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ABSTRACT. Dependence stroctures between the failure time and the cause of failure are ex-
pressed in terms of the monotonicity properties of the conditional probabilities involving the cawse
of failure and the failure time. These properties of the conditional probabilities are used for testing
four types of departures from the independence of the Failure time and the cause of failure and tests
based on L-statistics are proposed. In the process, a concept of concordance and discordance
between a continuows amd a binary variable is introdoced to propose a statistical test. The proposed
tests are applied to two illustrative applicationms,

Kev wards: competing risks, conditonal probability, dependence structures, subsurvival
[unctons, [-statistics

1. Introduction

Consider a situation where a unit can fail due to one of two competing causes. Let T and 75
denote the latent lifetimes of the unit under the two causes. The competing risk data available
are the Failure time T of the unit, which is the minimum of { ¥}, 7)) and the cause of failure
indicator &, which isequalto 1 if 7' = T and is 0if T = 75 These data are right censored data
where each latent lifetime acts as a censoring varable for the other and, unlike in censoring,
the interest lies in both the causes and hence in both the lifetimes. One concentrates on
different aspects of the situation by assuming appropriate dependence structures (i) for the two
latent lifetimes (7., T>)and (ii) for the random variables (T, &). The joint distribution of (T, &)
is defined here by the subsurvival functions, S{r) = pr(T =, d=1i), i = 0. 1. The survival
function of T is defined by 81 = pA T2 ¢) = Sy7) + 51(¢). Throughout this paper, we as-
sume that the subsurvival functions are continuous with fi(¢). i = 0, 1, as the subdensity
functions and f{r) = for) + (7)) as the density of T. The cause-specific hazard rate for cause i
is defined as hfr) = f{7)/ 3¢} and the crude hazard rate for cause 7 is defined as r{#) = fi{)/
547). The hazard rate of T is 1) = fA0/5(0 = hin + ke

The problem of identifiability in modelling the competing risks data in terms of the latent
lifetimes is well known. The distributions of the latent lifetimes are identifiable under the
assumption of independence of the competing causes and also under some weaker conditions
of non-informative censoring, see Kalbfleisch & Prentice (2002). There has been an ongoing
debate for many vears about the use of the models in terms of latent lifetimes and the models
in terms of { T, &), see Prentice ¢r af. (1978), Larson & Dinse ( 19835), Davis & Lawrance { 1989),
Deshpande (1990), Aras & Deshpande (1992), Gasbamra & Karia (2000), Crowder (2001),



a0 I Dewan er al, Scand I Statist 31

Kulathinal & Gasbarra (2002) and others. The problem of identifiability does not arise if the
modelling of the competing risk data is done in terms of the subsurvival functions of (T, &) or
related quantities like cause-specific hazard rates and crude hazard rates. The nature of
dependence between T and 4 is crucial and useful in such modelling. If T and 4 are inde-
pendent then S(r) = prd = 0)5(¢), allowing the study of the Failure times and the causes (risks)
of failure, separately. The hypothesis of equality of incidence functions or that of cause-
specific hazard rates reduces to testing whether prd = 1) = pr(d = 0) = 1/2. This simplifies
the study of competing risks to a great extent.
In this paper. we study the properties of the conditional probability functions

$i(0)

Q) =pld=i|T 20 =55, i=0.1
and
O (1) = prid = i| Te::}.=*;f%§._ i=0,1,

where Fi{r)=prT = ¢, d=1i), i=0,1 are the incidence functions or subdistribution
functions and A7) = pr(T < §) = Fyl$) + Fi1) is the distribution function of T.

We also study various kinds of dependence between T and & via these probabilities. The
motivation for studying these probabilities, partly, comes from Cooke (1996), who studied
failure and preventive maintenance in a censoring setting with the interest in the distribution of
the latent failure time which would have been observed in the absence of preventive main-
tenance. In the next section, the models considered in Cooke (1996) are reviewed and the
properties of () are stated For illustration. The results of this paper are especially of interest
in reliability, but examples arise in many other fields where the conditional probabilities of the
type 47} and D (1) are of primary importance. In clinical trials carried out to study the
performance of an intrauterine device where termination of the device could be due to several
reasons such as pregnancy, expulsion, bleeding and pain, it is often of interest to know the
chances of termination due to a specific reason given that the device was intact for some
specified period. Also, in epidemiological follow-up studies the probability of occurrence of an
event given that the age of a person is above a certain limit is of interest. In such situations,
conditional probabilities are expected to vary with time. Hence the applicability of the results
of this paper is quite wide.

In section 2, we define dependence structures between T and & in terms of the shapes of
the conditional probability functions @ (¢} and O5(1). Also, their relation to ordering between
the cause-specific hazard rates and crude hazard rates are studied. In section 3, we consider the
problem of testing Hy @ 7 and & are independent which is equivalent to

Hy :yit) is a constant
against varous alternative hypotheses which characterize the properties of ©(7) and O;(1):

Hy i) is not a constant
Hy cyit) = b For all ¢ with strict inequality for some ¢
Hy oyit) is a monotone non-decreasing function of

Hy :di1) is a monotone non-increasing function of 1.

where ¢ = pr(d = 1) =1 — pr(d = 0). The properties described in section 2 motivate the
above alternative hypotheses. A test based on the concept of concordance and discordance is
proposed for testing Hfy against M. Actually a one-sided version of the test is seen to be
consistent against A, Two tests are proposed to test My against Ha. A test using U-statistic is
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proposed for testing Ay against i and on the same lines a test is proposed for testing Hy
against Hy. Note that there is no relationship between 5 and A4 but both imply H. Some of
the test statistics considered here are already in the literature but in other contexts. In section
4. relative efficiencies of these tests are studied and in section 5 the tests are applied to two real
data sets. To the best of our knowledge, tests based on the conditional probability functions of
the type O and @ (f). which are useful in modelling the competing risks data in terms of
(T, &), are proposed and studied in detail here for the first time.

2. Properties of @(r) and Dy(r)

It is obvious that the independence of T and & is equivalent to constancy of @(7) and is also
equivalent to constancy of @), Many popular bivariate parametric distributions used in
survival analysis have constant ©(7) and ©3(1). for example, Block & Basu (1974), Farlie-
Gumbel-Morgenstern bivariate exponential distribution, Gumbel type A distribution. How-
ever, in many practical situations, this is not the case. We review the models considered in
Cooke (1996) in the light of the conditional probability functions @, (r)and 4% (¢). It should be
noted that the function @r) used in Cooke (1996) is equivalent to 1 — (¢} defined in this
paper. In the following models, the two competing causes are the actual cause of failure of a
unit and the censoring caused by the waming. The failure time of the unit is denoted as T and
the censoring variable defined according to the warning emitted by the unit before failure is
denoted as T,

2.1, Random signs censoring

A random signs censoring, also known as an age-dependent censoring, is a model in which the
lifetime of a unit T is censored by 7> = T — Wiy, where 0 = W = T isa warning emitted
by the unit before its failure, and 5 is a random vanable taking values {— 1.1} and is inde-
pendent of 7). Hence 5 = 1 would lead to the censoring of the lifetime at 7y — Wand g = -1
will lead to the observation of complete lifetime 7. Assume that T has exponential distri-
bution with parameter A. In this case, AT = . T = T =PTN - W = .y =1} and
AT =, T = T)= AT = 0Py = —1). This gives &)= AT = r,p= -1}AT, -
Wy =6, T =) When W =aT,,0 < a=< 1,

-1
(1) = (l + exp{ —ar(a/(1 — a}}})

1-p
where p= Pln =1) =1 — Ply = —1). leading to the increasing nature of O (¢} in 1.

2.2, Constant warning-constant inspection

Im a constant warning-constant inspection model, a waming is emitted at time T — o before
the unit fails, where of < 1) is a constant. Assume that T has exponential distribution with
parameter A. Inspections are made at regular intervals f. Here, T is censored by T, with
H=dpiffy = T —d < Iy, <= Tand T is observed to fail at time T if no inspection

occurs in the interval [T — &, 7] Take £ = 1. In this case,
p_— expd Ad} — 1
Rt Ry ) poa

which is independent of i.
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2.3, Proporticnal warning-constani inspection

A proportional warning-constant inspection is similar to the constant waming-constant
inspection model except that the warning is emitted at time T'/x if the component fails at T;
where i is a constant. In this case,

. 1 —explilin — 13} 1
5 = . + -
=1 (eplal = D)
which is clearly a decreasing function of i.
Thus, the monotonicity of (7} helps in choosing the appropriate model.

2.4, Hazard rate ordering and apeing

The conditional probability, cause-specific hazard rate and crude hazard rate are functional by
related by the identity (1) = Qe (). i= 10, 1.

Theorem 1
The conditional probability function ©,(1y T ¢ is equivalent to ry(t) £ 1) £ rgle) for all ¢, and also
to fy(0) < DOk and hg(ny 2 (1 = D Ohin).

The proof follows by using the fact that the derivative of (¢} is non-negative and the
derivative of 1 — @) is non-positive being decreasing function of .

Thus, (¢} is increasing is equivalent to the fact that the overall failure rate is larger than
the failure rate given that the failure is due to cause 1 and is smaller than the failure rate given
that the failure is due to cause 2. It is also equivalent to saying that 8,(r)/5(7) is non-
decreasing in . The above theorem also implies that i (9 fil 0} = @01 — Dy(r)). This puts
functional bounds on the relative rate of ageing of two risks, see Sengupta & Deshpande
(1994} for definitions of relative ageing.

Another interesting result stated below connects the monotonicity of @ (#) with the ordering
between two survival functions.

Theorem 2
The condivional probability function ©(7) 2 o for all ¢ i and only i the survival function of T
given & = 1 is larger than that of T given & = 0, that iz, S5} 2 S3(000(1 — ).

The proof follows by noting that @7 = ¢ is equivalent to §(7)/¢d = S} and Sge)(1— )
= S(i).

It is important to note that the crude hazard rates ri(¢) and ry(¢) are the hazard rates of the
distributions given by 5,(1)/¢ and S4(A0(1 — ). respectively. These distributions are called
conditional subsurvival functions by Cooke (1996), and in fact theorem 2 gives the properties
implied by the random signs censoring model of Cooke (1996).

Under the proportional hazards model. fy(¢) = (7). This is equivalent to independence of
T and & and hence @(¢) = ¢ For all v = 0. It is easy to see that f(1) = ¢fe(7) implies ©(7) = b,
for all r. Hence. the tests proposed in the next section can be used to test the proportionality of
the two cause-specific hazard rates also. When ¢¢ = 1/2, 5,(¢) = 5(¢) for all ¢ and this means
that there is stochastic dominance between the two incidence functions as well as the condi-
tional distributions.

It is interesting and also useful to express the cause-specific hazard rate in terms of @(r).
This enables one to study the ageing through the properties of @().
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Theorem 3
IF (¥} is monotone nereasing and concave then (1) i an increasing function of 1, provided ii(r)
ix increasing.

Proof. From the definitions of @7 and fy(r), it is easy to note that M) =
— (1) + Dy (e)kir). where @, (1) is the first derivative of @ (7} with respect to r. Hence the result.

Further, let ¢} (1) and &} (1} denote crude and cause-specific reverse hazard rates, which are
defined as

reie) =2 and k(o) :%

K1) :
All the above results hold true between these reverse hazards and @5(1). As the results are quite
similar, the details are not given here. The above msults bring out the fact that many
important kinds of dependence between Tand & can be expressed in terms of various shapes of
() and @), Note that @(7) increasing in ¢ does not necessarily imply that @) is
decreasing in ¢ and vice versa. These properties motivate various alternative hypotheses
considered in the next section.

3. Test statistics and their distributions

Let (T, &), i= 1.2.....n, be the competing risk data obtained from » independent and
identical units.

3.1, Tesving Hy against H,
As defined earlier

Hy i) is a constant

Hy i) is not a constant

Kendall’s ris used as a test statistic for a very general alternative of non-independence. A pair
(T, 8) and (T, &) is a concordant pair if I, > T dy=L & =00or T < T =08 =1
and is a discordant pair if 7; = T, d; = 0.8 = lor I} = T, & = 1.4, = 0. Define the kernel

| ifG =T, =1 8,=0
or i< T, di=0,8;,=1
(B0, T,0) =4 —1 ifG>T, 8,=0, 5 =1
orfj< T, di=1,8;=0
0 otherwise.

MNote that when both & and &, are | or 0, then &; — &; = 0. The corresponding {'-statistic is

given by
mry =1 -
= (-j) Z Wy (1.8, T ).
=0 1<igisa
MNote that

o0

E(W) = B (1. 8.7,.3)) = 26 +4 [ S0

Q
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It is seen that L) =2 0 under A, Hence, a one-sided test based on L} can be used to
test @ = ¢ for all r also.

It is easy to write the statistic (') as a function of ranks. Let R; be the rank of T Let
Tiy = - = Ty be the ordered T's. Let

W — {! if T);; corresponds to & = 1
t 0 otherwise.

Then ¥} = (5)U; can be written as
M=) (2R—n—-1)§ =3 2j-n-)F=3 a,W (1)
=1 =1 i=1

where ;= 2j—n - L

This statistic was introduced for the first time in Deshpande & Sengupta, (1995) for pro-
portionality of cause-specific hazard rates with independent competing risks. The statistic
given in equation (2.3} in Dykstra er al. (1996), page 214 in a different context, is — L'} and the
correct variance of V), is {I."?m}.rr{n: — 131 — ) and not the one given on page 215. The null
distribution of V| can be found from its moment generating function. Note that under H,.
T..... Tyand &,. ... &, are independent. Hence, under Ay, W9,. .., W, are independent and
identically distributed with pr{H; = 1) = ¢ and pr(#; = 0) = | — ¢b. From here we obtain
that the moment generating function of F, under Hy. is given by

M) = [ (6 explt(2i —n— 1)} + (1 - ).
i=l1

Hence the null distribution of ¥ depends on the unknown ¢ even under H,. For large n, we
can estimate ¢ consistently by ¢ = ! 57| /{4, = 1}. Under H.
2 : din+1)
E(th) =0 and Var(Lh) = mdﬁ(! — b}
Mote that £(L5) = 0 under . From the results on L'-statistics it follows that L) has an
asymptotic nommal distribution for large » (Serfling, 1980).

Theorem 4
As n tends to so, under Hy, n'?U, converges in distribution to N(0, &3) where o =

(4/3)¢(1 — ¢).

A consistent estimator of variance is & = (4/3)d(1 — ¢). A test procedure for testing H,
against ) is then: reject Hy at 1002% level of significance if [#"/2U) /dy| is larger than z; _ 2,
the cut-off point of standard normal distribution.

3.2, Testing Hy against H

Recall that £, @ d(7) = ¢ which is equivalent to (1) = 1 — ¢. It is clear that a one-sided
test based on U} can be used for testing Ay against A as it is based on concordance and
discordance principle and the number of concordances are expected to be larger than the
number of discordances under . A test procedure for testing Hy against A is then: reject My
at 100x% level of significance if a'/ 21, /a) is larger than z; _ ,. the cut-off point of standard
normal distribution. Two more tests are given below using @ (¢} and $)(1) for testing Hy
against i
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.20, Tesr based on 1)
Consider

le-la-

As($:,5) = f [51(1) — $SINIdF(R) = pr(Ta > Ty, 02 = 1) -

Under . S(0/S(5) = ¢ = pr(d = 1). This implies that A5,. §) = 0. Under H,. §(7) =
&) and hence Ax(S5. 5) = 0. Define the symmetric kernel
1 #fT>T,8=1
ol T, 8, T, 8) = { orif ;> T;,8, = |
0 otherwise.
The corresponding U'-statistic estimator is given by
n _] - - el
ba= (1) Z W 15y, TG, ). (2
- | isi<n

It can be shown that

G)L@:Z(RI— a; =30 - )W, (3)
=1 =1

The above statistic is proposed in equation (2.6) by Bagai e¢ af. (1989) for testing the equality
of failure rates of two independent competing risks.

Theorem 5
As n tends to oo, under Ho, n'*(Us — ¢) converges in distribution to N{O, a3), where a3 =

(4/3)¢(1 = ¢).

3.2.2. Test based on (1)
H> is also equivalent to B> : @) = oy for all ¢ with strict inequality for some ¢, where
dy = 1 — ¢h. As in the earlier section, we have

Theorem &
As 1 tends to oo, iV 3(U3 — ¢y) converges in distribution to N0, a57). where

(B = e Zi"- nw; (4)

and @37 = (4/3)dg(1 — ).

The consistent estimators of variances o3 and a3° can be found by replacing ¢ by ¢. We reject
the null hypothesis for large values of the standardised versions of the statistics. From
equations (1), (3) and (4), it follows that L}, = U5 + U3 — L.

3.3, Testing Hy against H

Recall that s @0 T r. Note that O(0 T ris equivalent to @) = Oy(r), whenever 1) = 15,
This gives p(#. ) = S(R)80H) — 50800 =20, ¢ = with strict inequality for some
{#1. 72). Define
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As I:S] .5} = f f ‘}'I:f] L ::lfﬂ"] I:.f] }drf"] I:fg::l

- f I3(0) — ¢ /2]S(1)dF (1), (5)
1]

Under My, §(7)/S(1) = ¢b. This implies that Az(5,, 8§ = 0. Under f;, A5, 5)z=0.
Define the kemel

1 fh>N>h >0,
=& =&=18=0
Wil di T 8 Tede, T =4 =1 if > >0 =T,
=d=8=18=0
0 otherwise.

Then the Us-statistic corresponding to A+, §) is given by
v =(}) D N T R S,
1 =iy S da Sl iy
where 15 is the symmetric version corresponding to 5.

MNote that E(W3 (T, d&. Ty d; Tpo b, i, 6)) = As(5:.5) and the expectation of the sym-
metric kernel is 24A 4 5). 5) due to the possible combinations required to obtain the symmetric
kemel. Hence, E(U;) = 24A,(8,. ). Under A, L) =0 and under A, L) = 0. Let T's
comresponding to 1's be called X"s and those comesponding to 0°s be called ¥'s. Then the
number of X% is m = 3 i, &, and there are na = n — m ¥'s. Let Ryy(5;) be the rank of
Xyl ¥i) be the ith {jth) ordered statistic in the X{Y¥) sample in the combined arrangement of
mXs and m¥'s (in fact n7s). Hence

(Do = Z(Sm —ﬂ(m e S'ﬂ) > (Sma_ j)'

i=1
It is mLeresng to note that in terms of X%s and ¥'s the above statistic is the same as that
proposed by Kochar (1979) for testing equality of failure rates, the only difference being that
the number of X"s and ¥'s is random.

Theorem 7
As n tends 1o o, under Hy, n'°Us converges in distribution to N(0, a3). where a3 =

(96/35)¢°(1 — ).

The null hypothesis is rejected for large values of n'/2U; /a5 where a2 = (96/35)¢°(1 — ¢).

Tests proposed in this section will help in discriminating between the constant or propor-
tional warning-constant inspection and random signs censoring models and also to determine
whether the corresponding mode of failure becomes more likely with increasing age.

3.4, Testing Hy against Hy
Recall that Hy = gy | o gie) | tis equivalent to @y ) = O], whenever ¢ = ¢;. This
gives Folt) W iz} — Fol 0 ) 2 0, 1 £ 5 with strict inequality for some (¢, ). Define

ARy = [ [ () Fts) — i) )ldFatt e

]

- f[fn!(:} — @22 ()dFa(t). (6)

Q
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Under Hy, Fy(r) Hi) = grg. This implies that Ay(F, F) = 0. Under Hy, Ay(F, Fy) = 0.
Define the kernel
& T ey
d=di=d8 =00 =1

Yol 8, 1,8, Th 0k, i) =4 =1 N <Ti<fi<T,
di=d =0 =00 =1
0 otherwise.

Then the U-statistic corresponding to Ay(Fy. F) is given by

iy 1 . P, -
where Wby is the symmetric version corresponding to ). Note that EQyi(T. &, T 6, T;.
de, o)) = Aa(F, R and the expectation of the symmetric kernel is 24A4 5. §) due to the
possible combinations required to obtain the symmetric kernel. Hence, E{U, ) = 24A4(F, Fy).
Under Ay, F(U4) = 0 and under Ay E(L5) 2 0. A rank representation of Uy is

L

G) = :ZI] (ng_ j) (2 +J = Rip) = ZI (n; - };“3 +j).

i=1

Theorem 8
As n tends to so, under Hy n'Us converges in distribution 1o N(0, o), where o

= (96/35)h(1 — ba) = (96/35)p(1 — ).

We reject the null hypothesis for  large values of n'2Uy/dy. where &=

(96/35)(1 — o) = (96/35)9(1 — )"

4. Asymptotic relative efficiency

To compare alternative tests proposed in this paper for testing Hy against i, fy against £
and My against 4, we compute asymptotic relative efficiency of the tests for a semiparametric
family of distributions proposed in Deshpande (1990). The semiparametric family considered
here is Fii¢) = pFi{1., Folr) = A1) — pFie), where 1 £2<2 0<p <035 and Fi¥) is a proper
distribution function. Note that ¢ = p and

| — Fo
o) =120

which is an increasing function of r. Also,
D =1 —pF )

which is a decreasing function of ¢. My corresponds to @ = 1, and other alternative hypotheses
correspond to 1 < g £ 2. By the limiting theorem of U-statistics, all the U-statistics proposed
here have asymptotic normal distributions under both null and the alternative hy pothesis (see
Serfling, 1980).

The asymptotic relative efficiency of test U with respect to test U. is then defined as
effils, L) = e(U)e(Us) where (L) = p':{l}_."var{ U | Hy) and p(1) is the derdvative of expected
value of L' with respect to @ evaluated ata = 1, and var(L' | H) is the asymptotic variance of
n'? U under Hy
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The tests L'; and U5 are equally efficient but the general test ) is four times more efficient
compared with these tests for the altematives considered. This indicates the superiority of L)
as it is consistent for the alternative M. For this particular family of distributions, the other
alternative tests are equally efficient. It need not be true in general.

5. lMlustrations

We consider two real data sets here, one where the empirical @(¢) is non-decreasing and the
empirical @(1) is non-increasing. In the other example, both of these seem to be fairly con-
stant.

Example |. Consider the data on the times to failure, in millions of operations, and modes
of failure of 37 switches, obtained from a reliability study conducted at AT&T, given in Nair
{1993}, There are two possible modes of failure, denoted by A (¢ = 1) and B (4 = 0). for these
switches.

Figure 1 shows the empirical estimates of the conditional probabilities corresponding to
failure modes A and B, respectively. The empirical @ function comesponding to failure mode
A is clearly increasing and the empirical 4 function corresponding to B is decreasing, indi-
cating that the failure mode A becomes more likely with increase in the age of the switch.
Table 1 gives the values of the test statistics. The value of Z corresponding to £ is 2.70 and
hence we may conclude that the Failure time and the type of failure are dependent. The non-
constancy of the plot in Fig. 1 supports this conclusion. The one-sided test using U for Hy

0y
0.8
0.F

0g

Probability

0.5 |
04 ;
0.3
0.2

.1 -

B s : T ;
1 1.4 1.8 2.2 2.8 3
Time

Fig. f. Time versus empirical dvy (], Oy (0], @5 0] and @ (ac) for the datw given in Mair (1993). Solid
syuares denote @), doted line denotes @(0], pluses denote @5 ) and solid line denotes @ ().
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Table |. Faluwes of the test statistics for Nair's ( 1903 ) dava

[statistcs Expeclation Variance z Coneclusion
Uy =026 i .33 270 Reject Ha
L =004 0 .03 1.45 Accepl Ha
Uy = 0.06 i .06 2329 Reject Hy

against A rejects the null hypothesis of independence of T and 4. It may be concluded that
() = ¢ and also ©5it) = ¢y For all ¢ Further, the value of U5 given in Table 1 is not
statistically significant and hence it may be concluded that @,(¢) is not increasing in 7. The test
for checking whether (1) is decreasing, rejects the null hypothesis and hence we may con-
clude that ©;(1) is a non-increasing function of ¢. A final conclusion after the application of
proposed tests is that () = ¢ for all ¢ and that @it} is a non-increasing function of 1.

Example 2. Consider the data set obtained from a laboratory experiment on male mice
which had received a radiation dose of 300 rads at anage of 5-6weeks givenin Hoel (1972). The
death occurred due to cancer (¢ = 1), or other causes (& = (). In Hoel {1972, the main interest
was in judging the equality of the survival functions of the independent latent lifetimes. We
have brought out another aspect of the same data without going into the question of inde-
pendence. Figure 2 shows the empirical conditional probabilities and in this case, the empirical
conditional probahbility (1) seems to be almost flat and the curve corresponding to 4 (1) is not
so flat. Table 2 gives the values of the test statistics. Based on the application of the proposed
tests, it may be concluded that the lifetime T and the cause of death & are independent for mice
living in conventional environment. allowing the analysis of lifetimes and the causes separately.

Proabaatilily

25 125 235 336 435 335 G835 733

Tirng

Fig. 2. Time versus empirical dy (e], Oy (0], $50r) and @ioc] for the daw given in Hoel (1972). Solid
squares denote @), dotted line denotes (0], pluses denote 95 (] and solid line denotes dy (o).
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Table 2. Values of the test statistics for Hoel's ( 197 2) data

Dstatistics Expectation Variance z Coneclusion
Uy =011 0 0.32 .86 Aceepl Ha
Uz = (.66 ol 0.32 0493 Accept Ha
LS =045 0.3 0.32 .53 Accepl Hy
Ly =004 0 LR 1.50 Aceepl Hy
Uy = 0401 0 0.02 .14 Aceepl Hy

6. Concluding remarks

The (T, &) data arise in several areas, viz., engineering studies, actuarial studies, unemploy-
ment registers as described in Crowder (2001). These tests would be applicable in all such
situations. The tests can also be used to test for the departures from the independence in a
more general case when one random variable is continuous and the other binary. A limitation
of the proposed tests is that they can be applied only in the situations where there is no
additional censoring imposed on to the competing risks. Currently, we are working towards
the extension of the tests to incorporate censoring.

For modelling the competing risks data in terms of (T, ), it is of prime importance to check
whether T and & are independent. We have proposed tests based on U-statistics to check
whether T and & are independent against four different kinds of alternative hypotheses rep-
resenting varous interesting departures from independence. These tests are simple and seem to
be useful to distinguish between the possible types of dependence between the causes of failure.
It is clear that the tests perform satisfactorily in distinguishing between the hypotheses. All
tests are typically consistent against larger alternatives than the one for which they are pro-
posed. The tests are “almost” distribution free in the sense that their null distribution depends
only on the parameter ¢¢ = prd = 1) which can be estimated consistently. If the hypothesis of
independence is accepted then one can simplif'y the model and study the failure time and cause
of failure, separately. If the hypothesis is mjected then a suitable model under specific
dependence between T and & in terms of the incidence functions is needed.

We suggest to use the test based on U for the general dependence first. If the null hypothesis
of independence of T and & is rejected. then only other tests should be used. The choice of the
test for further inference should be based on the plots of the empirical @ (¢) function against ¢
and the empirical @;(1) function against . Because of hierarchy in the hypotheses H> and #5,
we recommend to use the one-sided test based on U to test Ay against A, first and if f, is
rejected then carry out the test for testing My against A based on U5, Similarly, the tests for
checking the monotonicity of ©(1) could be used.
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