx)—Fiort;o Lo P,_ (x)=0.

This implics that Py o t; 0 Pr_g(x) i independent of s for every j and 0 < 5 < ¢, Setting s = Oand ¢ respectively
and using the fact that Py is bounded we get Prrj=1;F. [0

We note that j;: 4 — A" @ B(MLY(FEL . kg))), where ky = 17(Z9) with a canonical basis {eg}, as mentioned
carlier. We define the canonical bilateral shift s by s;ep = epa . Vi & e 24 and let ¥i = I'(1 @ s;) be the second
quantization of 1 @ s, L.e. yje( 2 fil-)e)) = (2 fi(-)er+ ;). This defines a unitary representation of F4n M. We
setan actiong =t @ A of Z9 on A" @ B(I"), where rvd=yjyy—; ¥y e B(I).

By definition of fundamental processes ag (1) given by ag (1 Jeig) = _,IE gi{s)dse(g), it can be observed that

Aja(te(g) = yjaclt)y-je(g) = yjax {f}e(Z{g, f:ﬂ-}{-}w)
= f{.!{.ﬂ+_.l'}{~‘-'}d~‘f ¥i (E(Zig,wﬂ-}{-}f:))
0
= f[g "-'.t+_,l'}{~"'}'d~""ﬁ(z{g~ "-'I-!-_,I'H'}"-'I-e-_,l')
0

= a4 jlthelg).
Since {e( f), hjag(rle(g)) = {.}'-._,-:a;{f}le{f}l,e{g}}, it follows that

+

Ajag(t) =ags;(t) and )-._,-:a:{f}l = ﬂk_hl-{f}l. (4.2}
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Theorem 4.2, The Evans—Hudson flow j; of the QDS Py is covariant with respect to the actions T and o, i.e.
ajfit_jix)=jiix) VxeAd t=0and kel

Proof. For a fixed j € 79 we set Jr=ajfir—;, ¥z 00 Using the QSDE (3.6) and Lemma 4.1, (4.1), (4.2) we
have for x € Ape.

Ji(x) = jp(x)

=f Zﬂ'j_}:_..-{E;{T_J'{x}}}dﬂ;_{.\'}l+f ZG'J-j_,.{nﬁk{t_j{x}}}dﬂ;{.ﬁ}l+fa’_|,-j_‘.{1f{r__|,-{x}}}da‘

il keEd il keld il
I I I
i Tt 3 . + 3 e
— f Z a'J,-_.r_,'.I__..'{bk_'_J-{_r}} ey 4 5(5) +f Z crj-;_,-r_a.-{ag_..a.-{.r}}l ¢11+J-{A'} + fﬂjj_, I_J'{E{.r}l} ds
h kezd o kefd 0
I I I
=f ¥ j;{a‘;{x}}umm+f Y. ;_;{ak{x}}da;m+fj;{ﬁx}m-_
il keZEd il kezd il

Since jy(x)=ajjor—j(x)=aj(t_j(x) @ 1r) =x @ I = jolx), it follows from the unigueness of solution of the
QSDE (3.6) that j{{x) = jix) forallr = 0and x € 4. As both j and j; are bounded maps, we have j/ = j. 0O

Remark 4.3. By similar arguments as above, the Evans—Hudson flow for the QDS Pf associated with partial state
gy can be seen to be covarant with respect to the same actions.

5. Ergodicity of the Evans-Hudson flows

Let us recall the ergodic QDS Pf associated with the partial state gy, for which we have constructed an Evans—
Hudson flow i, in Section 3. It may be noted that Pf has the unigue invariant state @@ . We have the following result
on ergodicity of 5y with respect o the weak operator topology.

Theorem 5.1. The Evans—Hudson flow n; of the ergodic QDS Pf is ergodic with respect to the unigue invariant
state &, in the sense that

nelx) = @(x) @ 1 weakly Vo € A,

Prool. Since n; and Pf are norm contractive, e 15 norm-dense in 4, and P;p{.r}l converges to @i{x)l for all
x e A, itis enough to show that mix) — J"f{x} @ 1 — 0 weakly as r — oc. Furthermore, it suffices 1o show that
(&1, (e lx) — Pf{.r}l 1)) — Das t — oo, where £, £2 vary over the linear span of vectors of the form ve( f),
with f= ng” fi @ep for some n and fi'sare in LY{RBL ) NLYRL).

For notational simplicity denoting the bounded dedvations on A,

N’ N’
X Z[x LE”]] and  x+= Z[LE”]-,I]

m=I m=I1

by o and ,a; respectively. We note that i, satisfies the QSDE



I Goswami et al. / Ann_ I H. Poincaré — PR 41 {2005 ) 5(5-522 521

dn(0) =Y ne(p{0) daet)+ Y m(pe() dafi) + Y me(Lf () .

keZd keEd keEd

(3.1}
mlx)=x@1r, Vx e dpe.

Fort = 0,u,v ehgand f,g € LARy ko) N LYy, Kp) such that f =3, fi ®erand g =3, 81 D e
and ¥ € Ay, we consider the following,

e ). [n:(x) — P (x)@ 1 Jve(g))|

I

fEw{ﬂx{ﬂ"_qix}}}dﬂf{q}+nq{ﬂ;{f’ﬁq{x}}}dﬂﬂff} ve(g) !
0 kezd

- ! ue( f).

)

< fH“eU'l ng{oe(PLq(0)ve())] 2(a)] dg

(Kl =n iy

+ 2 f (el 1. 1 { o (P ) Jve(o))|| £ (@) dg.

|| =m

AS 1y, Pf are contractive, Pf{.r}l tends to & (x)1 as ¢ tends o oo and pg, p: are uniformly bounded with (1) =
p;{l}l =0 for all k € 79, we have,

Hne{f}l,nff{p;c{ﬂfq{x}}l}ue{g}ﬂ and Hne{f}l,nq{ﬂ:{ﬂ{q{x}}}ui&{g}ﬂ‘éM,

for some constant M independent of ¢ and g. The fact that f, g € LY{E., Kg) allows us to conclude that both the
terms of the sbove expression end to 0 as ¢ ends 1o oc. This completes the proof. [0

Remark 5.2. 5, (x) does not converge strongly, for if it did, then x+— @ {x) @ 1y would be a homomorphism, ie.
¢ would be a multiplicative nonzero functional on the UHF algebra A, contradictory o the fact that 4 does not
have any such functional.

Remark 5.3. Iff we look at the perturbation of the ergodic QDS F’f by the QDS associated with some single-
supported r £ Ap, then by the same arguments used in the construction of the Evans—Hudson flow for the
unperturbed semigroup one can obtain an Evans—Hudson flow for the perturbed one. For small perturbation para-
meter ¢ = 0 for which P/ is ergodic, the associated Evans—Hudson flow is also ergodic with respect to the same
mvariant state in the above sense.
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