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1. Introduction

The goals of this article are partly expository but mclude an analysis of recent
approaches to the definiion of a geometric mean for three (or more) positive defi-
nite matrices. Effective definitions for this concept have long been elusive although
related ideas have appeared as our work was in progress (see [2,9]). We first review
some standard constructions from Riemannian geometry with stress on the matnx
analytic aspects of these constructions. We then explain how this setting allows a
better understanding of the geome ric mean of two positive delinite matnces. Finally
we turn 1o the problem of extending these ideas to three matnces.

One well-established interpretation of the “geometric mean™ A# B of two positive
definite matrices A, B says that

A#B = AT(A~IBA— 1)1 AL, (1)

There s a natural hyperbolic geometry (Le. one with nonpositive curvature) on the
space P, of n x n positive definite matrices in which this A#B has a pleasing con-
ceptual meaning: A#8 s the midpoint of the geodesic joining A and B (see for
example [53]). A preferred interpretation of the “geometne mean”™ of three matrices
A, B, C e [Py 15 not 5o well-established. There are severul competng definitions,
helpfully discussed in[ 2], In that paper the authors highlight a particular interpretation,
which we denote by almiA, B, C), that 15 obtained by a limit procedure successively
replacing the vertices of the “triangle™ by the geometric means of i sides. More
precisely, starting from Ay = {Ag, By, Co} we define by induction

flm—l = iAJrJ#BJrh Bm# C.IH- Cm#fimL fz}
and set
almi{Ap) = hm Ay, (3}
m— 00

or to be exact almi{Ap) = M~ where limyy one Ay = (Moo, Moo, Moo )

In these notes we explore the hyperbolic-geometry setting for constructions such as
(3), pointing out for example that the convergence result essential to (3) 1s especially
evident in that geometric setting. We examine certain other candidates for the * geo-
metric mean” of atnple A = {A, B, C} that appear natural in the geomelric setling,
with emphasis on the “least squares” point Z minimizing §*(A, Z) + §*(B. Z) +
h'luf, Z), where 404, Z) denotes the geodesic distance from A o Z. This point,
denoted by Is{ A),is that Z £ [P, (it tums out to be unigue) such that, forall ¥ € P,
854080 = w54 (¥, where

ssa (¥) = 8%(A, ¥) + 8(B.Y) + &(C. Y). (4)
This construction is classic, going back to Elie Cartan in the early 20th century
(see for example [6, po 178]), but it s perhaps only recently that 1s{A) has been
considered as a4 matrix geometric mean. We have learned that our own work runs
parallel, in several respects, to that of Moakher in [9]. We have tried to make our
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account self-contained wherever it is reasonable 0 do so, and have included many
geometric details that may be convenient for readers coming from a background in
malrix analysis similar to our own.

Inthis paragraph we provide a guide to some of the literature related to this article;
other references appear in later sections. The effective definition of the geometric
mean for two positive definite matrices seems o have first appeared in Pusz and
Woronowice [12]. Ando [1] provided the first systematic development of many of
its basic propertes, giving equivalent charactenzations and applications 10 matrix
inequalities that are otherwise difficult to prove. Trapp [13] is a good survey of matrix
means, including the geometric, and relates these concepts to the earlier electneal
engineenng literature. The geometne mean has been linked w differential geometry
in Corach-Porta-Recht [7] and Lawson=Lim [8], for example.

2. The natural metric on Py

Here we review the definition of the hyperbolic geometry for Py, and obtain some
of its propertics, notably the “exponential metne increasing property™ and the “semi-
parallelogram law™. In part this 1s a reworking of (some of) the matenal in [5]. Our
notation includes the following: M, {C) denotes the space (dr-algebra) of all n x n
complex matrices, (7 L, denotes the space { group) of all invertible elements in M, (C),
5, denotes the space ( real-linear subspace) of all self-adjoint elements in M, (C), and
[P, denotes the space (cone) of all positive definite (pd) elements in M, (C).

A Riemannian metric on By is determined locally (at A) by the refation

ds = |A—3dAA |, (5)

where || X |2 denotes the Frobenius, Hilbent—Schmidt, or Schatten-2 nomm of a matnx
1

X € My(Chie | X2 = (X ; |x;;1*)2. The mnemonic (5) is interpreted as a recipe

for computing the “length™ L{y) of a (differentiable) path y - [a, b] — B:

h 1 1
L(y) = f ly =y Oy 20 2 dr. (6)

i
A key observation is that we have a large class of bijections I : B, — [P, that are
isometric with respect to this notion of length. Indeed, givenany X € GL, let Iy -
P, — P, bedefinedby 'y {A) = X AX* Given a path p as above, the composition
'y oy :[a, bl — By s another such path and we have

(VX e GLy) L(I'xyoy)=Lly), (7)

since for each r

Xy ()X Xy )XY (Xy () X*) 2|2
= Iy~ 2Oy (Dy 1) (8)
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To obtain (8), recall that forany ¥ & M, {C) we have || ]f’||§ = ET :.'E{Y}, where s (¥)
denotes the kth singular value of ¥. In the case of positive definite matrices such as
A"IBA™3 (A, B € P,) we see that |[A~2 BA™ 1> depends only on the eigenvalues
of A_% BA_%: these, by similarity, are the same as the cigenvalues of BA~!'. Thus
(%) follows from the observation that (X p (DX * WX p(0)X*) " and p'(1)y ' (1) have
the same eipenvalues: indeed, (Xp (NDX* Xy (NX* ) = Xy Dy~ x-L

Based on the noton of length, introduced above, we define the geodesic distance
4(A, B) between any two A, B € [B:

d{A, B) = ml{Liy) : yi1s a(differentiable) path from A to 8}, ()]

We shall soon see that this infimum 5 attained by a path unigquely determined by
A and B. This path is called the geodesic joining A w B and it will be denoted by
[A. B]; this notation should not be confused with the Lie bracket notation (which
would also make sense here!). In any case, it is clear that (9) defines o metric on P,
In particular, the tnangle mequality (A, B) < 4(A, C) +4(C, B) follows from the
observation that a path ) from A o C can be adjoined to a path 2 from Cwo B
to obtain a path “p + 2" from A to B having length L) 4+ L{32). By definition
(A, B) £ Liyy 4+ 1) = Liy) + L), and taking infima on the nght we obtain
the tnangle ineqguality.

Because of the isometry of the mapping 'y with respect o length L, it 15 clear
that each Iy 1% also an isometry with respect w 4:

("X e GL,, YA, BelP,) &§(Iy(A) I'y(B)) =4(A, B). (10}

This observation, together with the identfication of certan special geodesics, will
allow us o find (A, B) directly and 1o compute the geodesic [ A, B explicitly.

The main new ingredientis the infinitesimal exponential melric increasing property
(IEMI):

) _1 1 -

(H.K €Su) e DMKy ) T2 2 (K 2. (11)
where De® denotes the Fréchet derivative of the (matrix) exponential function exp
at A . This is a linear map on 5, and its action is given by the formula

Her K H

Def(K) = lim =

1—0 I

Let f: B — [& be any differentiable function (here we are concemed with the case
Fity =expir) =e'). It is well-known that, working with respect to an orthonormal
basis of cigenvectors for H € 5,

O — Flhs

(VK €5,) [Df(H)(K) = P 5 (12)
Ai—Aj

where Ay, Aa. ..., Ay are the eigenvalues of H and o denotes here the Schur or entry-

wise productof n x n matnees. See, for example, [4, Theorem V.3.3]. Note that when
Aj = A (for example, when § = j) the corresponding entry in the “Livwner matnx™
on the right of (12) is interpreted as f{d;).
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Thus we may compute {CH}_iDuH{K}{tH}I_E ias

. b _ gk Al et
diagle ™/} ([ﬁ] o K) diagle ™%} = ﬁ oK,

s0 that (11) follows from the elementary fact that w = 1forallt.
Proposition 1. Given any differentiable path y :[a.b] — Py, parametrized as
Y= e (je setting Hit) = log y(t)),

1]
Liy) = [ |H(1) 2 dt. (13)

wil

Forany A. B € P,
§A, B) = | logA —log B2. (14)

Proof. By the chain rule y'(r) = Def (H'(1)) so that (13) follows directly from
i6) and (11). Let y : [a,b] — B, be any (differentable) path from A to B. Then
Hit) = log yir) defines a path in the Euclidian space (S, || - ||2). The RHS of (13)
15 just the Evclidian length of H(-) so that itis bounded below by | Hia) — Hib) |2 =
[[log A — log B ||2. Thus, for any such y, we have Li{y) = || log A — log B2, and (14)
follows. O

Proposition 2. Let A, B € [P, be commuting matrices. Then the exponential func-
tion exp maps the Euclidian line segment [log A, log Bl © 5, isomerrically 1o the
geodesic [A, B] in By, In particufar, 5{A, B) = || log A —log B||2.

Prool. Consider the path claimed to trace out the geodesic [A, B, namely y(t) =
expiil —r)log A +rlog B). We must verify that p : [0, 1] — [P, waverses the
unique path of shortest kength joining A o B, Because A and B commule, (1) =
A" B and y'(t) = (log B — log A)y(t). Hence, directly from (6),

1
Liy)= f [logA —log B|2dt = ||logA —log B 2. (15)
0

Proposition | says that || log B — log A|l2 is the keast possible kength for a path from
A to B so that y(r) = A' "B’ does attain the minimum. Any other path ¥ with
this length would, applying (13) w ¥, be such that H{r) = log ¥ (r) had Euclid-
ian length equal o || log B — log A5, 1.e. the distance between its end-pomts. Thus
H{-) would be a reparametrization of [log A, log B, It is the affine parametrization
Hit)= (1 —1t)log A 4+ tlog B, however, that maps isometrnically to [ A, B] through-
out the whole interval (apply the calculation of (15) to the restrction of H(-) to any
subinterval [a. Bl of [0, 1]). O
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Mote that Proposiion 2 tells us that when A and B commule the natural parame-
trization of [A, B] in [P, is given by y(r) = A'~ B" in the sense that §(A, y(1)) =
ta{A, B) for each ¢ £ [0, 1]. Combining this imformation with the isometries [y we
can proceed to the general case.

Proposition 3. For any A, B € Py, the geodesic [A, B is namrally paramerrized
vy o [0, 1] — [A, B] with

I
yir) = A} (A—éaa-%) Al, (16)
in the sense that §(A, yi(t)) = t8{A, B) for eacht € [0, 1]. Moreover,

5(A, B) = | log(A"1BA™ 1)1 (17

Proof. The matrices [ and A-*BA~ commute so that »olt) ={A_i3f‘1_’]§}l’
naturally parametrizes [ 1, A"IBA"I |. Applying the isometry [
A

1
AZ

Lo we oblain
: i i
the atural sLrizati f A Bl=|I jI.TI j{A72BATT)]|,
e natura paramelriza |{:n :} [J J| [ .-'tﬁ{ ) .-'tf{ }I]
namely yir) = I-i 1 (i) = AT(ATIBATIY AT asclaimed Morcover, (A, B) =
S(I,A"1BA~%) = | log] —log{A~1BA~1)|2 = | log(A~:BA-})|. O

As a special case we see that p(1,/2), the geodesic midpoint of 4 and B, 15 given
by AZ(A"3BA~1)I AI, which is the geometric mean A#B of A and B as defined
by (1) The formula (1) appears unlikely at first glance since the symmetry in A and
B is obscured. Proposition 3 reveals the symmetry geometrically since, reversing the
roles of A and B, the proposition tells us that the midpointof [A | B ] can equally well
be expressed as BI(B~7 AB~1)% B3. Note also that 5(A~", B~') = 4(A, B) (see
(17}, for example); this makes it clear geometrically that the geometric mean respects
MATTE INVErsion, 1.c. Algp-! = {A#B}l" i

Proposition 4. I, for some A, B € Py, I lies on the geodesic [A, B, then A and
B commute, [A, B|is the ivometric image via the map exp of a line segment thiough
0inS,, and

t
logB =— logA, (18)

I
where t = 8(A, 1)/8(A, B).

Proof. From Proposition 3 we know that, forsomer, [ = A% {A_%B.ﬁ‘l_% }’A% .Thus
B=A*A"Y A1 = A~U-0/" o that A and B commute and {18) holds. Propo-
sition 2 ensures that [A, B is the sometric image of the Buclidian line segment
[log A log Bz in 5, and, of course, 0 = log I lies in this segment. [
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The following proposition establishes the “semi-parallelogram law™ for P,

Proposition 5. Given A B € P, let M (= A#B) be the midpoint of the geodesic
[A, B). Then for any C € P, we have

2 ¥
ShAr e ) SRR (19)
2 4

F(M.C) =

Prool. Applying the isometry I'L 1 to all the matrices involved, we may assume
that M = I. By Proposition 4 we have logB=—logd and §{A, B)=|logd —
log B||z = 2| log A||z. That proposition also applies o [M, C] = [/, C] so that
M, C)=|logM —logC|z = | logC|z. In the Euclidian space (S, | - |2) we
have
[logC —log A3 + || log € +log A||3

2

logCl3 + | log A]l3 =

(# form of the parallelogram law). Recalling the relations above, we may write this
as
llogC —log A3 + || log C — log B3

3

F(M.C)+ (8(A, B)/2)" =

so that, by Proposition 1,
8%(A,C) + 8%(B, C)
g i

O

. 1.1
k] {M,C}I+12| (A, B) =

The impactof Propositions | and 4 may be summarized by saying that the mapping
exp: S, — By, is sometric on line segments through 0 and is metric nondecreasing
in general. These features are conventionally expressed as the “exponential metric
increasing” property (EMI). The semi-parallelogram law and EMIreflect the nonposi-
tive curvature of (B, ), though we'll not define curvature formally here. Another
useful aspect of this nonpositive curvature will be the fact that, forany A, B, C € B
and any ¢ £ [0, 1]

S{A#H B, AR C) = 18(B, C), (20)
where we use A#, B to denote the point T on [A, B suchthat (A, T) = t8( A, B) (in
particular we have A# | B = A#B, the midpoint). In terms of this notation, Proposition
3 yields the relation

A#.B = AT(A"IBATI) AL (21)
The relation (200 s known as “convexity of the metne”. See forexample [5],p. 218
Here we first provide a proof for the case we need later (f = 1/2), basing it on the
semi-parallelogram law.

Proposition 6. Forany A, B, C € P, we have

1
S{AH#E, A#C) = EMB' C. {22)
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Prool. Let M) = A#8 and M7 = A#C. Since M is the midpoint of the side of the
gendesic wiangle {A, B, C} opposite C, Proposition 5 (the semi-parallelogram law)
tells us that
§3(C, A)+84(C. B) 1

LSk 5 (e 8) —75°(4. B).

s(C. M) €

Smee Mz 18 the midpoint of the side of the geodesic tnangle {A, M, C} opposite
M. Proposition 5 also tells us that

S{M.CY+ &M, A) 1

—§(C, A).
2 4 ( )

SHM M) €

Applying the first ineguality to the second, we obtain
2 1 u 1 3 1 .
(M M) £ E’J‘{C. A+ EE‘{C. By — Eé‘n‘{r’l. EB)
+ 1.!51{ M, A) lﬁl{c A)
2 V] . 4 5 s
Smeed(M, A) = {MA, B). the RHS simplifies to _ITEI{C, By and (22) follows. O

As acorollary we obtain (20) in a somewhat more general form: (200 follows from
(23) by setting B' =C" = A,

Corollary. Given B, C, B', C" € Py, the funciion f{1) =8({B'# B, C'#.C) is con-
vex on [0, 1], i.e

S(B# B, C'#C) < (1 —1)d(B',C") +14(B,C). (23}
Prool. Since f is continuows it is sufficient to prove that it is midpoint-convex. Let

M| = B#EB, M; = C#C, and M = B'#C. Proposition 6 implies that §{M, M) <
18(B.C) and § (M, Mz) < L8(B", C"). Hence

1 1
(M), M2) < 8(M, M)+ 3(M, M>) < 58(B.C) + ;ziqﬂ’, i O

3. Convex hulls

We say asubset % of Py is convex if A, B € % = [A, B] C 5. Evidently the
intersecion of any family of convex subsets isitself convex. [Lis then natral to define
the convex hufl conv(F ) of a subset 7 of P, by

comviF ) = rﬂ]{.‘}" 1 F C % and 5 is convex}. (24
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Thus conv (3 ) is the smallest convex set containing 5. Since [A |, B] is itself convex,
it is clear that for any me points A, B € [P, we have conv({A, B}) = [A, B]. The
convex hull of three points A, B, C £ [P, is, however, harder to describe in general.
Note 6.1.3.1 in [3] comments on this problem. Although it is natural to regard any
A# B (r = [0, 1]) as a“geometric” convex combination of 4 and B, we do not have
a consistent noton of geometne convex combination for three or more elements.
Nevertheless, there is a more “constructive”™ approach to computing conv(.# ) than
(24 reveals.

Proposition 7. Given .5 = 3 C Py, define inductively the sets 7y via
Fpy= U{[A Bl: A.B e,
Then conv(F ) = 3" T .

Proof. Itis clearby inductionthat each 5 ,, © conv(.7 ). Hence |_J3° # € conv(F ).
It only remains to show that [Jy° 7, is convex. Note that ., 2 F,, since
A € [A, B]. Thus given any particular A, B € |_J3° .7, there is some fixed m” such
that A, B € 7. Then [A. Bl € T ppoy €T T O

If, in the construction of Proposition 7, we take a “triangle™ 7 = {4, B, C}, it
is clear that 37 is the union of the “edges”, ie. 37 =[4A, BJ|U[B, C|U[C, Al
However, #3 is not in general a “surface”, as we might expect by analogy with
Euclidian space, but rather a “fatter” object. Fig. | atlempts o portray a part of 5.

Fig. I. Two pieces of comviA, &, C), namely the “surfaces™ [A, [#, C]]and | &, [C, A]].
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0.75-
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0.65+
0.6
0.55+
0.5+
0.45
0.4
0.35+
0.3+

0.25.]
08 pg —
08 od

0z 0o 0z 0.4

Fig. 2. In general, conv(A, 8, C) lacks consistent convex coordinates.

The blue! “surface™in Fig. 1 represents the union of geodesics joining A to points of
the opposite edge [ B, C]. Thatis, the blue curves F,kuu_'huuLU{[A, B#.Cl.t £ [0, 1]},
which we may denote by [A, [ B, C]]; agamn, we warn the reader that we are not using
the Lie bracket notation. The red curves, on the other hand, sketwch out [ B, [C, Al and
itis clear from this example that[A, [ B, Cl] and [ B, [C, A]] do not in general belong
to a simple surface bounded by 3|, Indeed, it appears in Fg. | that [A, [B, C]] and
[B.[C, A]] intersect only along the edges 7 of the wiangle. The points A, B, and
C in this demonstration have been chosen “at random™ from Pr and nomalized so
that || Alz = 1, ete. The coordinates used to plot Fig. 1 comespond w a choce of
orthonormal basis in S2. While the dimension of 57 is 4, Fig. | plots the projection
of (some of) 5 5 on the subspace spanned by 3 of the 4 orthonormal basis elements.
We remark that (except for Fig. 3b) the matnees chosen are “genernic”, but that the
views have been selected carefully to reveal certain features.

In Fig. 2 we focus on the impossibility (in general) of assigning consistent con-
vex coordinates o the points of convi{A, B, C}). Indeed, it turns out that it is not
appropriate 0 speak of “consistent convex coordinates™ in this setting; see how-
ever our discussion of the *Cartan surface™ following Proposition 17. Here 37 =
[A, B]U[B, ClU[C, A] is artificially rendered by the sides of an affine wiangle.
The blue geodesics representing [ A, [B, C]] are plotted with a positive vertical dis-
placement proportonal to their distances from the points in [ B, [C, A]] o which they
might be expected o correspond (and which they would indeed match perfectly if,

! For interpretation of color in figures, the reader is referred to the Web version of this article.
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for example, A, B, and C commuted—see Proposition 9). As an illustration, F =
A#% {B#% ), which under favorable conditions would be a “centrond™ for { A, B, C},
is plotted a distance | P — (2|2 above the affine triangle, where @ is the “match-
ing” pointin [B, [C. A]]l: Q@ = B#%{C#% A). Likewise the red geodesics representing
[B.[C, A]] are plotted below the affine Eriunglu by amounts related o their distances
from “matching™ elements in [4, [B, C]).

We next examine those favorable cases inwhich conv({ A, B, C})can be viewed as
asurface spanning [A, Bl U[B,ClU[C. Al Wesay A, B, C € P, are I'-commuting
ifthere exists X € 7 Ly, such that Uy (AY, Uy (B), 'y (C) commute with one another
Note that A, B, C themselves need not commute, though that situation is a special
case of -commutativity. Forexample, {4, B, B} I'-commute for arbitrary A, B € P,
(take X = A~ ;}.Un the other hand, [ -commutativity is guite a restrictive condition,
as (b) of Proposition 8 makes clear.

Proposition 8. Given A, B, C € B, the following conditions are equivalent:

{a) A, B, C I'-commute, ic.
(33X e GL,) such thar 'y (A), Uy (B), 'y (C) commiite;

(b) AB~'C = CB'A;
(ch A_iﬂd_i and A_il:fl_é COMMte.

Prool. Supposethat (a) holds. Since X AX* X BX*, XCX* commute, sodo X AX™*,
(XBX*)~', XCX* so that

XAX* (XBX®) 'XCX* = XCX*(XBX*)"'XAX*,

ie. XAB~'CX* = XCB~' AX*. Thus (a) implies (b).

Reversing the steps above we see that if (b) holds we have, for ]uny Y eP,,
Ty (A (B Oy = Dp(C Uy By~ Ty (A). Taking ¥ =A72 we have
I J{B}I_II' 1(CYy= (Y {B}_I.Thusfb}implius (c). Finally, (¢) pro-

AT2 A1 AT2 A2

vides a specific X, namely A—2 Jor(a). O

Remark. The symmetric condition of I-commutativity 15 equivalent to the easily
computable but less-obviously symmetric (b). [Uis easy to check directly that condition
(b of Proposition 8 ix in fact symmetne in A, B, C.

Proposition 9. Let A, B, C be '-commuting and choose anv X € GL,, such that
Ay, DB, IC) commute, where I =y, Then convi{A, B, C}) is isometric to
the affme triangle conv({log I'(A), log I'(B) . log INC Y} (in the Euclidian space
(Sy, || - l2)) via the map | el exp . Thus consistent “convex” coordinates may be
assigned to points in conv({A, B, CHwith(r.s, 1) (r + 5+t = 1) corvesponding to
P AN (B (0.
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Prool. Since [ is a d-isometry, we need only show that exp maps convi{log I'{A),
log I'(B), log I'NCYyHh 5, isometrically o conv({I(A), I'{B), I'CH).

The fact that exp is isometric on convi {log I'(A), log I'(B), log I'{C)}) is a conse-
quence of Proposition 2, and commutativity ensures that

exp(r log I'(A) + s log ['(B) + tlog I'(C)) = (I'(A)" (I'(B))'(I'(C))".
It remains W show that
F = {(IAN (BN IO rst20r+s+1=1}
is, in fact, conv({'(A), I'(B), I'(C)}). Centainly F contains each of I'(A), I'( B), and

MCY, and F isconvex: if Tir, 5.1) = (AN (DEBYWUC)Y € Fand T, 5", ")
£ . then

Tir s 0, T O =Tkl —w)+ru sl —w) 435w, 0(l —w) + ')

is also in 3. In fact, we see that if {{A), I'(B), I'{C)} is denoted by 5 then, in
terms of the notation of Proposition 7, & = 55, O

Figs. 3aand 3billustrate the effect of the Meommutativity in Proposiiion 9. In Fig.
3a we see a simulation of convi({A, B, C})when A, B, C arechosen at random in [P,
In Fig. 3b we see the same sort of simulation applied w a triple of matrices chosen
s0 that they [-commute. The simulations were computed via finite approximations
to the towers of sets occwring in Proposition 7. If {4, B, C} is denoted by 57y then,

02

o

Fig. 3a. Part of comviA, 8, C) where A, 8, C are mndom in M.
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g 3h Partof convid, 8, C) where A, 8, C in P Gamma-commute.

in terms of the notation of Proposition 7, 7| (union of the triangle’s edges) is shown
in blue, part of . 7 is shown in red, and part of # 3 is shown in green.

Remark. In [9] (see Section 3.3) Moakher studies a different situwation where, as in
Fig. 3b, conv({A. B, C})is asurdace. He analyzes % 22(2), the space of real pd 2 x 2
matrices with determinant 1. Since 522 2) itself has real dimensiwon 2,00 A, B, C are
chosen from Y2°(2) we may expect a picture rather like Fig. 3b, but for different
reasons. Moakher notes that %222 15 a hyperboloid (of constant negative ¢ urviture),
but conv({A, B. C}) will not admit consistent convex coordinates in the sense of
FProposition 9.

4. Completeness and metrie projection

In contrast to the matrix norms, the geodesic metric § makes By, into a complete
mELric space.

Proposition 10, The metric space ( Py, 8) is complere.

Prool. Suppose that {4, 17 is a §-Cauchy sequence in Py By (14) of Proposition 1,
{log A, }7° is aCauchy sequence in the Euclidian space S, sothatithasalimit L € 5,:
[ log A, — L2 —, O We can conclude that (A, exp L) — 0 once we are convin-
ced hat exp < (S, || - |20 = (P, §)is continuous. Suppose L, — Lin (S, || - [|l2).
In view of (17) we have d{exp L, .expL)= | I{}g{{uxp[.}_% uxpL,r{cxpL}_%}Ilg,
s that to see that Slexp Ly, exp L) — 0 we need only observe that the cigenvalues
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. _1 | _—— v o ’
of (exp L) 2 exp Ly (exp L) 2 tend to 1. This follows by the continuity of exp with
respect Lo any convenient matrix norm (eg the operator norm ), combined with spectral
continuity. [

MNote that By, is not complete with respectto matrix norms, Instead, it has a boundary
consisting of the singular positive semi-definite (psd) matnees. In terms of (B, §)
these “boundary points”™ are “points at infinity™. Proposition 11 shows that they may
be approached along appropnate geodesies. [His conventional o extend cerlain matnx
operations from pd to psd matrices by means of the “4 I device. For example, we
may define the geometric mean §51#5; of psd matrices 5y, 5 by

S|#5; = Iim{.'il + el (S +€I).
£

Proposition 11 makes it less surprising that this operation, while continuous on P,
15 no longer continuous when so extended to the psd matrices.

Proposition 11. Let § be a singular psd matrixin S, Then § = lim;_, ., A# B for
certain pairs A, B € Py, Commuting A, B may be chosen, in fact, and in this case
§ = limy_.oc AV B'. These limits may be computed with respect to any convenient
matrixnovm. With respect to 8, on the other hand, we have im; . o §{A. A% B) = oo,

Remark. We may safely extend our notation A#, B from ¢ £ [0, 1] to arbitrary real
tusing the relation (21).

Prool. Working with an orthonormal basis of eigenvectors for §, we have § =
diag{ieg} wheredy 2 0and, forsome b, Ap = 0. Let A = diaglog fand B = diag{f: }.
where op = fr =Ap (A =0 and op =1, fr = 1/2 o Ay =0. Then 1t 15 clear
that § = lim;_, o A'~' B’ with respect o any matrix norm, while (7, A'~'B") =
llog A" B> = |bbg2~'| =tlog2 — coast — oc. O

As in a Hilbert space, we can define metric projection onto closed convex subsets
of any space, such as ([P, &), that is complete and satisfies the semi-parallelogram
law (19).

Proposition 12, Let % be a closed convex set in (P, §). For each A € By, there is
a unigue closest point C to A in %, Le. C € % and for any other § € % we have

d{A, §5) = 8{A,C).

Proof. Consider a sequence Cy, in % such that §{A, Cy) —, 0 where
p=mf{d(A, 5 :5§ e 5]

The semi-parallelogram law (19) implies that

S s Con ) A0S A ) A, C)) — S55 AN,
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w0 that

F(C. Cn) < 28 (A, Ca) + 8 (A, Cu)) — 47, (25)
since M, the geodesic midpoint of [Cy, Cy . is in 5 by the assumed convexity. As
i, m — oothe RHS of (253) tendsto 2{_{1: -+ _uz} — -’-1-;.-:1 = (), sothat {C,} isa Cauchy
sequence. By Proposition 10{Cy, | has a limit C and continuity of the metnc ensures
that §{ A, C) = himd(A, Cy) = p. Since & is closed, © € 5. By the definition of
i, 8(AL8) = 8(A, C) for any § € %, Finally, if § 15 any element of % such that
d{A, §) = p then putting Oy = C and C = § in (25) shows that §(C, §) =0, i.e.
S=C. O

The mapping 7 : P, — % definedby m{4d) = C, where %, A, C are as in Propo-
sition 12, may be called metric projection onto 5. Metne projection shninks distances
in an appropriate context of nonpositive curvature (see [6, pp. 176-177]). Here we
give i proof of a special case needed later, basing our argument directly on the semi-
parallelogram law. Thus, the argument given in Proposition 13 for (F,. 4) applics
also to any Brwhat-Tits space (compare [6, p. 163]).

Proposition 13, [f 7 is metric projection onto a closed convex subset 5 aof Py A &
Py. C = 7(A), and D € %, then §*(A, D) = §8*(C. D) + §(A, C).

Proofl. Let My = Dand let M, bethe geodesic midpointof [C, M, ]. Then M, —,
C =M. and in fact §{C, M,) = 27"8(C, I}). The semi-parallelogram law (19)
implies that

. .3 1,4
2A, M,..1) € B(A, M,) + 824, C) — S3%(C. M,),

]
A, M) — 52 (A, Mysy) = = 52C, D)+ 8 (A, Mys1) —52(A, O).

1
qn
Summing these inequalities,

D (6H(AL M) — (A, My1)
n=il

. kG | 5 o0 S ,
= (_ZF)'&' (. D}+Z{‘5 (A, Myp1)—87(A, C)).

2
n=i)

n=(
It &5 casy Lo see that these series are absolutely convergent. For example,
(A, Mys1) — 65(A, O
= (8(A, M)+ 8(A, CNIS(A, M) — (A, O

< (zam. C) + 57 (C. D}) —18(C. D).
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Thus

5y =

where 5, =

Sp =

s that

W

W

ik | I

wd

a0
Z8C. D)+ Y s

n=l1

Lad

82(A, M) — §2(A, €). By the same argument

L ]

)
2 3% M)+ ) s

k=n+1

DY) — AL Cy=a

2 b a]

2 . :

iﬁ (C, D)+ 5 +Z.\;

k=2

2 2 =
Z8C. DY+ =8HC. M) +2Y s
$8(C. D) + 38(C. M) + Eu

a0

1 2 =
1+4)a {c,D}HZu

k=2

k| b2

| 2

(1+ ) 2(C, D}+7h+"Zu
=3
2 x [+ 1] O
(1 )5 (C. D}+7(§E‘{E, M:}I+Zu) +2) 5

k=3

(PR

g ) | 58 D}+4Eq

k=3

ete. Since each My € % we have s = (0. Thus

. D) —§A, C)

2 1 2 4 8 i
i(1+4+4—1+4 +4—4+"')5{E,D}'
2 1 1:1 .1 o
j(1+3(1+'2+£1'+§+"'))‘5 (C. D)
2 1 5 5
§(1+£'2)5{C‘D}=‘HC‘D}' O

filE
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5. A comparison of meansfor A, B, C e P,

The authors of [2] establish that alm{A, B, ), defined as in (3), has many of the
propertics that might be expected of the "geometne mean”™ of three pd matrices. In
particular, it has properties that we shall describe as consistency, permutation invari-
ance, and monotonicity. The geometnce mean alm{A, B, C) s consistent in the sense
that when A, B, C commute the value s as we would expect for simultaneously diago-
nalizable matnees:almi(A, B.C) = {ABC}‘IL_ Itis permutation invariant in the sense
that alm(A, B, C) isindependent of the order in which A, B, C are listed. Finally, it is
monotone in the sense that it respects the natural order on [P, whereby A =8 A" means
that A" — A s psd. Thus, if A, A" B B . C.C'ePyand A £ A B = B, C = (',
thenalmid, B, C) = almi{A’, B', C"). We shall see that s 4, B, C). defined a8 in our
Introduction, i consistent and permutation invariant and that there are good reasons
for believing that it s monotone as well. It isnot usually the same as almiA, B, C)yel
Is{A, B, C) may be seen as a reasonable alternative interpretation of the geometric
mean for three pd matnces.

First we point oul that the convergence required in the definition of alm{ A) follows
naturally from the geometric features of [P, discussed in previous sections, Conver-
gence abways takes place and the limit almi{A) lies in the closure of convi(A). Note
that the closure of any convex subset of P, is again convex. This follows from the
geodesic formula (16), for example. Smee it involves sets, mther than points, in B,
the relation (3) requires some clarification—operhaps in terms of 4 Hansdodl metric.
Instead, we interpret it as in the following proposition, which also makes it clear that
almiA, B, C) is permutation invanant.

Proposition 14, GivenanvA, B, C e Pyser Ap= A, By= B, Cy=C andler Ay, =
Ap#By_1, By = By #Cyy— 1. and Cyy = Cyy | #A w1, for each positive integer
m. Then for any choice of Z,, € conv({ Ay, By, Cy }) the sequence |2, | converges
taa point alm{A, B, C) that is independent of the choice of Z,, and lies in the closure
afeonvi{A, B, C}).

Proofl. Let My = max{d({Ag, By, 8(By. Co), §{Cy. Ag)}. [Lis convenient to note that
the diameter diami{convi({Ag, By, Col ). e, max{d(X, ¥): X. ¥ £ conv({{Ag, By,
Co ) }ais My, To see thisrecall Proposition 7 and observe that if diam{{ X, X1, ¥o. 1 )
= M then S(X,¥)= M for any X £ [Xp, Xy] and ¥ £ [¥, ¥1]. Indeed, let X =
X X) and ¥ = Yp# ¥, We may assume that 0 s << 1. By (20), 4 =
S(X, Yot Xo) = (1 — 1)8(Xp, ¥Yo) £ (1 — )M and dy = 5(¥o#: X1, ¥) £ 58(X ), ¥1)
= s M. By Proposition 3, dr = §(¥p#, X Vo X)) = (1 — 008(¥, X)) < (r — )M
Adding the three inequalities we obtaingd) +d> +d3 £ M afortiorn, (X, ¥) = M.

By Proposition 6, M} = max{d{A. B), 4( 8. ). 5(Cy. A1)} = éM.:], and it
follows as above that diami{convi{{A,. B, C }) = M| = l._,M;]. Similardy we obtain
diamiconv{{ A, By, Cul)) £ 27" My, Evidently, if k=m we have Z; e
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convi{Ay, By, Cul) sothat 8(Z,,, Zp) < 27" My. Hence | Z,, | isa Cauchy sequence
and converges in view of Proposition 10, The unigueness of the limit follows from
the possibility of interlacing such Cauchy sequences and since all the sequences live
in convi({Ag, By, Cpl), almi{A, B, C) lies in the closure. [

Remark. Recently Petz and Temesi(see [11, Theorem 2]) have given an elementary
proof of the convergence of sequences defining alm (A,

The following proposition justifies our definition of Is{A. B, C). We have chosen
to base it on the completeness of ([P, §) (and the semi-parallelogram law) rather than
on local compactness.

Proposition 15. Given anv wiangle A with vertices A, B, C € Py, the function
ss 4 (Y) defined by (4) is strictly convex and achieves a nunigue (local and global)
minimum at the point we denote by 1s{A).

Prool. By strict convexity of ssa we mean, of course, that for ¥) &£ ¥ we have
ssa (¥ 1# ¥a) = (1 —rhssa (¥ )+ rss4(¥2) whenever 00 = ¢ = 1. This 1s clear be-
cause the semi-parallelogram law (19) implies that each term of 58,4 15 strictly (mid-
point) convex: e.g.

S A, YN+ A B 1,

82(A, Y |#Y,) < 5 = ia-m. ¥a).

Let m = inf{ss 4 (¥) - ¥ & [Py}, and consider any ¥y € Py, such that ss 4 (¥ ) — m
as k — oo, Using the semi-parallelogram law again we see that

3 1
780 ¥)) € S(ssa(¥o) +ssa(Y)) —ssa (Vi)

1
% 5(s5a(¥p) +ssa(¥j)) —m.

Thus §(¥e, ¥;) — Oas k. j — o0 and the Cauchy sequence converges via Proposi-
tion 10 to some limit Z. The function ss 4 18 clearly continuous, so that s54(Z) = m.
By strict convexity Z (= Is{A)) is the wnigue minimal point for sss. O

Note that Is(A=!, B=', C~') = (Is(A, B. €))7, since 8(X 1, ¥ 1) = 8(X. V)
the mean almiA, B, C) also respects matrix inversion, inheriting this property from
the cormes ponding property for two vanables.

The following lkemma will be useful in identifying the “gradient™ for ss4 . Given
functions f, g : (0, 00) - B, X e Pyand ¥ € 5, we write [D{ f, g, X)](¥) forthe
lirmit
o X+ oY) g (X + V) — (F(X), g(X))r

I
1—() I

(26)
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provided this limit exists. Here (A, B} p denotes the Frobenius inner product for
matrices A, B, ie (A, B}r = Z‘-_J-ﬂjjbu' = frace( B*A).

Lemma. §f f, g : (0, oo) — [ are continnously differentiable then
[D(f.g. X)NY) = {f(X)g(X)+ f(X)g'(X), Y}F,

forany X e Py and ¥ € 5.

Prool. Writing the difference quotient in (26) as
(fIX+tY) glX +eYNr — A f(X). g(X +t¥)rF
I
n (XD, glX +2¥hr — (F{X).g(X)}F
y i
we see that [DOF, g, X)UY) = {([DFCXONE), g0 F + (X)) [DglXONY ) F,
where D (X ) and Dg{X) are Fréchet derivatives, as discussed in Section 2. Working
with respect o an orthonormal basis of cigenvectors for X we have, as in (12),

i) — i
(IDFCOIY), g(X))r = ([W] 0 V.g{xy) .
R F

where X = diag{ig}. Since g{X) = diag{g{ig)}.

(IDFIX)NY), g(X)}F = (diagl f (A} o ¥, g(X))F = {f (XY, g(X)}F.

By the commutativity of the trace and the fact that §'{ X) and g{X') commute, we also
have {([DF (X)), g(X)}p = (f(X)g(X). ¥} g Similarly, {f(X),[Dg(X)|(¥)}r
= (f(X)g'(X), ¥}p. O

Condition (28) of the following proposition provides a useful eriterion for Z =
Is{ &), We first leamed about it from [9], but it perhaps dates back to much earlier
work by Elie Cartan (see [3, Section 6.1.5]).

Proposition 16. Given A, B, C.Z € Py and A = {A, B, C}, the matrix
cz =il Ry e | o | 1 L | 1
G{A, B, C. ) =2{E Ilog(ZZA 23}2 T4 FTI I{}g{ZEB ZE}Z z
+z g (zic~'z2)z 1)
is the gradient of ss4(Z) in the sense that, for anv'¥ € 5,
sl 1Y) — 8840 E)
Im

1—( I
Hence, if £ =1s(A), G(A, B, C, Z) =1); equivalently

log(A~'Z) +log(B~'Z) +log(C™'Z) = 0. (28)

= {G(A, B,C,Z),Y)F. (27)
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Prool. For convenience, sel 4 = A, A2 = B, and A; = C. We have (in view of

"
II=

Proposition 3)
L I e e
salZ)= Y " log (Ak T )
k=1 2

3 1 1 1 1
N (I{}g (,-’1;3 2.4;3) log (Ak‘f 2,4;3)) :
F

k=1

Using the lemma abowve we see that
85408 4+ 1Y) — 8540 E)
:—-n-tll i

1
[D (Ing, log, A; & ZA;

1 1 || 1 = 1 1
z(mg(,apz,a;z)(apzap) ,AR_EYAR_E}
F
= 1

M-

it
e
—_
—

e

Lt |
i =

bt

e

|
[l
e

k=1

[~

k=1

: SIS L T T R
=ZE-[M.'I:(Ak'Yﬂl'k}g(ﬂl'fﬂk')ﬂiz AE)
k=1

Using commutativity of the trace, we may rewrite this as

i

1 _1 _1 1
o, trw_'u(]r’r’ll ? log (AA TEA !) A;‘z")
k=1

3 _1 _1 _1 1
= (22,41 ? log (AkEZAi 3) ALEY, r} :
k=1 F

The matnx functional caleulus allows us o extend the loganthm function o matrices
with eigenvalues in T {—oo, 0] in such a way that similarity is respected, i.e.

log(SX5~!) = Slog(X)s~ L (29)
Thus we may write
3
. ssAlZ 41 ¥ ) —ssalZ) 2 1
T
k=1 F
so that
3
G(A,B.C.Z)=2) log(A;'Z)Z7". (30)

k=1



al4 R Bhatia, J Holbmok 7 Linear Algebra and its Applications 413 {2006 ) 50-al 8

To obtain the form of the gradient set out in the proposition, note that another apphi-
cation of (29) shows that

log(A;'2) 27 = 271 Z3 bog(A] ' Z)Z 1272
=z tog(z2a;'z8) 274,
Finally, (30} shows that the vanishing of G{A, B, C, Z) is equivalent to (28). O

Mumerical experiments reveal that, in general, almi{A, B, C) = 1s( A, B, C). In-
deed, almiA, B, C) may differ from any of the weighted least square points (A, B,
C,wa, wg, we ) discussed below. Given weights w s, wg, we € [0, 1] with wy 4
wg +we =1, wedeline ss (¥, wa, wg.we)as

wad(A, ¥) + wpd2(B,¥) + wed(C, ¥),

and Z =1s{A. B.C, wa,wg. we) 15 the point such that ssa(Z, wa, wg, we) =
ssa (¥, wa, wg, we)forall ¥ B, DLis easy (extending the argument of Proposition
15) o establish the existence of 1s{A, B, C, w 4. wg, we) and 15 ungueness. Note
thatls{A,. B, Cy=1s(A, B, C, 1/3,1/3,1/3).

Proposition 17. Foranv A, B.C & P, and weights way, wg we € [0, 1] with wy +
wg +we =1, the weighted least squares point 18{A, B, C, wa, wp., we) lies in
the closwe of conv({A, B, C}). In particular, 18{ A, B, C) lies in the closure of
comvi{A.B.C}).

Proof. Let .5 denote the closure of convi({A, B, C}) and let m denole metric projec-
tion onto %, Since A € %, Proposition 13 ensures that 8(A,¥) = §(A, 7 (¥)) for
any ¥ £ Py, The same argument applies o B and C, so that ssa (Y, wa, wg, we) =
ssa(m(¥Y), wa, wg, we ) Thusls(A, B, C, wa, wg, we) cannot lie outside 5. O

The set of all weighted least squares points may be viewed as asurface spanning the
tiangle [A, B]|U[B, ClU[C, A] and lying within the closure of convi{{d, B, C}).
We may call this the Cartan spanning surface, since the idea appears to go back to Elie
Cartan (see [3, Section 6.1.5]). Using the gradient formula of Proposition 16 {and its
analogues for ss (2, w o, wg, we ) we may design effective computer algonithms for
approximating the vanows points Is(A, B, C. wa.wg, we) on the Cartan spanning
surface. For example, we may modify the fixed point method of Moakher (discussed
below) to compute the Cartan surface. Thus Fig. 4 depicts the Cartan surface with
a colouring based on the weights wa, wg, we: at the vertices, where wy, wg, or
we equals 1, we see pure colours (red, green, or blue) whereas 1s(A, B, C) 15 located
where the colours blend evenly (wy = wp = we = 1/3).Fig. 4 also shows, asasmall
black circle, the location of alm{A, B, C)—Ilying slightly off the Cartan surface (but
close o Is(A, B, C)) in this example.
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Fig. 4. The Cartan surface vs almi A, &, C).

The case of -commuting A, B, C presents a simpler picture, as the following
proposition makes clear.

Proposition 18. [f A, B, Care ['-commuting then the Cartan spanning surface coin-
cideswithconv({A, B, Chandls{A, B, C) =alm(A, B, C).If X € G L, is such that
(A, T(B), IC) commute, with I' = Iy, then

Is(A, B, C, wa, wg, we) = I~ H{T(AAT(B)YY ['(C)"C). (31}

In particular, if A, B, C commute then almi{A, B, C) =1s{A, B.C) = {ABC}I-{ #

Prool. By Proposition 17 each point Is{ A, B, C,wa, we, we) lies in the closure of
convi{A, B, C}) and, by Proposition 9, convi{{A, B, C}) is isometric to the affine
triangle conv{{log I'{A), log U{8), log I'1C. In such a Euclidian setting we know
that, for any wg € [0, 1] with 3, wy = 1, and vectors x, xg,

. 2
arcmin (Zu}; [|lx — g ||‘) = Z W XE,

k k
s0 that (31) follows. The construction converging to alm{A, B, C) (see Proposition
14y corresponds in conv({log I'{A), log (B ), log 5(C1} o the successive selection
of affine triangles with vertices obtained at each stage as midpoints of the sides of
the previous stage. These tnangles converge to (log I'{AY + log F(B) + log I'NCY)/
3 s0 that alm(A,B.C)= I'_l{uxpﬂlug A+ log'(B) +log IN{CYH) /3N =
=t 2rey'Pre)!?y =14, B,0). O
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Mote that one consequence of Proposition 18 1s that both almiA) and s(A) are
“consistent”™ in the sense of the opening paragraph of this section. Our final sk is to
examine evidence for our conjecture that 1s{A) s also “monotone™,

In view of the invarance of § under the congruence I” 1 it is sufficient o study

Az
£ =1Is{A) when A = ([, B, C). Proposition 16 then tells us that Z is the unigque
solution o

log(Z) + log (ziﬂ-'z%) +log (zic-'zi) —0.

Muoakher has observed (see [10, Section 2.4.21) that this means § = log(Z) 1s the
unique fixed point of any F, with o € (0, 1), where

FiXi=aX+@—1) (Iug (._-x-“lﬂ-'cl'-“l) +log ('_,x.*zc—lcx,az)) _

Moreover, it appears that, for an appropriate choice of o, £, acts as if it were a con-
traction mapping so that the iterates F2'{X) converge to § = log(ls(A)) asm — oo,
This techmigue allows the reliable computation of (A ) in most cases and computer
expenments appear o support the conjecture that ls(A) 18 monotone. For example,
millions of “random™ choices of A = (/. B, C)and A"= (I, B, C), with B"= B
have resulted in Z = Is{A) and Z° = Is{A") with Z" = Z in every case.

MNote that (because log is matrix monotone) the conjecture Z' = Z implies also
that 8 = § where § is the fixed point of

FyX)=aX+(@—1) (lﬂﬁ (ﬂxﬂ{ﬂr}_ltx’ﬂ) + log (uxﬂc_lux'al)) ;

Computer expenments suggest that Fp is monotone at §, e that T 2= § implies
FolT) 2 Fu(5) = 5§, If this could be established it would swongly support the
(weaker?y conjecture that §° = 8. To see this note first that F:{X}l = FalX) for all
X (because {B'}l“' = B! and log s matrix monotone). Thus we would have T = 8
implying F_(T) 2 F,(T) = § and, inductively, (F,)"(T) = § for all m. Since we
can probably choose some T = 8 such that (F, )" (T) —,, 8§ (T = § would be a
reasonable choice if B is close to B), it would follow that 87 = §.

We are perhaps rather far from a proof of the conjecture, but we state it formally
as worthy of further study.

Conjecture. The mean 1s(A) is monotone with respect to its arguments, Le. if A, A',
B B.C.CelPrandA <A B< B,C<C thenls{iA, B, C) = Is{A", B', C").

Further remarks. It is sufficient o show that Z < Z" where Z =1s( A, B, C) and
Z'=1siA", B, C). In view of Proposition 16 the gradients G{A, B, C, Z) and
G(A', B, C, Z')yvanish and, since 1/x is matrix decreasing while log is matrix mono-
tone (see [4, Chapter V, especially pp. 114 and 135]), G{A', B, C,Z) < G(A, B,
C.Z)=0ie.—G(A B, C,Z) =0 8incewehavess 4 (A", B, C, Z') = ssa (4, B,
C,Z) (provided Z" # Z), and —G({A", B, C, Z) 20 is the direction of steepest
descent for ssa , we might expect that Z° = 7.
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More precisely, let X be psd and let Lir) denote 1s(A 40X, B, C). We wish to

show that L'(0) = 0. Consider the difference quoticnt
GIA+X. B.C LN —Gl{A+1X, B, C, L{DY)
D)= - ;
Smee G(A 41X, B, C, Lit)) = 0 {Proposition 16) and —G{A 4+t X, B, C, L{l)) =
O (when ¢ = () by the last paragraph, this difference quotient s psd. On the other
hand, subject W appropriate smoothness conditions,
GiA, B, C, L(t)) —G{A, B, C, L{0))
. i

and, by the chain rule, this is [DyG(A, B, C, L{0)) (L (00}, where Dy G denotes the
Fréchet derivative of G with respect toits fourth variable. Thus [ Dy GUAL B, C, Li0y)]
(L{0)) = Oand we may try to evaluate 2y G with a view to concluding that L(0) = 0.
Note that we may wrile

lim DQ(r) = li
II—[R] L{ ) II—.-H-EI]

o | _1 _1 _1 o0 [y S |
G{A,B,C.Z}:E(r‘; Tlog(A“IZAT3)(ATIZATI) A !+---).

so that it may be pertinent to analyze the Fréchet derivative D log(¥)¥ ',
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