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Abstract

In factor screening experiments, one generally starts with a large pool of potentially important factors.
However, often only a few of these are really active. Under this assumption of effect sparsity, while
choosing a design for factor screening, it is important to consider projections of the design on to smaller
subsets of factors and examine whether the projected designs allow estimability of some interactions along
with the main effects. While the projectivity properties of symmetric 2-level and a few 3-level fractional
factorial designs represented by orthogonal arrays have been studied in the literature, similar studies in
respect of asymmetric or, mixed level factorials seems to be lacking. In this paper, we initiate work in this
direction by providing designs with good projectivity properties for asymmetric factorials of the type ¢ = 2"
based on orthogonal arrays. We also note that the resulis of Cheng (1995) regarding the projectivity of
symmetric two-symbol ~rthogonal arrays do not necessarily extend to arrays with more than two symbols.
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1. Introduction

In the initial stage of expenmentation, one generally considers a large number of factors that
might be potentially important. Among these, often only a few have large effects or, are active.
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Under this assumption of effect sparsity, studying the properties of projections of the design
on to small subsets of factors becomes important as, the projected designs might allow the
estimability of certain interactions among the projected factors, apart from that of the main
effects. According to Box and Tyssedal (1996), a fractional factorial design is said to have
projectivity p if in every subset of p factors, a complete factorial, with possibly some repeated runs
i5 produced. Clearly, if a design has projectivity p and the number of active factors is at most p,
the projection of the design on to the active factors allows the estimability of all factonal effects
involving the active factors. The property of projectivity can be viewed as an extension of the
strength of an orthogonal array. An orthogonal array, OA(N,nm,m x -+ x my,,g) of strength
g, 2=g-=<mnisan N x n matrix, having »; =2 distinct symbols in the ith column, { = 1,...,n, such
that in any N x g submatrix, all possible combinations of the symbols occur equally often as a
row. When m; = --- = m, = m, the orthogonal array is called symmetric and is denoted by
OA(N,n,m, g); otherwise, the array i1s called asymmetric. An OA(N.,mm x -« x My, q)
represents an N-mun fractional factorial design for an asymmetric or mixed level my x - -- x m,
experiment, with symbols representing the levels of the factors, columns comesponding to factors
and rows representing the runs or, treatment combinations. Similarly, a symmetric orthogonal
array OA(N,m m, g) represents an N-run fractional factorial design for a symmetric m"
experiment. A fractional factorial plan represented by such an orthogonal array obviously has
projectivity g.

In the case of symmetric factorials, an important class of symmetric orthogonal arrays
give rise to the so-called regular fractional factorial designs. It is well known that a regular
fractional factorial design of resolution R is an orthogonal armray of strength R — 1. Such
a regular design has projectivity R — 1 but cannot have projectivity greater than R — 1.
However, it is possible for a non-regular fractional factorial design represented by an
orthogonal array of strength g to have projectivity greater than g. This fact was first observed
by Lin and Draper (1992) and Box and Bisgaard (1993), who found that certain
Plackett-Burman plans (Plackett and Burman, 1946) for 2Z-level symmetric factorials have
projectivity three, even though it 15 known that such plans are represented by orthogonal arrays of
strength two. Cheng (1995) proved that as long as N is not a multiple of 8, a fractional factorial
design represented by an QOA(N, n, 2, 2) has projectivity three. This result of Cheng (1995) extends
the patterns observed by Lin and Draper (1992) and Box and Bisgaard (1993) on small
Plackett-Burman designs through computer searches. The result of Box and Tyssedal (1996) 15 a
special case of the result of Cheng (1995). Cheng (1995) further proved that as long as N is not a
multiple of 16, a fractional factorial design represented by an OA(N, i, 2, 3) of strength three has
projectivity four. However, these results of Cheng do not necessarily extend for (symmetric)
orthogonal arrays with more than two symbols, as demonstrated by a counter-example in the next
section.

Some non-regular fractions also exhibit a hidden projection property. A fractional factorial
plan is said to have hidden projection property of order p if it allows the estimability of the main
effects and all or, some two-factor interactions when projected on to any subset of p factors. For
example, the 12-run Plackett-Burman plan has projectivity three, but when projected on to any
four factors, has the property that all four main effects and two-factor interactions among the
four are estimable, when higher-order effects are assumed negligible; see Lin and Draper ( 1992)
and Wang and Wu (1995).
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Further theoretical results concerning the projectivity and hidden projection properties of
fractional factorial designs based on non-regular orthogonal arrays can be found in Cheng (1998)
and Bulutoglu and Cheng (2003). However, a major portion of the available results on projection
properties of designs based on orthogonal arrays concern 2-level symmetric designs. Some specific
3-level symmetric designs exhibiting hidden projection properties have been reported by Wang
and Wu (1995) and Bulutoglu and Cheng (2003). Projection properties of asymmetnc fractional
factorial designs do not seem to have received any attention so far.

Asymmetric or, mixed level factorials are inevitable In many expenmental situations and
thus, it is important to study the projectivity and hidden projection properties of
asymmetric fractional factorial designs as well. In this paper, we initiate work in this
direction. In Sections 3-5, we provide fractional factorial designs with good projectivity
properties for experiments of the type ¢ x 2, r=3. The designs are represented by orthogonal
arrays of strength two.

2. A counter-example

As stated in the previous section, Cheng (1995) showed that as long as N is not a multiple of
m* an OA(N,n,m, g) with m=2, n=g+2 and g =2, 3 has projectivity g+ 1. A natural
question then is: does the result hold even if m= 2 and/or g+ 2, 37 We show via a counter-example
that the result cannot be extended if m = 3.

Consider a symmetric orthogonal armray, OA(36,12,3,2), displayed in transposed form in
Table 1.

Here, N =36, n = 12, m = 3, g = 2, so that the conditions stated above hold. However, the
design does not have projectivity three as can be observed by considering, for example, columns 1,
3. 4 of the above orthogonal array. Therefore, it appears that for an arbitrary orthogonal array

Table 1

An OA(36,12.3,2)

Columns Runs
| 012012 012120 120012 012120 012201 01012
2 012012 012012 1012 200012 01012 012120
3 012012 120012 012201 120201 012012 120012
4 012012 200201 012120 012012 120120 012012
3 012120 201201 012012 120120 2010012 201201
[ 012120 201120 01120 200201 201201 120012
7 012120 012012 01201 012201 120120 01201
8 012120 120201 120201 200012 012201 012201
o 012201 120201 120012 012201 200120 120120
10 012201 120012 012120 201120 120201 01120
11 012201 01120 201201 120120 012120 012120

12 012201 012120 120120 120012 120012 120201
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OA(N, n, m, g) to have projectivity greater than g, additional conditions on the orthogonal array
need to be imposed. The problem of finding such conditions remains open.

A closer look at the above orthogonal array, however, reveals that there is a subset of six
columns, forming an orthogonal array OA(36, 6, 3, 2), which has projectivity three. These columns
are 1, 2, 3, 5, 6, 8. When projected on to any three columns, there are 20 distinct projected designs.
Each of these projected designs consists of a complete 3* factorial and a {; replicate of a 3’
factorial. However, the %rd fraction in the projected designs are not the same. In nine designs,
the fraction is defined by (4BC),, in five designs, the fraction is defined by (ABC), and in
the remaining designs, it is defined by (ABC),, where 4, B, C are the three factors involved
in the projected design and for i=0,1,2, (4BC), means that the defining relation is
x; + x2 + x3 =i (mod 3), with x|, x2, x3, respectively, denoting the levels of 4, B, C.

3. Asymmetric designs with projectivity three and four

MNon-regular fractional factorial designs based on symmetric orthogonal arrays of strength two
can have projectivity greater than two. A similar phenomenon is observed in the case of some
asymmetric fractional factorial designs based on orthogonal arrays. We begin with an example of
a 12-run fractional factorial design represented by an orthogonal array OA(12,4,3 x 2°,2) of
strength two. The design in transposed form is displayed in Table 2.

It can be wverified that this design has projectivity three, even though the strength of the
orthogonal array is two. Note that in an orthogonal array OA(12,m + 1,3 = 2™, 2), the maximum
value of m is four. However, the orthogonal array OA(12, 5,3 x 2%, 2), reported by Wang and Wu
(1992}, does not have projectivity three.

The construction method adopted for the 12-run example given above can be generalized. Let
H, be a Hadamard matrix of order #. Recall that a Hadamard matrix H,, 1s a square matrix of
order n with entries £1 such that H,H, = nf,, where I, is an identity matrix of order n and a
prime over a matrix denotes its transpose. It 15 well known that H, exists for n= 1,2 and a
necessary condition for the existence of an H,, n>2is that n = 0 (mod4). A positive integer n is
called a Hadamard numberif H,, exists. It is easy to see that a Hadamard matrix remains so when
any of its rows or columns is multiplied by —1. In view of this, one can always write a Hadamard
matrix such that its first column contains only +1's.

Let H,, n=4 exist. Write H, = [1,:B], where 1, is an n x 1 vector of unities and B is an
n % (n — 1) matrix of the remaining columns of H,. It is easy to see that Bis an OA(n.n —1,2,2).
Let F; be a r-level factor and suppose ¢ = 2m + 1 is odd, where m =1 1s an integer. Let the levels of

Table 2

An OA(12.4,3 = 2.1 {transposed)
0000 1111 2332
0011 1100 0011

o101 1010 0101
0110 1001 0110
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F be coded as 0,1,...,2m. Consider the design

0, : B
1, : B
di = ml, i B
(m+ 1)1, B
2ml, © B

where Bis an n x (n — 1) matrix obtained by interchanging the symbols in 8 and 0, is an 7 x 1 null
vector. Clearly, this is a fractional factorial design for a ¢ x 2°~! experiment and the rows of d; form
an orthogonal array OA(m, n, t x 2", 2). To see that d; has projectivity three, first observe that since

5]

obtained by folding over an orthogonal amray of strength two, i1s an orthogonal array,
OA(2n,n—1,2,3), of strength three (see e.g., Deyv and Mukerjee, 1999, p. 35), the design formed
by any three of the last (# — 1) columns of d, has a complete 2° factorial plus some repeated runs.
Mow, consider the design formed by the ~level column, F, and any two of the remaining columns of
d . Since the last (n — 1) columns of &, form an orthogonal array of strength two, from the method of
construction of ', it is clear that the design formed by taking the first column F; and any two other
columns of d; produces a complete ¢ x 2° factorial. Thus the claimed projectivity three of d, is
established.

Next, let r = 2m be even. Then, arguing as earlier, one can see that the design 4>, given below,
also has projectivity three. In fact, 4 is an orthogonal array OA(nt, n, t x 2"~ ', 3) of strength three.

0, : B
1, = B
=11, B
ds = i )
ml, B
(m+ 1)1, i
_[2m = 131, E_
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We now show that under certain conditions, each of the designs &, and 4 has projectivity four.
Cheng (1995) showed that a fractional factorial design represented by an orthogonal array
OA(N, 1 2,2) with N#0 (modB), n=4 has projectivity three, and, an orthogonal array
OA(N, n, 2,3) has projectivity four if N0 (mod 16), n=5.

Since

n

i5 an orthogonal array of strength three, in view of the results of Cheng (1995), it follows that the
designs formed by the last (n — 1) factors of each of d, and o, has projectivity four, provided
2n#0 (mod 16), (n — 1)=5, 1e., provided n#0 (mod 8), n=5. Also, if n#0 (mod 8), then the
design formed by the first factor at ¢ levels and any three of the remaining factors in either o, ord-
has projectivity four. We have therefore proved the following result.

Theorem 1. Each of the designs o) and d2 have projectivity  three.  Furthermore, if
n#=0 (mod8), n=5 then each of the designs dy and d» has projectivity four.

For instance, starting from a Hadamard matrix of order » = 12 and taking r = 3, one can
obtain a design for a 3 x 2! factorial in 36 runs that has projectivity four.

4. Designs based on Paley matrices

Paley (1933) constructed a class of Hadamard matrices, called Paley matnces. For
completeness, we describe this construction. Let n =0 (mod4) be such that n — 1 is an odd
prime power, say g. Let p, = 0,py, ..., p,_; denote the elements of the finite or Galois field, GF(qg)
of order ¢. Define a function y: GF(g) — [—1,0,1} as

1 if x =" for some y € GF(g),
#ay=¢0 ifx=10,
—1 otherwise.

Let A = (a;) be a g x g matrix, where a; = y(p; — p;) fori,j =0,1,...,g— 1 and

1 =T
P”=|il AJ:* ]
q q

Then, P, is 2 Hadamard matrix of order n = ¢ + 1 and is known as a Paley matrix of the first kind. By
deleting the first column of all ones from P, we get an OA(n,n — 1, 2, 2), which we call a Paley design
and denote it by d),. Note that for 1 = 12, the Paley design > is the 12-run Plackett-Burman design.

Bulutoglu and Cheng (2003) recently proved that if ,, is a Paley design of size n= 12, then o, has

(a) projectivity three and,

(b} hidden projection property of order four, that is, in its projection on to any four factors, the
main effects and two-factor interactions are estimable under the assumption of absence of
higher-order interactions.
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We use a Paley design o,,,n = 12 to get a design fora r x 2"! experiment, much the same way as
d| or d: 1s constructed in the previous section. Let the levels of a tlevel factor be coded as
0,1,...,t — 1. Consider the design

i ﬂn 'ﬂrn-
ln dn
"
ﬂ'“ = ‘-'1.1:' '”TJ:'
“ Loy ]}ln 'dn

Then, we have the following result.

Theorem 2. (i) The design dyy has projectivity three and, (0) in its projection on to any four factors,
the main effects and two-factor interactions arve estimable when all higher-order interactions are
assumed to be absent.

Proof. Since d, 15 an orthogonal array of strength two, by the construction of dy and result (a)
above of Bulutoglu and Cheng (2003) about the projectivity of d,,. part (1) of the result follows.
Again, by result (a) of Bulutoglu and Cheng (2003), the design formed by the first factor at ¢ levels
and any three of the remaining factors has a ¢ x 2* factorial plus some repeated runs. The rest of
the result (1) follows from part (b) of Bulutoglu and Cheng (2003). O

Remark. In each of the above constructions of dy, d and . suppose ¢ is not a prime and, let
t=titr... t,, where, for i=1,...,u, t;z=2. Then, the t-level factor can be replaced by u factors,
having levels ¢,...,f, to get a design for a ¢ x---x t, = = expenment having the same
properties as o, i =0,1,2. For example, let n =12 and ¢t =6 in 4. Then, following the
construction method described above, we get a 72-run design for a 6 x 2'' experiment. Replacing
the 6-level factor by two factors at 3 and 2 levels, respectively, one gets a 72-run design for a
3 x 2'? experiment having properties stated in Theorem 2.

The construction procedure described in this section can be adopted to get designs with hidden
projection properties of higher order. Suppose A is an orthogonal array, OA(N, i, 2, 3) of strength
three. Then, from Cheng (1995), we know that if N0 (mod 16), n=5, then the fractional
factorial design represented by A has projectivity four. Furthermore, Cheng (1998) has shown that
when N #0 (mod16), the design has hidden projection property of order five, that is, in the
projection on to any five factors, all the main effects and two-factor interactions are estimable
under the assumption that the higher-order interactions are absent. Utilizing these facts and the
construction procedure of d; with d, replaced by A, we get a design, say dj;, with hidden
projection property of order five for an experiment of the type r x 2™.

5. Another class of designs with projectivity three
In this section, we give a family of designs for 4 x 2" factorials represented by orthogonal

arrays of strength two and having projectivity three. Let H,,, n=4, n+0 (mod 8), be a Hadamard
matrix. As before, write H,, = [1,,:B]. Let B be partitioned as B = [¢.(], where ¢ 15 any column of
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Band Cis an # x (1 — 2) matrix of the remaining columns of B. Consider the design

c C C
¢ C =C
“B=13 ¢ ¢
el

It follows from a result of Dey and Ramakrishna (1977) that the rows of 3 form an orthogonal
array OA(dn, 2n — 3,4 = -4 9 of strength two. We then have the following result.

Theorem 3. The design dy has projectivity three.

Proof. Consider the first half of the 2-level part of 1, that 1s, the part given by

o=[¢ Ze

Since both € and —C are orthogonal arrays of strength two and #0 (mod 8), it follows from
Cheng (1995) that the designs consisting of the columns

o]

o
| -C
have projectivity three separately.

Next, let &;, % be two distinct columns of C. Then, considering these two columns from [, C')
and one column, say &, from [C', —C']', we arrive at two cases: (a) &; = & (the case & = & can be
handled similarly). (b) a;,2;# . That the design in case (b) has a complete 2* factorial follows
from Cheng (1995). Consider case (a) now. Under the columns a;, %, 2 among the first # rows of
D given by [C, C], let f(u, v, w) be the frequency of occurrence of the combination (u, v, w) as a row,
where u, v, w = £1. Then,

f(=1,=1, =) =n/4 = f(—1,1,-1) = f(1, =1, 1) = £(1,1,1).
Considering now the same columns among the last # rows of D given by [C, —C], we have
fl=1, =1, 1) =nfd=f(-1,1,1) =fF(1,—1,=1) = £(1, 1, =1).
This shows that the design formed by taking two columns from [, C'] and one from [T, -
has a complete 2* factorial. A similar argument holds when one column is chosen from [C', ]
and two from [C', —C']. Thus, the 2-level part of d; has projectivity three.
Let oy denote the design formed by the first 2 rows of d4, 1.2,
5 c C C
s [r.' C —c]'

Consider the sub-design of 'y formed by [¢ ], which has projectivity three. It follows then that the
design formed by the column ¢ and any two columns from C has projectivity three. Next, consider the

and
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sub-design formed by the first column of dy, one column from [, "] and one column from
[C", —C']. Arguing as in cases (a) and (b) above, it can be seen that this also has projectivity three.
Applyving the same arguments to the last 2n rows of 1 shows that the sub-design formed by the first
column and any two other columns of 3 has projectivity three. This completes the proof.

The design o is “better’ than the design > (which also in particular yields a design for a 4 = 2™
experiment) in terms of accommodating more number of factors. On the other hand, under the
condition n#£0 (mod 8), assumed while constructing o, the design o> has projectivity four while
d3 has projectivity three only. For example, with # = 12, using > one gets a design for a 4 x 2!!
experiment in 48 runs with projectivity four, while with o, one gets a 48-run design for a 4 x 2%
experiment with projectivity three.

Instead of starting from an arbitrary Hadamard matrix &, with #n#0 (mod 8), one can start
with a Paley matrix of order #= 12 to construct the design 3, that is, in &1 replace ¢ by any
column of the Paley design o, and C by the remaining (n — 2) columns of ,. Then, from
Bulutoglu and Cheng (2003), it follows that 1 has projectivity three. In using the Paley matrix,
one does not need the condition ##0 (mod 8). However, a Paley matrix does not exist for every
Hadamard number; for instance there is no Paley matrix for # = 36 and vet, H 1 exists.
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