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Abstract

The model in which competing risks are assumed to be independent does not provide
any information for the assessment of competing failure modes, if the failure mecha-
nisms underlying these modes are coupled. Certain models for dependent competing
risks have been proposed in the literature. These can be distinguished on the basis
of the monotonicity of the conditional probability of a particular failure mode given
that the failure time exceeds a fixed time. There is an interesting link between the
monotonicity of such conditional probability, the dependence between the failure time
and the failure mode, and the crude hazard rates. In this paper, we propose tests for
testing the dependence between the failure time and the failure mode using the crude
hazards and using the conditional probabilities mentioned above. We establish the
equivalence between the two approaches and provide an optimal weight function. The
tests are applied to simulated data and to mortality follow-up data.

Keywords : Competing risks; Conditional probability; Crude hazards; Enlarged filtra-

tion; Kolmogorv-Smirnov type tests; Martingale



1 Introduction

In the follow-up study of mortality, it is observed that the contribution of the causes of
death due to common cause which includes cardiovascular diseases, cancer and accident
and suicide decreases with age while the contribution of other causes increases. Hence,
in such situations it is of interest to compare the probabilities of dying due to a common
cause and due to other cause given that a person has survived upto a certain age. It is
also of interest to test whether such conditional probabilities increase or decrease with
age. Dewan et al. (2004) give several examples where the conditional probabilities are
of interest.

In this paper, we study the relationship between the crude hazards and the con-
ditional probabilities in the case of two competing risks. We develop test procedures
using the crude hazards and the Kolmogorv-Smirnov type test for testing independence
of the failure mode and the failure time. For a specific choice of local alternative, the
two tests are shown to be equally efficient and an optimal kernel is given. A test based
on crude hazards can then be easily extended to include more than two risks and also
censoring. The methods are illustrated by simulated data and also by a real data on
mortality follow-up conducted in Finland.

The competing risks data consist of the failure time, 7" and an indicator of failure
mode, 6 which can have one of the values {0, 1}.

Define the joint distribution of (7, §) through the subsurvival functions
Si(t)=P[T >t,6 =1],i=0,1,
leading to the overall survival function of the failure time
S(t) = P[T > t] = So(t) + Si(t).

Let F;(t) and F(t) denote the corresponding subdistribution and distribution functions.
Throughout the paper, we assume that F;(.) and F(.) are continuous and f;(.) and f(.)

2



denote the corresponding subdensity and density functions. Also, define the conditional

probability of failure due to the first risk given that there is no failure upto time ¢ as
(1) O,(t)=Plo=1|T >t

Equivalently, we can define ®y(t) = P[0 =0 |T >t =1—-Plo=1|T > 1. Itis
interesting to note that ®(t) = P[0 = 1] = ¢,V ¢t > 0 is equivalent to independence of
T and . In general dependence set-up, the analysis of competing risks data is carried
out using the subsurvival functions S;(t¢),7 = 0, 1, and hence if 7" and J are independent
then S;(t) = S(t)P[6 = i]. Thus, the hypothesis of equality of incidence functions is
equivalent to testing whether P[0 = 1] = P[0 =0] = 1/2.

Let A;(t) and A;(t) be the cumulative cause-specific and cumulative crude hazards

for failure mode ¢, and are given by

a) = [l A -

t dF;(u)
o Si(u)’

Here, we consider the testing problems Hy : ®1(t) = ¢ against H; : ®;(¢) is not constant,
and Hy : ®4(t) is increasing in ¢ which is the same as in Dewan et al. (2004). Their
test Us is shown to be asymptotically equivalent to a test proposed here, for a special
choice of the weight function. It is interesting to note that the null hypothesis in terms

of cause-specific hazards is

T >1)  dA
=0|T>1t) dAo

() =0=

and is equivalent to testing a(t) = ao(t) = a(t), where a;(t) = dA;(t)/dt,i = 0,1 are
the crude hazards. The alternative hypothesis that ®;(t) is increasing in ¢ is equivalent
to ay(t) < ap(t).

In section 2, we propose a test based on crude hazards and a weighted Kolmogorov-
Smirnov type of test for testing the above hypotheses. We also prove the equivalence

between the optimal tests obtained in these two classes of tests. In section 3, simulated
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data and mortality follow-up data are used to illustrate the proposed tests. We also
compare the optimal weight function and the weight function suggested by Harrington
and Fleming in case of bivariate exponential distribution, which can be used in the

general situation.

2 Test of significance

Let (73,6;), j = 1,2,...,n be the competing risks data obtained from n independent

and identical copies of the system. Define the counting processes

Ni(t)y = > IT; <t,6;=1i],i=0,1,
j=1
N.(t) = No(t)+Ni(t),Y.(t) =>_I[T; > t].
7j=1
Note that N;(¢) counts the number of failures due to competing risk 7 by time ¢ and

Y (t) is the number of units at risk just prior to time ¢. The natural estimates of the

subsurvival functions are given by their empirical counterparts

) = Mg =" R,
S = F0 g

where ny = 327, ; and ng =n —n;.

2.1 Test based on crude hazards

Let FYY be the filtration generated by (No, N1,Y). Consider the enlarged filtration
G = F"Y V o(Ny(c0)). It can be shown that, for i = 0,1,

N,
P(6=ilT > s)

M;(t) = Ni(t) _/Ni(m) 7 i(s_)d/\i(é’)
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is a {G;}-martingale with predictable variation process

- o0) — Ni(s—)
(Mi)e P 6 =T > 5) M)

(2) (s=))dAi(s).

O\N
—~
Z
—~

l

It is interesting to note that the conditional probability of interest, P(6 = i|T > t),
appears in the compensator.

We can split the group of n individuals into a group of N;(co) individuals, those
which will fail from cause 1 and a group of n — N;(00), those who will fail from cause

0. So, we have two independent counting processes

where ¢ = 0,1 and Y;(t) = N;(o0) — N;(t—).

Testing the proportional hazards hypothesis is equivalent to testing whether the
intensities of the two counting processes N; are identical. This testing problem is the
same as that discussed by Andersen et al. (1993) on pages 345-348.

For a weight function K, (¢) such that it is non-zero whenever the risk sets corre-

sponding to the two groups are non-empty, consider

v = /K (dN1 )_dNO()>

Yo(s)
_ / Kn(8)<dM1(s) dMO(s))

Yi(s) Yo(s)
(4) ¥ / Kl (dA1 d!lo(s))

where K, (t) is a {G;}-predictable weight process which must be chosen in some efficient

way and second equality follows due to (3). The assumption on the weight function is
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natural since the estimates of the crude hazards need to be compared in the environ-
ment when there are subjects acting in both environments. Note that the second term
is zero under the null hypothesis. A test based on V,, can be used to test Hy against
H; and H, since large values of V, (either negative or positive) support H; while large

negative values support Hs.

Theorem 2.1 Assume that n 'Y;(t) converges uniformly in probability to a deter-
ministic function y;(t) for 1 = 0,1. Further assume that n 'K, (t) converges to k(t)
uniformly in probability with k(.) bounded on [0,7]. Under the null hypothesis, n='/?V,,

converges in distribution to N(0,0?) where

o = [[RO+

0 n (t)

Proof: The result follows from (2), (3) and (4), and

dA(t)  dA(t)
Vi) Yo(t)

< 0 Y2V, n V2, s = / N K2 (1) ( ).
0

The consistent estimator of the variance is

2 [T 2 1 1
7 = [ 120 vy * vy )
5) = [ KXOM@Ye)} N ).

Consider the sequence of local alternatives { P(™ ()} for the crude hazards of the form
(6) af" (1) = a(t) (1 + eny (D)), i = 0,1

where 6 = (6y,6,) € R? is a local parameter and ¢, = O(n~'/2). Under these local

alternatives, the asymptotic mean and the variance are

@ po= (0= 00) [ kOali)r()d
e

t,
o2 = {p(1— )} [ K@) (t)dt.
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The noncentrality parameter is then given by

(0: = 00)%6(1 = 6)( [ kDa(®)y(®)dt)([ K (@)at)s™ (1),

It can be easily seen that the kernel which maximizes this noncentrality parameter
is k(t) proportional to v(¢)S(t) and hence this choice of kernel gives the most efficient
test (see Andersen et al., 1993 for details). The maximum value of the noncentrality

parameter is
.

(6 = 0061 = 9) [ 1*(OS(Wat)dt

The above derivation is applicable to a more general sequence of local alternatives
(8) 0’ (t) = a(®)(1 +ewn(t), i =0,1.

where () = 71(t) — 70(?).-
An alternative weight function which can be used here is the weight function intro-
duced by Harrington and Fleming (1982) and is given by [1— F,(t)]°, where p is a fixed

constant between 0 and 1 and F, (t) is an estimate of the overall incidence function.

2.2 Kolmogorv-Smirnov type test

The hypothesis ®;(t) 1 ¢ is equivalent to ®(¢1) < ®(t2), whenever t; < t,. That is

Si(t1)/S(t) < Si(t2)/S(t2)
Si(1)S(t) < Si(ta)S(h).

ThlS giVBS ‘Il(tl, tz) = Sl (tz)S(tl)—Sl (tl)S(tg) = Sl (tz)So(tl)—Sl(tl)So(tg) Z 0, tl S tz
with strict inequality for some (t1,%2). Let \iln(tl,tz) be obtained by replacing the
functions by their empirical counter parts

A

U, (t,t) = S’ln(tQ)gn(tl) — S’ln(tl)gn(t2)
= Fin(00)(Fulte) — Fu(tr)) + Fin(t:1)(1 — Fu(t2)) — Fin(te) (1 — Fu(t1)).
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A Kolmogorov-Smirnov type of test to test Hy against H; can be defined as \/ﬁf)n =
VI Sup,<, | W, (u,v) | and large values of the test statistic support Hy. One sided test
can be used to test Hy against Hy, \/nDs, = \/ﬁsupuSU(\iln(u,v)) and large positive
values support H,. Similarly, a hypothesis that ®;(¢) is decreasing can be tested and
large negative values support the hypothesis.

The following theorem is proved in the Appendix I by the functional delta method.

Theorem 2.2 As n tends to oo, /n(¥,(u,v) — U(u,v)) converges to a zero-mean

Gaussian random field Z(u,v) with covariance structure

cov(Z(ur,v1), Z(up,v2)) = 0ifuy < v < up < vy orus < vp < up < vy
(9) = (1= ¢)(1 — F(maz(vi, v2))
(1 = F(min(ur, us)) (F(min(vy, vs) — F(maz(us, uy))
otherwise
var(Z(u,v)) = ¢(1—=¢)(1 - F(v))(1 - F(u))(F(v) — F(u))
(10) = o(1-0)(1—t)(1—s)(t—s)

where F(u) = s and F(v) =t, and hence 0 < s <t < 1.

The above theorem can be used to test the hypothesis of interest but this point
is not elaborated here since our interest in the distribution of Z(u,v) is for defining a

class of tests in the next section.

2.3 A class of weighted Kolmogorov-Smirnov type of tests

For some weight function K (u,v), we consider

A = // K (u,0)(S1(v)So(u) — S1(w)So(v))dudv

0<u<v<oo

(11) = // K(u,v)¥(u,v)dudv.

u<v



A weighted Kolmogorov-Smirnov type test statistic for testing H, against H; and
H, is defined as

/ / (1, ©) (81 (0) Son (1) — S1n (1) Son (v))dudv

O<u<v<oo

(12) = / Ko (u, )y (u, v)dudo,

u<v

where we assume that

\/_// K (u,v))¥(u,v)dudv B 0asn— oo.

u<v

The asymptotic distribution can be obtained by using the covariance structure (9) and

(10) of the Kolmogorov-Smirnov type test.

Theorem 2.3 As n tends to oo, /n(A, — A) converges in distribution to a Gaussian
random variable with mean zero and variance
o? = // // K(u,v)K(u',v")cov(Z(u,v), Z(u',v"))dudvdu'dv’.
u<v u' <o/
The U-statistic, Uz in Dewan et al. (2004) can be obtained from (12) by selecting
K, (u,v) such that the limit K (u,v)dudv = dF;(u)dF;(v).
To check the efficiency of this test and also to compare it with a simple test based

on the crude hazards, V,,, we consider the same local alternatives { P ()} as in (6).

We define

t

At) = / (5)ds, T'(t) = Oja
(—

S(t) = exp(=A(t)), V(1) = exp(=A#)[(2)).

Then the corresponding cumulative hazards are given by
(13) AP () = A(1)(1 + e D (8)6:), i = 0,1
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and the sequence of subsurvival functions are
S8 = eSOV ()", 57 () = (1= 9)SOV (B, 5™ (1) = 57 (1) + 55 (2).
To obtain the asymptotic mean of \/ﬁAn, 4 under the local alternatives, consider

Vi [[ K, 0)(57 )8 () = 5 ()" (0) dudv =

u<v

Vio(l — o) / / K (u, 0)S(0) S (u) (V (0) 15V ()"0 — V()%= V (u) "5 ) dudy.

u<v
As n tends to oo, the above expression goes to the limit

po= ¢(1— ) // K (u,0)S(0)S(w)(log V (v) — log V (1)) (6, — 0p)dudv

u<v

(14) = (1 — )6 — 6) / / K (u,0)S(0)S () (A(0)T(v) — A(w)T(u))dudv.

u<v
To obtain the noncentrality parameter of the limiting test, we must square y and divide
by
| K |12,= Var(A/ / K(u, U)Z(u,v)dudv> _

<v

// / / K (u,v)K (u',v") Cov (Z(u,v), Z(u',v'))du'dv’ dudv

u<v u/<o!
where || - ||3 is the norm in the corresponding reproducing kernel Hilbert space.

A kernel K (u,v) is efficient under the sequence of local alternatives (6) or equiva-
lently (13) when it maximizes

(15) | K N7 [ K (0, 0)S ) S(@)(A@)T () = Aw)D(w)dude.

u<v
If we denote L(u,v) = S(u)S(v)(A(v)I'(v) — A(u)T'(u)) and for a generic function

G(u,v) we define the convolution operator

(RG)(u, v) = / / G, o) Cov (Z(u,v), Z(!, o)) du'd,

u! <v’
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then we can rewrite expression (15) as the square root of

(K,R'L)3
(K7 K)’H

It is clear that this is maximal when K (u,v) = (R'L)(u,v).

In other words, the asymptotically efficient kernel K (u,v) satisfies

(16) (RK)(u,v) = // K(u',v") Cov (Z(u,v), Z(u',v"))du'dv' = L(u,v).
u! <v’
It is shown in Appendix II that an optimal weight function which maximizes the

noncentrality parameter is of the form

(17) K (u,v) = k(u)du(v) = 7(u)S™" (u)8u(0)

where 6, is the derivative of the delta function in the sense of distributions for a smooth

function f,

where f'(u) is the derivative of f(u) with respect to u. Note that (17) satisfies (16). This
kernel can be approximated by a sequence of smooth kernels, and for such sequences
the weighted Kolmogorov-Smirnov test (12) approximates the asymptotically efficient

test (2) based on crude hazards.

3 Illustrations

3.1 Simulation study

Consider a bivariate exponential distribution with the density function

f(@,y) = Mdsexp(— Az — Ay)[1 + a(2exp(—Aiz) — 1)(2exp(—Agy) — 1)]
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and the survival function
S(@,y) = exp(=Aiz = Aoy)[1 + (1 = exp(=A1z))(1 — exp(=Azy))]
The survival function of T = min(X,Y) is
S(t) = S(t,t) = exp(—At — Aot)[1 + (1 — exp(—Ait)) (1 — exp(—A2t))].

It is clear that, for « = 0, S(t) = S(t,t) = exp(—A;t — Aot) and that corresponds to
the independence of X and Y.
We fix \; and Ay such that A\; # Ay and vary a. Consider the crude hazards

dA (t
1) = m(t,0) = alt, 2 do,0) = L0

ae M —e 2
(1 + a(l — exp(—Ait))(1 — exp(—)mf))) (1 - 1+a(1_e_t§it)(1_et_&2t)>

{1+a(1+e—()\1+>\2)t) _ 2ae—)\1t ae—/\zt }

A1+ 220+A2  A+2X

and ag(t) = ag(t, @) = a(t, Ao, A1, @) defined analogously by interchanging the role of
A1 and Ao. When a = 0, a(t, A1, A9, 0) = a(t, A2, A1,0) = Ay + A9 and a is continous in
its arguments.
The sequence of local alternatives obtained by expanding the crude hazards a(t, A1, Ao, o)

and a(t, Ag, A1, ;) around the point o = 0 is
a” () = M+ X)L+ anmi (D), a§”(t) = (A + Ao) (1 + anra(t))

where a,, = ecn~'/? and ¢ is a constant such that —1 < «,, < 1 and

0
mn(t) = aa(t, A1, A2, ) o
— 6_(/\1+)\2)t _ 27)\16_)‘11: _ )‘2 e_/\2t
20 + Ay AL+ 2A9
0
T(t) = a—aa(t, Ao, A, a)a:O
= 6_()‘1+)‘2)t _ 2)\2 Aot )‘1 e_)\lt
20+ M Ao+ 2\
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Let
— )\2 e—)\zt _ )\1 e—)\lt
/\1 + 2/\2 2)\1 + /\2

The optimal kernel for testing a(t) = ao(t) is proportional to S(t)v(t).

() =1 (t) = 7(t)

We consider the optimal weight function S(¢)y(t) and also the weight function
[1—F,(t)]” with p = 1. The level of significance used throughout is 0.05. The parameters
used for the simulation are Ay = 1, A\s = 3 and a = 0 for the null hypothesis. A
sample of size 500 was generated with 1000 repetitions. Figure 1 gives the empirical
distribution of the test statistic under the null hypothesis and also when « takes values
—0.22, —0.44, —0.67 and —0.89 along with the true standard normal distribution. The
empirical distribution corresponding to o = 0 is quite close to the true distribution
and as « goes away from 0, the distributions look like shifted normal and the curves
move away from the true distribution as expected.

To compare the two weight functions and U-statistic Us proposed in Dewan et al.
(2004), empirical distributions of the three statistics are computed using o = —0.894.
Figure 2 shows these three empirical distributions and also the standard normal dis-
tribution. It is clear that the test based on the Harrington and Fleming type weight
function has power similar to the test based on optimal weight function. The non-
centrality parameter of the U-statistic is smaller than that of the test based on crude
hazards. In practice, when one does not want to make assumptions about the structure
of the alternative hypothesis, the Harrington and Fleming weight function is a good

choice.

3.2 Mortality follow-up study

We analyse the mortality follow-up data from the Finnish cohorts which was a part
of the Seven Countries Study in which men in the age-group of 40-59 were examined

during 1958-1964 (see Keys et al., 1966 and Karvonen et al., 1970 for the details of the
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study). There were two Finnish cohorts: one from Ilomantsi in the eastern Finland
and one from Péytya and Mellild in the south-western Finland, consisting mainly of
rural agricultural populations. The original cohort consist of 823 men from the eastern
Finland and 888 men from the south-western Finland. Here, we analyse 40-years of
mortality follow-up data of 1560 men who died during the follow-up. The mortality
follow-up data give the date of death and underlying cause of death. A death due to
common causes, that is coronary heart disease, stroke, cancer, accidents and suicide,
is defined as cause 1 and a death due to any other causes is defined as cause 0. The
number of deaths due to cause 1 is 621 and that due to cause 2 is 939. Figure 3 shows
the empirical conditional probability functions ®;(¢) and ®¢(¢) and Figure 4 shows the
corresponding estimates of the crude hazards. It can be seen from the Figure 3 that
the probability of dying due to common causes given that a person has survived upto
certain age is a decreasing function of age and hence the probability of dying due to
other causes is increasing with age. After the age of 85, there is no clear trend. In fact,
there are several ages when the rate of change in the ® function changes. It can be seen
that ®,(t) < ®,(0). Here the hypothesis of interest is whether ®,(¢) is decreasing that
is ag(t) < ay(t) for all . The value of the test statistic using Harrington and Fleming
type of weight function is 5.2411. We accept the hypothesis that ®;(¢) is decreasing at
5% level of significance and hence it may be concluded that probability of dying due
to common causes given the survival upto a certain age decreases with age and hence

the chances of dying due to other causes increases.

4 Discussion

It is shown that the most efficient test based on crude hazards, (2) is equivalent to the
most efficient test in the class of the weighted Kolmogorov-Smirnov type tests, (12) for

a specific choice of local alternatives. A simple well-known test for comparing hazards
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of two counting processes can be efficiently applied in the present situation. This allows
a straight forward extension of testing hazards for two sample to k£ sample, in case of
k failure modes. A k— sample test for comparing hazards given on pages 345-348 in
Andersen et al. (1993) can be used in case of k— failure modes or competing risks.

It is demonstrated using the simulated data that Harrington and Fleming type of
weight function performs satisfactorily when compared to the optimal weight function.
In general when the form of the optimal weight function is not known, Harrington and
Fleming type of weight function can be used.

It is easy to check that the equality of crude hazards in the absence of censoring
gives the equality of crude hazard in the presence of independent censoring. Hence,
in case of right-censored comepting risks data with independent censoring, the above
methods can be applied without any changes. We refere to Example V.2.1, Chapter

V, Andersen et al. (1993) for the discussion regarding censored survival data.
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Appendix I: Proof of Theorem 2.2
It is shown in Breslow et al. (1974) that as n tends to co, \/n(Fi, — Fi, F, — F)
converges jointly in D([0,00)) x D(]0, c0)) with the Skorokhod topology to zero mean

Gaussian processes (X1, X) with covariance structure, for s < ¢,

) = F(s)(1-F(1),
) = F(s)(1-F(t)),

) = F(s)(1-F(t)),
) = Fi(s) = Fi(t)F(s).

Note that X is a time changed Brownian bridge that is X (co0) = 0, but X is not a
Gaussian bridge, that is the limit X;(oc) is random. The martingale decomposition

for (X, X) can be written as

X
(1-F)

dX - dM - dF, dX1 = dM1 - dFl,

(1-F)
where M and M, are Gaussian martingales with

d{M, M) = (1 — F)dF and d{M, M) = d{My, M;) = (1 — F)dF,.

If we denote Xg = X — Xy, My = M — M,, Fy = F — F}, we get the linear system of

16



stochastic differential equations

dX() - dM()— (

dX1 = dMl—(

where M, and M; are orthogonal Gaussian martingales with d(M;) = (1 — F')dF;. The
solution can be given explicitely in terms of (M, M;) and matrix exponentials. Note
that X(](OO) + Xl(OO) =0.

By functional delta method, it can be shown that

V(Fin(00) = F1(00))(F(v) = F(u)) +
1 (00)V/n[ (B (v) = F(v)) = (F(u) = F(u))] +

converges to

Z(u,v) = X1(00)(F(v) = F(u)) + F1(00)(X (v) = X (u)) +

Xi(u)(1 = F(v)) = Fi(u) X (v) = Xy (v) (1 = F(u)) + F1(v) X (u).

We can express

oo

Z(u,v) = / F(u, v, )dX1(t) + / g(u, v, )dX (¢),

0

so that

Cov(Z(u1,v1), Z(ug,v2)) =

COV(f(UlanT)I(n =1) + g(u1,v1,7), f(ug,ve,7)I(n = 1) + g(us, 02,7)),
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where

18)  flu,v,t) = (F(v) = F(u)) + Lout)(1 = F(v)) — Loy () (1 = F(u)),

(19) g(u,v,t) = T (t)Fi(v) — I, (t)Fy (u) + Fl(oo)l[u,v](t)'

Under Hy, Fi(t) = Fi(c0)F(t) = ¢F(t) and hence,

flu,v,t) = (F(v) = F(u)) + Ljpu(£) (1 = F(v)) = Ljow (8) (1 = F(u)),
9(u,v,t) = (Lo, (H)F (v) — Lo, () F () + To,0) () — Lj0,u1(2))

= ¢(—Ipu ()1 = F(v)) + Tpowy(t) (1 — F(w)))

= ¢(F(v) - Fu) = f(u,v,1)).

Note that
/oofuvtdﬂ —¢/ fu,v,t)dF(t
0
and
/0°°g w0, )dF(t) = ¢/ (u, v, £))dF(t) = d(F(v) — F(u)).

It can be verified using simple calculations that

cov(Z(un, 1), Z(uz, 12)) = 0ifur < v1 < s < vy o s < v5 < 1 < 1
= ¢(1—-¢)(1 — F(maz(vi,vs))
(1 = F(min(us, us))(F(min(v1, v3) — F(maz(us, us)),
otherwise,
var(Z(u,v)) = ¢(1—¢)(1—F(v))(1 - F(u))(F(v) - F(u))
= ¢(1=¢)(1=1)(1—s)(t—s),

where F(u) = s and F(v) = ¢, and hence 0 < s <t < 1.
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Hence the Theorem 2.2.

Appendix II: Optimal weight function

To find the asymptotic noncentrality parameter under the sequence of local alterna-
tives { P(™ ()} given in (6), we need to compute the asymptotic mean and variance of
the weighted Kolmogorov-Smirnov test (12) for a sequence of possibly random kernels

K, (u,v) approximating K (u,v) = k(u)d,(v), so that

Vi [ (K, 0) = k()5 (0) 2 (1, 0)dudo =

u<v

il 008 [ K0S S 000 040

(n)
POO)

Using (14) and (15), it is easy to verify that the asymptotic mean and variance of
VA, is
p= (0= 00)6(1 = 6) [~ k(w)S*(wa(u)(w)du,

and

Var (A/ K*(u,v)Z(u, v)dudv) =

/ / / I(u < 0)I(0 < 0)k(u)dy (0)k(W)ow (v') Cov (Z(u,v), Z (W', v'))du'dv' dudv.
Note that

[T < RO = T < ) R0, s

where
R(u,v,u',v") = cov(Z(u,v), Z(u',v"))
= ¢(1—¢)S(")S(min(u,u"))(S(maz(u,u')) — S()) (v < V) (uv <)
+¢(1 — ¢)S(v)S(min(u, u))(S(maz(u,u")) — S))I(v' <v)I(u<v').
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Finally,

(20) o2 = Var g/ / K*(u,0)Z(u, v)dudv) — $(1—¢) / k2 (1) S (u) a(u) du.
<v

The value of the noncentrality parameter is

(01 = 0061 = O)( | k(S (Wa(w)y(w)du)?([ k()5 (w)a(u)du) !

0

and is maximised when k(u) = v(u)S!(u) and the maximum value of the noncentrality

parameter is
(61— 00)%6(1 — ¢) [ 7*(w)S(wpau)du

which is exactly the same as that for the test (2) based on crude hazards.
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n=500, alpha=(0,-0.22,-0.44,-0.67,-0.89), lambda(1)=1, lambda(2)=3
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Figure 1: Empirical distributions of the test statistic based on crude hazards for various

values of &« n =500, « = (0,—0.22,-0.44,—0.67,—0.89), A\ =1,X2 =3
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n=500, alpha=-0.894, lambda(1)=1, lambda(2)=3

1 T T T T T T - - II
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Figure 2: Empirical distributions of test statistic based on crude hazards using optimal
kernel and Harrington-Flemming type kernel, and Us test n = 500, o = —0.89, A\ =
1L,LA=3
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Figure 3: Empirical conditional probabilities for two competing causes
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Figure 4: Nelson-Aalen estimates of cumulative crude hazards for two competing causes

of death
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