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Ahbstract

Let A € B'™" and let & and # be nonempty complementary subsets of {1, .., n} of in-
creasing integers. For 4 = p(A[#]), we define the generalized Perron complement of A[f#] in
A ar A as the matrix # (A/AB]) = Ale] + Alo. (A — A[ﬁl}_ldlﬁ.ﬁrj. For the classes
of the nonneg ative matrices and of the positive semidefinite matrices, we study the relationship
between the permanents of the whole matrices and the permanents of their Perron comple-
ment. Our conditions, which hold in many cases of interest, are such that the value of the
permanent increases as we pass from the whole matrix to its generalized Perron complement.

For nonnegative and irreducible matrices, we also study the relationship between the max-
imum circuit geometric mean of the entire matrix and the maximum circuit geometric mean
of its Perron complements.

AME classification: 15A15; 15448, 15A57
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1. Introduction
Let A = (@ ;) & ™" and recall that the permanent of A is the quantity given by
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per(A) = 3 [ (1.1)

FEF g i=]
Permanents of matrices anse in many contexts, but pardcularly in combinatorial
applications, see Mine [ 12] and Bruakdi and Ryser [3, Chapter 7). Among the classes
of matrices to which permanents have been applied are the nonnegative matrices and
doubly stochastice matnces. An n x n nomegative matnx A = (a; ;) 15 stochastic
if

g

Zﬂ,‘_j =1 ¥Wi=1,..., n. (1.2)
i=
It is doubly stochastic if
" 13
Eﬂu = Zﬂi.j =1 Vi.j=1,..., n. (1.3)
= _|I=

Itis well known that in the beginning of the 1980s, two Russian scientists, Egoneey [4]
and Falikman [ 5], independently, settled the van der Waerden conjecture showing that

min per(A) = — = per(J,). (1.4)

Aetly n"
where €2, is the class of all doubly stochastic matrices of ordern and J,; isthen x n
matnx whose entries are all equal to 1/r. Moreover, they showed that J; s the
unigue matrix in £2, on which the minimum is attained.

Let A € R be the space of all real n x n matrices and let y and § be nonempiy
ardered subsets of {n) == {1, ..., n}, both of strictly increasing integers. By Al y. 4]
wi shall denote the submatrix of A whose rows and columns are determined by
and 4, respectively. Also, Ay, &) will denote the submatnx of A obtained by deleting
rowws in poand columns in &, respectively. Matrices Ay, 8) and A{yp, §] are defined
similarly. In the special case when y =48, we shall use Afy] and A(y) to denote
Aly. vl and Ay, y), respectively.

In connection with a divide and conguer algonthm for computing the station-
ary distribution vector for a Markov chain, Meyer [ 10,1 1] introduced, forann = n
nomnegative and rreducible matrix A, the notion of the Pemon complement. Again,
if @ C {n}, then the Perron complement of A[F] in A 15 given by

PAJALBD = A(B) + ALB, Bllp(ANT — AL ALB. B), (1.5)
where p() denotes the spectral radins of 2 matrix. Recall that as A is irreducible,
olA) = p(A[H]), so that the expression on the right hand side of ( 1.5) is well defined.
Meyer has dernved several interesting and useful properties of #{AJA[S]). The
first is that p{2(ASA[B])) = pl{A). The second is that if A is stochastic, then so
15 PASA[A]D. In the latter case, Mever has shown how, if f, ..., f are digjoint
subsels whose union 15 {n}, the stationary distribution vector for the (entire) Markov
process can be aggregated from the stationary distnbution vectors of its Perron come-
plements 22(A fA[S1]), ..., BASALBD.
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Actually in this paper we shall work with a generalized form of the Perron com-
plement: Let A € B™", let 8 C {n}, and let A € [ be such that A7 — A[f] is invert-
ible. Then the generalized Perron complement of A[f] in A at A 1s given by the
malnx

PLAJAIBD = A(B) + A(B. BIILT — AIBITT AL, B). (1.6)
We mention that generalized Perron complements were already used in [13], [6, The-
orem 2.4], and in Lu [9]. It is immediate thatif A e B*" isa NONNEgALvEe Matrix or i
positive semidefinite matnx, then, in particular, the generalized Permon complements
in A exist forall § C {n} and for all A = p(A).

In this paper we shall denve several imequalities on the permanents of the gen-
eralized Perron complements of irreducible nonnegative matrices and of positive
semidefinite matrices. For example in Theorems 2.4 and 4.4, of Sections 2 and 4,
respectively, we shall show that if A € ™" is any one of the two types of matrices
Just mentioned and @ < {n}, then

per(#, (A [A[])) det(L] — A[S]) > per(A), VA > 2p(A).
In Lemma 2.1 we shall show that if A € B*" is a nonnegative matrix and § € {n},
then

per(#F,(A[A[B])) = per(A), WA = p(A[f]).

In Section 3 we shall wrn our attention from permanents 1o maximal circuit geomet-
ric means in irredocible stochastic nonnegative matrices. We shall show, for example,
in Lemma 3.1, thatif @ < {n}, with |§] = 1. then p{ 2 (A A = {_u{fl}}:', where,
forann x n nonnegative matnx, (-) denotes the maximum circuit geometric mean.

For background material on nonnegative matrices, M-matrices, directed graphs,
permanents, ete., we refer the reader to the books by Bapat and Raghavan [1] and
Berman and Flemmons [2]. For background matenal on matrix theory, linear algebra,

and matnx computations see the books by Hom and Johnson [7] and Golub and van
Loan [8].

2. Permanent of Perron complement

In this section we develop inequalities between the permanent of a nonnegative
matnx and its generalized Perron complements.

Let Abeann x n matrixand let § < (n}. Recall that if A7 — A[f]1s nonsingular,
then the Perron complement of A[A] in A at A is given by:

PAJAIB]) = A(B) + A(B, BIGLT — A[BDALB, B).

Lemma 2.1. Let A be an n % n nonnegative matrix and let . > ay . Then

1 L —2a
per(#(A fa, ,)) = per(A) + — = per(A[{n — 1}]).  (2.1)
A — Qyn A —
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Furthermove, if L 2= 2a, 4, then

pcr{.ﬂﬁ{;ifﬂ"."}}{}.—ﬂ,h"} = FET{A} (2.2)

Proof. Let B =A[{n— 1}, x = Al{n — 1}, n], and y = Aln, {n — 1}]. Then
1

Fr{Afayu) =B+ ——xy. (2.3)
A—ayy

Denote by B(i, j) the (n — 2) = (n — 2) submatrix of B obtained by deleting row §
and column §. Since A 1$ nonnegative, A = ag, and the permanent 15 a multilinear
function of the columns, it follows from (2.3) that

n—ln—1 o
per(#4(A fayi)) > per(B) + ) Y ~—I— per(B(i. j)). 2.4)
J=|_||=| i H
Clearly,
n—1 n—1
Y% i, (perB, 7)) = m([f f}]) = per(A) — a, per(B).  (2.5)
i=l j=I E

Now (2.1) follows easily after substituting (2.5) in (2.4). If L = 2ay,, then (2.2)
is a simple consequence of (2.1). O

As an example of this lemma consider the case when A e €2, First, it is an
immediate outcome of Meyer's results on the Perron complement mentioned in
the introduction, that all the Perron complements of A are now doubly stochastic
matnees of a smaller size. Thus for any subsets §  p < (v}, with y of cardinality
l¥| =n — 1. we have that

per(A) < per{ # | (ASA[B]) < per(# 1 {ASA[y ) = 1.
In this connection we also mention that when A = J,;, then for any § C {n} with
|8l = k. #1(ASA[B]D) = Jy—p. It should be noted though that even when A = J,
with 4 € £, it can be that for some § < {n}, with |8] = &, @ {AJA[B]) = Ji— as
the following example shows: Let

leg 18R | 17
EETH] 495 Tz
5
A= I I j'_ 1= Ql

LE 3 -rrJ
T W
£ 50

Then for § = {3}, we find that:

T I

i A4 495 T2 ¥

FPr{Afaza)) = [ y I }'Fm[“} E—z
] 7

In order to prove the main result of this sectuon (Theorem 2.4) we require the
following two lemmas. The first of these lemmas was observed implicitly in [13]
and explicitly in Lu [9, Lemma 3].

ol
pal—

I
| P |

Pal—= 1l
Pl—
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Lemma 2.2, Let A bean n x n nonnegative matrix and let b = Ja = p(A). Then
Jorany  C {n},

el (ASALBD) £ p(FL(ASALBD).
The second lemma is as follows,

Lemma 2.3 [10]. Let A be an n x n nonnegative, irreducible matriv with p = p(A)
and let i Ci{n}, % {n}. Then p(F(A/[B])) =p.

The main result of this sectuon can be stated as follows:

Theorem 24. Let A be an n x n nonnegative, irreducible matrix with p = p(A)
and let & = 2p. Then for any f C {n},

per(:#5(A JALAD) det(h.] — A[B]) = per(A).

Proof. We use induction on the cardinality of §, namely on |#]. Without loss of gen-

crality, let f = {k, ..., n}. If f = {n}. then the result follows from (2.2) of Lemma
2.1, 50let |8 = 1, assume the result to betroe for p = {6+ 1, ..., n}and proceed
by induction. Then

per(#:(A [A[y])) det(Al — A[y]) = per(A). 2.6)

It follows from Lemmas 2.2 and 2.3 that the spectral radius of 225 (A /Ay ]) is less
than p. Thus any diagonal entry of 225 (A Ay ]) 15 less than 4 /2 and it follows from
Lemma 2.1 that

per(F (P (A Aly D /fdr p)) X — d 1) = per(#5 (AfA[y D), (2.7)
where dg ; is the (k, k)-element of #5(A/A[y]). By the quotient formula for the
Perron complement, see [6], we have

FLUPLASALy V age) = PL(ASALL]
and hence (2.7) implies that

per(Z5 (A JA[BDIA —dr i) 2 per(F1(A[/A[y D). (2.8)

The result follows from (2.6) and (2.8) m view of the wdentity (which 15 the

familiar Schur-complement formula for the determinant) that

det{d ] — A[A]) = (L — dg g)det(A — A[y]). O

3. Circuil geomeiric means

HAisann x nmatnx and if 1 €46 =iz = --- =i = n, then the entnies of A:

- - - - s )
Oiyoins Olg s oy aj, i, are said o constitute a circuit in A and (g, a4, 5, -0 - ajQ, }II-' E
15 the comesponding circuit geometric mean. The maximum ciw it geometric mean
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of A is then the maximum geometric mean over all circuits in A and we shall denote
it by piA). In this section we shall obtain certain inegqualities between the maximum
circuil geomelric means of an n % p nonnegative and treducible matrix A and s
Pemron complements.

We begin with the following lemma.

Lemma 3.1. Let A be an n = n irreducible., stochastic matrix. Then
HAP(Afap ) 2 plA)

Proofl. Let P = (A /ay ). First suppose that g{A) is the circuit geometric mean
of a circuit which does not pass through n. Without loss of generality, let pid) =
(@) 2a23-- cag_1xap 1 )E, where k < n. Since pijzaj.for1<i j<n—1,
wie have that
PL2PE3 " PRl kPLl 2 @282 3 G- kOE, 1

and it follows that Py = pi(A).

Now suppose that pe(A) s the circuit geometric mean of a circuil which passes
through n. Without loss of generahity, let p{A) = (ay 2a23 - - -ﬂk_[_km_nﬂn_[}l fE+D
where & < n. Then

= Qg wily, |
PLzpri--- Pe—l kPl Zap2ai---ap_ k| a1+ T
—an

P e o Tl N O T S I

since I I = 1. Thus
—ilg n

(Prapra-- peorape)* = (a12a23 - apoy g pan 1)
= p(a)*HV
= Ay

Hence pwiP) = _{I{A}I and the proof is complewe. O

The following example shows that the mequality in Lemma 3.1 cannot be im-
proved. Let

[ 0
A=le 0O 1—¢
0 1 0

where 0 < ¢ = 1/2. Then

i} 1
P:_P{Afﬂ_ﬂ,,}}:[f 1 ]

et

and we see that pi{A) = /1 — ¢ = /w(P) and so equality holds in the inequality
of Lemma 3.1,
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A repeated application of Lemma 3.1 gives the following result

Theorem 3.2. Let A be an irveducible, stochastic matrix partitioned as

A Az
A_[f‘lll :-’!11]'

where A1y is k » k. Then
H(P(AfAn)) = p(AP" .

4. Permanent inegualities for positive semidefinite matrices

In this final section of the paper we develop inequalities between the permanent
of a positive semidefinite matrix and its generalized Perron complements. We shall
employ the following here: if A and B are n = n positive seridefinite matrices, then
A = B will mean that A — B s positive semidefinite.

We begin with a preliminary result.

Lemma 4.1. Ler B and C be n x n positive semidefinite marrices. Then
M 13

per(B+C) Zper(B)+ ) ) cijperBli, j). “@.1)
=1 j=I

Proof. The proof involves familiar ideas from multilinear algebra. We include a
proof since it 1s not readily available in the literature.

If A isa square matrix, then @" (A) will denote the Kronecker product of A with
itself, tiken n times. Let z be the column vector of order r", with its coefficients

indexed by all sequences i, f2,..., iy of imtegers from 1,2, ..., s, and with its
entnes defined as follows. The entry of z indexed by i1, 65, ..., ip 15 1 il and only
il iy, dz2, .., 0y 15 8 permutation of 1, 2, ..., n, and 15 zemo otherwise. We have the

following basic identity: If A is an n = n matnx then
1
per(d) = —{@"(A)z, z}. i4.2)
n!

Now il B and C are n = n positive semidefinite matrices, then
"
®"(B+C)>®"(B)+» B®--®B®C®B---® B, (4.3)
i=1

where C appears at the ith position in the summation. It follows from (4.3) that
| |
—(®@"(B+C)z.z) =2 j{@”{ﬂ}i.i
n! n!

1 L
+—Y(B®---®BRC®B---®Bz.z). 44
n
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Observe now that
4 M

(B® - ®BRC®B---®Bz.z)=m—1)0') Y cjper(B(i.j)). (4.5
i=l j=I

The result follows from (4.3)-(4.5). O

Lemma 4.2, Ler A be an n % n positive semidefinite matriv and {et . = ay . Then

. A —2ay , )
per(F((Afann)) 2 T— = per{A) + )L_—MILFH[ {1 (4.6)
Furthermove, if . = 2a,, . then
per(# (A fay o)) — ap n) = per(A). @7

Proof. As n the proof of Lemma 2.1, let B = A[{n — 1}, x = A[{rn — 1}, n|, and
¥y = Aln, {n — 1}]. Then

Fr{Afay ) =8B+

Xy (4.8)
A—dyy

Denote by Bii, j)the (n — 2) x (n — 2} submatrix of B obtained by deleting row
i and column §. Since A = ayy., by Lemma 4.1 and (4.8) we have

n—1ln—1 e
Per(ZA(A fan ) 3 per(B) + ) ) 1 per(B(i. ). 4.9)
i=1 _||=| (1N

The rest of the proof is similar o that of Lemma 2.1, O

If A is a positive semidefinite matrix, we continue to denote its spectral radius by
g{A). Observe that then p{A) 1s just the largest eigenvalue of A. The next mesult 1s
analogous o Lemma 2.2,

Lemma4.3. Let A be an n x n positive semidefmite matrix and fet ) 2 la >
ol A). Then forany § C (n},

{2 (ATALBD) = p(#L, (A TALBD) < Az (411}
Proof. First observe that since L) = da = o(A) = p(A[A]). both the Permon com-

plements in the result are well defined. Note that 37 — A[f] and J.7 — A[f] are
positive semidefinite and that

Af — A[B] = AT — A[F].
It follows that

(ol — ABD ™' = (LT — ALBD .
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Thus

Ap(r2f — AIFD ™' An > Ap(ial — A[FD ™ Az
and hence

PiAJALB]) = Py (AJA[B]).
The first ineguality (4.10) follows in view of the well-known monotonicity prop-
erty of the largest eigenvalue. Since ol — A is positive semidefinite, any Schur
complement in the matrix is positive semidefinite as well. Thus

dal — A(B) — A(B. Bllh2T — ALBII ' ALB. §)
is positive semidefinite and therefore Lol — #(AJA[B]) is positive semidefinite.
The second inequality in (4.10) now follows. O

We now state the main result of this secton,

Theorem 4.4. Let A be an n x n positive semidefinite matric with p = p(A) and
fet b = 2p. Then jor any  C {n},

per(#(A /A1) det(h] — A[B]) = per(A).

Proof. We use induction on |§]. Without loss of generality, let f={k, ..., nj If
f = {n}, then the result follows from (4.7) of Lemma 4.1. So let |#] = 1, assume
the result to be ruefory ={k+1,.... i}, and proceed by induction. Then

per(#4(A/Aly D) det(Al — Aly]) = per(A). (4.11)
Setting A = A and taking the limit as Az approaches p(A) in {4.10) it follows that
the larpest eigenvalue of 2% (A/A[p]) 15 less than p. Then, since 225 (A A[p]) is
positive semidefinite for any L = 20, any diagonal entry of 2% (A /Ay ]) 1s less than
g and henee 15 less than A /2. Now using Lemma 4.1 we have that

per( P (P (A Aly Dfae )X — dg &) = per(# (ASALY ), (4.12)
where, as before, @ ; is the (k. k)-element of 25 (A/A[y]). Now, by the quotient
formula for the Perron complement, see [6], we have that:

PP ASALY D/ ars) = ZPr(ASALBD.
and hence (4.12) imphies that

per(# (A JA[BDA —dw)) = per(#1(ASAlY])). (4.13)
The result follows from (4.12)and (4.13) in view of the identity

detidd — A[B]) = (& — agg)detidd — A[y]). O
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