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(Communicated by N. Tomczak-Jeegermann )

AmTRACT. Let X be a compact Hausdorff space and A © C[{X) a function
algebra. Assume that X is the maximal ideal space of 4. Denoting by o[ f)
the spectrum of an f £ A, which in this case coincides with the range of f,
a result of Molndr is generalized by our Main Theorem: If & : 4 — Ais
a surjective map with the property o fg) = ao(®(fd(g)) for every pair of
furctions f,g € A, then there exists & homeomorphism A 1 X — X such that
B FYAz)) = 7(z)f ()
for every = € X and every f £ A with 7= $(1).

1. INTRODUCTION

Molnir [M] Theorem 5| proved the following theorem: If X is a first-countable
compact Hansdorff space and C{ X)), the alpebra of complex-valued continnous func-
tions on X, and

$: (LX) —=C(X)

a surjective mapping such that
for every pair of functions f.g € C{X), ol fg) = a{®{f1d(g))

where o f) denotes the spectrum of f, which in this case would be simply f{X),
the range of f. then there exists a homeomorphism o of X onto itself and a function
7, whose range is {—1,1} such that

B fl{x) =7{z)f(pl(z)) for all z € X and all f € C(X).

In this paper we deal with a function algebra 4 in place of O[X)
and regard X as the maximal ideal space of 4. X is of course compact
Hausdorff but not necessarily first-countable. For this purpose, we need
to recall some results of Bishop and de Leeuw [BL] concerning function algebras,
peaking functions, peneralized peak points ete., for which a readable exposition

may be found in [Brl Chapter 2] and [Pl Chapter 8].

1.1 Peaking function. A function f in A i said to be a peaking function if for
any r in X, either f(z) = 1 or |f(z)| < 1 and the set {z : z € X, f(z) = 1},
denoted by P(f) and referred to as the peaking set. is non-empty.
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1.2. Generalized peak point. A point z in X is said to be a generalized peak
point for the alpebra 4 if, given any neighborhood V' of z, there exists a peaking
function f in 4 such that P{(f) C V, fiz) = 1.

The set of all generalized peak points is called the Choguet boundary of A and
denoted by d4(X). Its closure is the so-called Shilov boundary of 4. Since any
f € A assumes its maximum modulus || fll. = sup,_y [f(z)| on the Chogquet
boundary (see [B] Prop. 6.3]), we see that

(1.3) any peaking set meets J4( X ).

Also, given any x € X, there exists a probability measure p, a representing measure

for z, supported on the Shilov boundary § = 3 4(X) such that for every f e A,

(1.4) )= ﬁ fd.

The following theorem will be invoked several times in the proof of our Main The-
orem in the next section.

1.5. Theorem (Bishop). Given any peaking set E and any f & A, there evists a
peaking function b in A with P(h) = E and | f{z)h{z)| < maxg|f| for any z & E.

A proof may be found in [Brl page 102]. At one point in the next section, we
shall need the fact contained in the following proposition.

1.6. Proposition. Any family of peaking sets E,, with finite intersection property,
has a common intersection with d4(X ).

Proof. The proof is a convexity argument. Let Sy = {L € A* : |L]| = L(1) = 1}
be the state space of 4. We know that (see [P page 37]) @(04(X)) = ext(S4)
where ext{5,4) denotes the set of extreme points of the compact convex set 54 C
A* non-empty by the Krein-Milman theorem, and ¢ denotes the evalnation map
x ~=+ w(r) that imbeds X homeomorphically into 54 with weak® topology. Each
F,, = weak* closed convex hull of (E,), where E, = {z € X : h,(z) = 1} and
each f, € A4 is the associated peaking function, is a weak® closed face of 54— in
fact, F, = {L € S4: L{h,) = 1}. Consequently by the finite mtersection property,
F =, Fa & a non-empty weak® closed face of 54 and therefore has an extreme
point p that necessarily belonps to ext(5,4) and & therefore of the form p(z) for
some x € 40 X). But p € ext(F,) C o E,) for every o by the Milman theorem;
hence z € [, Ea, and we are done. O

2. Proor oF THE Man THEOREM

In the sequel f, g, h k&, etc. denote functions from A and ¢ denotes a generic
comstant. Abko for any f £ A, we shall sometimes abbreviate || f|. to | f]. It is
comverdent to present the proof of our theorem as a sequence of remarks. We point
out that the proofs of these remarks, though modelled in several instances on [M],
are rendered somewhat complicated by the more general situation that is being
considered here.

Remark 1. Reduction. Since o{1?) = o(®{1)?), we have ®#{1)? = 1, and so
by defining ¥f = ®(1)®(f), we see that ¥(1) = ($(1))® = 1. Furthermore,
P10y = B(LE( 1B 118 g) = & f1¥(g) and, consequently,

a(fg) = a(U(f)¥(g)).
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Now if we prove the existence of a homeomorphic self-map A of X such that

() (Alz)) = flz)

for every z € X, we would have proved the theorem mentioned in the abstract. So
from now on, we assume that ${1) = 1 and so

(2.1) o(f) =a(®(f)) YfeA,

from which it immediately follows that

(2.2) I fllse = 1RO e

Remark 2. If f.g € A, then |f| < |g| on @4(X) if and only if

(23] for every e =0 and every b, |gh| < ¢ implies |fh] < c.

Proof. That | f| < |g| on d4(X) implies (2.3) is obvious by (1.4). Assume that (2.3)

is true but | f| £ |g| on 34(X). Hence there must exist an zy in 8 4( X) such that
If(zo)l = |g(zo)l:

for, otherwise, | f| < |g| on d4{X).

Let v = 3{| flza)| + |g(za)|). So lg(zo)| < v < | flzo)|, and there exists an open
neighborhood V of xy such that [g{z)| < + in V' and a function b such that h{zg) =

1 = ||k, and |g{z)h{z)| < v in X V. Such an h exists, becanse 1y is a generalized
peak point for 4. Therefore [gh| < + on all of X but | f{zg)h(zg)| = | flzo)] = v,
a contradiction. This proves the assertion (2.3).

From (2.3), we can deduce the following:

(2.4 if o fi) = a(gh) for every k, then ond4(X).|f| = |gl-

Since a(fh)] = o(gh) ¥h € A we see that for any constant ¢ = 0 and any h € A,
lgh| < ¢ implies [fh] < ¢ and so (2.3) gives |f| < |g] on @4(X). Since the hypothesis
is symmetric in f, g, we obtain also |g| < | f] on 24(X). Combining, we have (2.4).

As a consequence we have

Remark 3.

(2.5) On d4(X), |f] =gl = |2(f)| = |®(g)l Vg€ A

Proof. Assume that |f| < |g| on 4(X) and |[®(g)k| < ¢ for some k€ 4 and ¢ = 0.
& heing surjective, there exists an b € 4 such that $(h) = k. Hence we have

[P(g)P(h]| < c.
But since
a(gh) = a(®(g)®(h)),
we obtain |gh| < ¢ and so by (2.3), | fh| < ¢. Since
a(fh) =a(®(f)®(h)),

we obtain [B{ F1®(h)| = |B{f1k] < . Now since &, ¢ are arbitrary, from Remark 2,
it follows that

[B(f) = [R(g)] ondalX).

Now the other implication has a similar proof.
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Remark 4. For any fixed 2 € 34(X),
(2.6) E:= (] P(f)={z},

JeF.
where F,. denotes the family of all peaking functions f € A such that f{z) = 1.

Proof Assume E containg a point g other than . From (1.2) it follows that every
point of 4(X) is a peoeralized peak point for A4, which means that, given any
neighborhood V' of . there exists a peaking function i in A such that hz) =1 =
[[#]] and |k < 1 outside V', which means P{h) € V. Soif we choose a neighborhood
V" of  that does not contain g, since £ C V, y € E. a contradiction.

We now have the important

Remark 5. If x € 94(X),

(2.7) n P(d({f)) contains one and only one peneralized peak point.
JeFs

First, because of (2.1), &(f) iz a peaking function if and only if f is a peaking
function. Also, each P{®(f)) is compact.

Secondly, if fi, fo. ..., fi belong to F. theng = fi fa. .. f, belongs to F,.. Since
lgl < | fil, we obtain in view of (2.5,

[B{g)| < |®(f;)] for each 1 <i < non d4(X).

Since g is a peaking function, so is $(g), and s0 $(g)(£) = 1 for some £ in J4({X).
Then ®(f;)(£)=1for 1 <i <nor

(N P(2(£) # 0.
1<i e
This proves that the family of sets {P{®(f)) : f € F.} has the finite intersection
property, and since each of them is compact, it must be that

E'= (] P(®(f)) #0.
feF,
Thus, £’ being a non-empty intersection of peaking sets must intersect 8 4(X) hy
Proposition 1.6.

Thirdly, if ¥ € E' M d4(X), let k be a peaking function such that k(y) = L
By surjectivity of &, & = $(h) for some peaking function i £ 4 (recall that
alk) = a(h)). We claim that hiz) = 1. To show this, choose any neighborhood
V of r and a peaking function g such that g{z) = 1 and |g| < 1 outside V. So
g € F, and hence $(g)(y) = 1. Consider ${g)E(k) = A € A. $(g), P(h) beng
both peaking functions that take the valoe 1 at ¢, we see that My) =1 and Mis a
peaking function. Again & being surjective, there exists a peaking function p € 4
such that ${u) = A, Since |A| < [$B{g)| A [B(h)] on d4( X, by (2.5) it follows that
| =< |g| Al f| on 34(X ). Hence there exists a £ € d4(X) such that p(£) = 1, and =0
gl&l = hi{£) = 1, which implies that £ £ V. Since V' is an arbitrary neighborhood
of r and k is continuons, we get

hiz) = 1.
Lastly, if there is a generalized peak point z other than y in E', we can choose

E in such a way that k(y) = 1, |k(z)| < 1. & being surjective, we obtain k' such
that #(h") = k. So by the previous paragraph, we see that ' belongs to F,. and so
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$(h') =1 on E' and consequently k(z) = 1, which is a contradiction. This proves

Remark 5. O

Let the unique point ¢ given by Remark 5 be denoted by v(z) since it depends
on r and nothing ele. We sum up what we established above as follows:

Remark 6. f 2 € 94(X) and f € F., then v{z) € 34(X) and ®{ f) belongs to
Frix)- Conversely, f k € F. () and ®(h) =k, then h € F,.

We now have

Remark 7. @ is injective and homogeneows, i.e, ®lcf) = cB(f) for any f € A and
ce .

Proof. Suppose if possible that ®(f) = $(g) for some f # g. For any h € A,
B F18(h) = $(g)E(h) and consequently,

a(B(f)e(h)) = a(R(g)P(h)),
from which we see that
al fh) = algh).

We deduce from (2.4) that |f| = |g| on 84(X). Since f # g, there exists a y €
24( X)) such that fly) # g(y); for otherwise f — g would vanish on 34(X), and s0
f=gon X by (1.4). We may assume that f{y) # 0 because if f{y) = 0, then,
since | fiy)| = |gly]l, it would follow that g{y) =0 = f(y). Therefore we can choose
a neighborhood V of y and a peaking function h such that 1 = kly), |kiz)] < 1
outside V. Then E := P(h) C V. By (1.5), we can modify h so that it would still
be a peaking function that peaks on E and moreover satisfies the following:

|F(2)h(z)] < mae | f] = masx| £,

2.8
(2.8) l9(=)h(z) < max g| = max|gh

for all =z outside E.

There exists £ € E such that | f(£)] = maxg | f| = || fh] <. Since a(fh) = algh),
fl&) = FlEWR(E) = glz)h(z) for some z € X. If z & E, then [g{z)h(z)| < maxg |g| =
lgfllse = | Fhl e = |f(£)], a contradiction. So z € E and f(£) = g(z) where both
£,z liein V. Since V is an arbitrary neighborhood of y and f, g are continnons, we
et fly) = gly), again a contradiction.

Thus

alfh) =cighlVh< f=g

and & & injective.

Now for the homogeneity. Notice that
a(®{cf)®(h)) = alcfh) = co(fh) = ca(®(f)P(h)) = a(c®(f)P(h)).
Since ® is bijective, we see that ®(cf) = e®(f1¥f A O
Remark 8.
(2.9) Iflz)l = |(f)(r(z)))] ¥YfeA VzedalX).
Progf. Take f € A and assume first that f{y) £ 0,y € 94(X). In this case, for
any piven neighborhood V of y, we can find a function k such that hiy) = 1 = ||}k

and fh attains its maximom modulus in V. (To find kB, ket & be a peaking function
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with P(k) C V', and let h = k™ for some sufficiently large positive integer n.) There
exists a £ in V' such that

IFEIREN = || fh]] e
But o(®(f1P8(h)) = a(fh) from which it follows that |®{ f(= () NE(R(r ()] <
[f(£)R(£)]. Since ®(h(r(y))) = h{y) =1 (Remark 6),

[R(£)] < 1, we pet
[R(A ()l = [FE)I-

V" being arbitrary and f continuous, we have

[R( ()l = IF )l

If. on the other hand, f(y) = 0, we could ensure that h satisfies hiy) = 1 =
]l and || fh]s < € for some preassigned e > (. Hence once again because

al{ B 1B(h)) = a(fh), we see that |$(f1E(R)]| < e by (2.2) and so0

[RLF) (7 () )(R) ((w))] < e,
and since $(k){{y)) =1, we pet

[R{F) ()] <,
which proves f(y) = ®{fi(r(y)) = 0.

Now let V' be any neighborhood of r(y), and assume that & fi(r(y)) # 0. We
camn, as before, choose b with B {r(y)) =1 = |#'| and ®(f)}’ attains its maximum
modulus at a point £ in V. Since € is surjective, let #(h) = k. By Remark 6,
hiy) =1 and since f{y)h(y) belongs to a(fh) = a(®B(f)B(R)), we get

fly) = S(FUE)(R)(E)
for some £ in X. So | f(y)| < |B(f)£)]. By continuity, we see that

Lyl < [@(f)(=(x))].
If & f){m(y)) = 0, we can repeat an arpument similar to the one in the last para-
graph and obtain f(y) = 0.

Putting all these facts together, we see that the proof of Remark 8 is complete.
O

Remark 9. 7 is a homeomorphism of 34(X) onto itself.

Proof. We observe first that 7T is injective: if 7{z) = v(y), then |B(f)(r{z))| =
|B{f1{r(3))] and this implies that | f{z)]| = | f(y)| for all f € A by Remark 8. Since

A separates points of X, it & easily seen that there exdst functions f such that
flz) =0, f{3) = 1 proving that z = ¢. Next we show that 7 is continnows. Choose
any r € X and a neighborhood V' of 7(z) and a peaking function b such that

hir(z)) =1, [h(y)| <1/2 Wye X\ V.

& being surjective, there exists a g such that $(g) = h. Since |g| = [$(g{7))| by
Remark 8, if we let W = {£: |g(£)| = 1/2}, then 7(W) C V becawse if £ € W, then

[R{(=(E))] = [{g)(=(£))] = |g(&)| > 1/2.
Since |[k{7{z))| = |®{g){r{z))| = |giz)| = 1, W iz a neighborhood of x in 34({X).
Thus we have proved that v & injective and continmons.
Now since @ is a bijection, we see that $~! has the same properties as ®. Thus
there would exist an injective continuous map ¢0 : 34(X) — 34(X) such that

lg(=)] = [2~{g)(¥(x)) ¥z € Da(X), Vg € A
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Now let g = ®(h). Then |B(h){z)| = |g((x))]. Now let z = 7{y). Then |g(y)| =
[B(RIT(0)] = |glair{y)))| by Bemark 8. Since fumctions of type |g| separate
points of 940X, we get ¥(r(y)) = y and by a similar arpument, we also obtain

Tl{y)) = y. Thus we proved that 7 is a self-homeomorphism of d4( X). O
Remark 110,
(2.10) flz) = ®(fi{r(z)) for all z in 34(X) and for all fin A.

Choose any point x in d4(X). Let V be any open neighborhood of x. Since z is
in J4(X), there exists a peaking function b such that kiz) = 1 amd the peaking
set P(h) = E is contained in V. Now by Bishop's theorem 1.5, we can modify i s0
that it has the same properties as before but, in addition,

(2.11) |flz)h(2)] < mgx|f| for all z outside E.

Thus there exists a £ in E such that [f(£)] = maxg [f| = || fh]<. Since o fk) =
al{ B 1P(h)), we have || fi] = |8 18R] and so there exists a point z such that
FlERE) = B f1{21B(h)(z). We may assume that z € 34(X) since the set where
B f1P(h) assumes the value f{£1h(£) is a peaking set and every peaking set meets
da(X).

Since 7 is surjective, z = 7(n) for some 5 in J4(X). Now by (2.9) we notice that

|R(f)(7(m) R(R)(r(n))| = [f(n)h(n)|.

Now 7 must be in E becanse otherwise |fin)hin)] < [f(£)] by (211). Thus we
have found £, 9 in E such that f{£) = &{fi(7(n)), since B(h)(r(n)) = kiy) =1 hy
Remark 6. Since £, g lie in V' and V' & an arbitrary open neighborhood of z, we pet
by contiomity of 7. f, and ®(f) that f{z) = &(f)(r{x)). This completes the proof
of (2.10).

Remark 11. & iz an algebra isomorphism of A onto itself.

Proof. We already saw that it is a bijection and homogeneous. Let f,g € 4. By
(2.10) for any = in J4(X),

and
flz)g(z) = ®(fg)(v(z)), f(z) + g(z) = B(f + g)(7(z)).
Thus
®( fg)(r(z)) = B(f)(r(x))P(g)(7(x)), B(f + g)((z)) = ®(f)(v(z)) + P(g)(7(=)).
Since T is surjective, we get

(f)(z)(g)(z) = B(fg)(z), B(f + g)(z) = B(f)(z) + P(g)(z)
on all of 34(X) and then by the maximum principle on all of X. This completes
the proof of Hemark 11. The alpebraic somorphizm & : 4 — A pives rise to a
weak® homeomorphizm & : A4* — A* which in turn indoces a homeomorphism A
of X (the madmal ideal space of 4) onto itself and hence we can state

Remark 12. There exists a self-homeomorphism A of X onto itself such that
B f1A{z)) = flz) on all of X.

But in view of (2.10), we see that Al{z) = 7(z) for all z in d4(X). This completes
the proof of the Main Theorem announced in the abstract. O
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Conclusion. We conclude this paper by observing:

If X is a compact Hausdorff space (not pecessarily first countable), then our
Main Theorem clearly holds for Cgy) — the Choquet boundary being X and the
peaking functions being those given by Urysohn's lemma — and it follows that
Theorem 6 in [M] & valid in this general setting with the same proof as given there.
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