Optimal Designs for Estimation of Ratio of Variance
Components in Dialle] Crosses

Himadri Ghosh
LASR.L, New Delhi, India
Ashish Das
Indian Statisticel Mstitute, New Delhi, India

Chated 10, Midha
The Dniversity of Akron, Akron, UVSA

Ahstract

The results on optimal designs for diallel crosses are prescotly avalable for
the standard fixed effects linear model, In some cases, however, parental
lines may Be randomly selected from a population of lines resulting in a
random effects model, Ghosh and Das {2003) discussed A-optimal designs
in thig contexl for estimation of heritability. In this paper we first propose
an undast eskimeator of Lhe ratio of the variance components which has
# one-to-one Telation with herikalalicy. We Lhen oldain an expeession of
the variance of this unbiased estimator of tle ratio of varance componenls.
Through minimization of the variance we obtain optimal designs and show
cortain connccrions with the optimization problem under the fixed efects
mnded.

AME (2000} subject classification. GZK10, 62K03
Kegwords and phrases, A-optimnality, variance components, asymptotically
neliiased estimator, heritabilicy.

1 Introduction

Plant, breeders frequently need overall information on average perfor-
mance of individual inbred lines in crosses koown as general combinoog abil-
ity. For this purpose diallel crossing techniques are emnployed. Grifiing (1956)
defines a model (or diallel crosses in terms of genotypic values where the
Lreeding value of Lthe cross {i, ] iz expressed as the sum of general combin-
ing abilities for the two lines. In certain contexts, specific combining ability
effects representing the interaction between lines ¢ and § in a cross (4, §) are
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also included in the model, see Kempthorne (1984) and Mayo (1980} for
detaila.

Accordingly the analysis of the observations arising out of n crosses in-
vilving p lines is carried out by postulating a model

Vigi=ptgtgiteg i<y (1.1}

where ¥ is the observation arising out of the I-th replication of the cross
{i,4). g; i3 thei-th line effect, with £{g;) = 0, Var{y) = ag =20, Conlg. 0] =

0, g is the general mean and e; 5 is the random error component, uncorrelated
with g;, with expectation zero and variance o2 >0, 1 <¢ < j < p. Here
y o2 and cr;‘; are unknown parameters. Also, the specific combining ability
effects are assumed to be nepligible and have boen absorbed in the error
component. In the model, (1.1}, g is a fixed cffect while g;. g; {2 < j) and
¢;;1 are random effects.

Dur primary interest is in heritabifity, h%, which is defined as h? =
453 / {Zcr_g 4-72). Such a measure cxpresses the extent to which indiviaual s
phenotypes are determined by geootypes. In order to pet a pood estima-

tor of h% we propase npl.ima,l designs lor unbiased estimation af o2/52 siuce
2

h? = -2}:%35 Eﬁﬁﬁﬁ-l Let T be an unbiased estimator of o2 ,.’a? Then

an estimator of 42 is 47/(27 + 1}. Hence an unbiased estimator of 2a“r:r

will lead to & asymplotically unbiased estimator of B2,

The results mn optimal designs for diallel crosses are presently available
for the standard fixed effects linear model. In some cases, however, parental
lineg may be randomly selected from a population of lines resulting in a
candom effects model. To this context, under a randomn effects model Ghosh
and Das {2003} obtained an estimator of the ratio of the variance compo-
nents. In order to addross the issue of optimal designs they considered the
A-optimality eriteria for the cstimation of heritability in the scose that the
designa minimixe the sum of the variances of Lhe estimators of the wariance
components.

In this paper we first propose an unbiased cstimeator T of crﬁ fos. We
then obtain an expression of the wriance of T, The large sample variance
of 47 /{21 4 1) is proportional to the variance of T', the proportionality con-
stant being a function of rr;f /o2, Through minimization of the variance of T°
we obtain optimal designg and show certain connections with the optimiza-
tion problem under the fixed effects model.
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2 Unbiased Estimation of Ratio of Variance Components and
their Variances

Jonsider a diallel cross experiment carried oul using a design f with p
lines and & blocks each having £ crosses. Our model is

Y = pl, + D43+ Dig+e (2.1}

where ¥ is the vector of bk (= n) observations, g is the general mean, g is the
p # 1 vector of general combining ability effects with IE(g) = 0 and {g) =
o1, Bis the fixed effect duc to blocks and ¢ is the error vecior with JE{e} =0
and ID(e) = ¢2I. Also, Dy = | d’;[:,]] is the p x 0 line versus observation
inctdence matrix with d'w == 1 if v-th observation is out of a cross involving
the #-th line and d,!;l,_.} = {l otherwise. Similarly, ), = I[d.ﬁ.}] 15 the b % 1 block
versus observation incidence mattix wilh fif?} = 1 if the »-th observation
arise from the u-th hlock and dﬁ = {} otherwise. Here 1; reprosents a £ x 1
column vector of all ones and f; denctes an identity matrix of order £ In
situations where the order is evident from the context, we write respectively
1 and 7 instead of 1; and I, Thus, FHY) = ul, + DA, H)[ﬂr;g‘dg] =
o2\ Dy + o2l We assume that ¥ ~ Npfpl, + Df ,Ggﬂiﬂj_ + ally),
where N, (6, £} denotes n-variate normal distribution with mean vector 8 and
dispersion matrix E. Let & = (s9,89,..., 8,) where s is the replication of the
i-th line, Also, for ¢ # 7, let g;; be the number of times eross (4, j) appears
in the design, and g; = 5;. Then it 15 easy to see that Ih D] = G = {gi;)
and 1 = 5 Let N = D¥ = (ny;) be the incidence matrix with ng;
indicating the number of times the i-th hne oceurs in the f-th block. For
such a design o, Iet G == G — B YNN'. (0, 15 also called the C-matrix of the
design d.

Following Das and Ghosh (2003) and Searle et. al. (1992}, expected
value of sumn of squares due to lines (S5L} and the expected value of swm
of squares due to error (55F) have

§sL ) _ . (oF
jE[ SSE] = (GE) (2.2)
where

Ti— tr{cd} P— 1 )
0 n—b—np4+1
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and for a square matrix A, tr( A} stands for the trace. Also,

SSL
}D(SSE)
_ ‘Z{cr; tr(C3) + 202 rzf ir(Cyl + ol {p - 1)} fl
- {1 Hn—b—p+1)al
(2.4)
Then,
& S§L 1y h:
¥y =L"'D I =gy O ”) 2.4
(::rz) (SSE){ ) ( tn B (2:4)
where

b= {(n—b—p+ Do tr(C2) + 202 G’ tr(Ca) + oty + o (p— 1)F)
I —b—p+ 1) 02(Ca)}.
b =t = —o? (p— Df{(n —b—p+ 1) tr(Ca)},
and fa9 = ot f{n —b—p+ 1).

THEOREM 2.1. For a design d, an unbiosed estimaotor of o2 fo: is

_(n-b-p—1)(88L/SSE)—p+1
tr{Cy)

ProoF. Note that SSE /o2 ~ x2_ i, anud 18 distributed independently
of S5L. Furthermore, E{1/(S5F/c2)) = 1/(n —b—p—1). Thus,
E{88I./SSE) = E(SSL)E(1/85E) = o, 2E{SSLYE(1/(SSE/r?))
= o B(SSL)/(r —b—p—1).

Now using Equation (2.2) we get
B{SSLISSE) = a7 {ogtt{Cy) + aalp— 1))/in—b—p - 1)
= (@ ol}x{Cq) + (p ~ L}/ (n — b - p—1)
and the theorem is established. O

We have considered the estimator T because of it being simple and un-
biased. However, other estimators with better properties may exist. This
cstimation problem is open for further research.
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TREOREM 2.2. Let d be a design with p bnes, b blocks cach of size k.
Then, the variance of T' is

V(T.d,a;,07)

_ e i C) 2 g 1 oyl L4 G
= a{[n b-p-llo, a‘.r“{f?'d]—i_zm“gﬁ tr(i_’?’d}+ﬁ{p e EITA) cay oo (2.5)

where e = 2/ {{n —b—p—3ed} andt=n-b-2

PROOF. In view of Theorem 2.1, Var(T) = 1“—;’% Var(S5L/95E).
ol
Now,

Var(S§L/SSE} = E(8SL{SSEY — E*(§SL{SSE). (2.6)

The second term in {2.6) can be obtained from Theorem 2.1 itself and
is given by BY(SSL/SSE) = {({o}/editr(Cq) + (p — N}/ (n —b—-p ~
1)}, For the first term, since S5L and SSE are distributed independently,
E(SSL/SSEY = E(85L%) E(1/858E%). Now from Equation (2.2) and
(2.3),

E{SSLY) = Var{SSL) + EX(55L)
= B{J; tr(CF) + Er:rgcr; tr(Cy) + o (p - 1)}
+ {-::F; tr{Cy) +crf In— 1}}2.

Also, E(1/5SE?) = E(1/(SSE/a2)?)/el. Now, since SSE/of ~x2 , 1
it is casy to see that E(1/(8SE/fe2) 1 =1/{(n—b—p—1}{n—Hh—p—-3}L
Substituting the above expressions in (2.6), we get the desired resuli. O

The results for estimation of as Jo? and the corresponding variance cx-
pression under unblocked diallel crosa cxperiments can be obtained as a
special cage of the above results by taking the mumber of blocks as one. For
example. the nnbiased estimator of crg fo2 under an unblocked model, using
a design dy with p lines and n erosses, reduces Lo {[(n —p— 2)(SSL/55E) —
p+ 1}ir(Chg, ) where Gug, =G — ;‘—133'1 is the C-matrix of dy.

3 Optimal Designs

A diallel cross experiment is said to be complete if each of the (5} crosses
appear equally often in the experiment, otherwise it is said to be a par-
tial diallel cross cxperiment. Let D{p b, k) be the class of diallel cross
designs with p lines arranged in & blocks of & erosses each and Dip,n)
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the class of uoblocked designs for diallel crossea involving p lines and n
crosses. Also, for 2n/p an integer, Ty{p,n) denotes the subclass of designs
in Dip,n) with & = 2nfp i = 1, .. .,p. In fact, anmong designs in D(p,n).
only desipns in the subclass Dy(p,n} have maximal tr(€og). Finally, let
Dol b &) be the subclass of designs in Dip. b, &) for which tr{Cy) is maxi-
L,

A design d s sald to be optimal if, among all designs in D, o mini-
mizes the variance of I, From 2.5 it then follows that an optimal de-
sign in D(p, b, k) minimizes tr(C%)/tr’(Cy) and 1/tr(Cy). In other words,
from 2.5 we obsoyve that the minimization problemy addressed in Ghesh
and Das (2003) s analogos to the mivimiation of vanance of T, Thus,
A-optimal designs obtained in Ghosh and Das (2008} are also optimal lor
the minimization of the variance of ¥'. Analogous results hold in the un-
Llacked situation since i order to mmimimdze the vartance of T, within the
class of designs D(p,n), i is suflicient to minimize tr(CF,) /10 (Ce) avd
Fie{ G-

In view of the above, A-optimal designs in Ghosh and Das {2003) are
optimal for the estimation of cr;* fe?. Thus we have the following results on
optimal designs for cstimation of ﬂ;‘i Jat,

(i} Complele diallel eross designs in D{p. n) are optimal.

(ii) The cxistence of a nested balanced incomplete block (NBIB) design
f with parameters » = p. by = b0y = bk k) = 2k, ky = 2 yields an optimal
incomplete block deaign o for diallel crosses. The construction methods and
elaborate tables of NBIB designs arc available in a review paper by Morgan
ct. al. {200t). The tables in their paper provide solutions to our optimal
dialls] cross designs within the parswmetric ranpe 28 < p < 16, 3k < 15p.
The casc 2k = p is dealt in Gupta and Kagevama (1934), The NBIB designs
hawe been extended to nested balanced block designs and a series of degigns,
optimal under our setup. is given in Das et al. (1998}

(i1) Das et al. {1998} gave two general methods of construction of block
designs for partial diallel crogses. Their designs belong Lo Dy(p, b, k) with
2k /p an integer. The designs are optimal in Dy(p, b, £).

{iv} For unblocked designs, partial diallel cross designg in which every
line appears 2n/p times and each cross appears either A = 2n/{p{p — 1} }]
of A+ 1 times are optimal. A common way to construct such a design is
to form crosses between the two treatments in each block of a conventional
hinary incomplete block design with g treatments each oceurring 2n/p times,
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r distinct blocks of size 2 cach and treatment coneurrences A and A4+1. This
tncludes the M-desipns of Singh aud Hinkelmana (1995), the first series of
designs of Mukerjee {1997), and some designs listed in Das et al. [1998).

(v} As a result of the very nature of the derived objective function under
the random efferts maodel that ig being winimized. every previously known
M S-optimal design urnder the fixed effects model (as et al,, [998) would
also be optimal under our set-up.

Optimal partial diallel crosses listed above necessarily have nrthogonal
Blocks. A diallel cross design is sald 1o be arthogonally blocked if each line
ocours in every block » b times where ¢ is the constant replication namber
of the lincs in the design; see Gupta et. al.{1995). Tn general, lor non-
orthogonal block designs. Mukerjee (1997) has provided some methods for
constructing efficient partial diallel crosses. Lot p =nyng where gy = 2,00 =
3. Partition the set {1,2,....p} mto ny mrteally exclusive and exhaustive
subsets §51. 54, ..., 8, } vach of cardinality ng. Lot

3r =) 1<d < j<pand i,j €8, for some uj. (3.1)

In the construction of the block design ™ with p {= wnng) lines, the
lines are denoted by ﬂ}-l,_ l<u<n,0<i<n—1 In 31 iake 5, =
{af,af.... 0%, _;}. Then from Equation (3.1) df* consists of nyma(ny —1}/2
crosses where in a cross the two lines are from the same S,. For ng (> 5)
odd, Mukerjee's general approach for grouping the crosses in df" into blocks
is pow piven.

Lei. M he the incidence matrix of a general block design J; involving
ny trestments and ng blocks such that each block has size ny and each
treatment is replicated ry times, For 1 < w <y, 0 < < 5y ~ 1, in the
{-th ocenrence of treatment u in 4, replace treatment u by the {rny -- 1)/2
crosses {{a} . ap, b1 <4< (ny--1)/2), where § + ! and ny - j +1 are
reduced mod ny. The resulting block design, d, for dinllel crosses belongs
to Dinqng, vo,rey(nis — 11/2) and represents a partitioning of the crosses in
" intg blocks.

ExaMrLE. Lot ny = 3n; = 5. Then p = 15,0 =5, % = 6 and the design
with rows as blocks is:

r 1 2o 2 2 1.3 3
1(“}?"1]1.)1 {“351 ﬂf{]‘ (ﬂ] : ”4}: {H'21 n‘ﬂ-:l:l {G"I a 0.4]1 I‘I-2 I"I.?JJ

;{ﬂé: a'l:]']}'l {&%1 'E'tll]: (ﬂ%sﬂg}n {a'gs a‘i}':« '[ﬂ-%a ﬂg:l.- [G§~ ai }]
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[(es.al). (a}, a5}, (a5, af}, (i, ug), (a3, a7), (ai )]
|(a},a3), (a5, 07), (o, 03}, (af, o} ). (2], a}). (aj. a7)]

p ; ¥ 2 A e 1
[[a.h ﬂé}a {fﬂ ) ﬂ?’zj.- {ﬂ'ﬁrﬂ:ﬂ: ':Uf: 4 ), {3} “:“1 (a1, )]

Let, for a biock design o, Ay < Ap £ - = Agpopy be the non-zero eigen-
values ol the information matrix €y, Then, after some algebra, we find
that for ¢ = 1,... .19 - P = T, B — Th
hye; = 19 - 2 and for i = p— g + 1,..,,p - 1 Agesg = 2{ma — 1] with
d** & Dip,nz, n—l-—l""n;q }.

We now give lower bounds to officiency of non-erthogonal block designs
d** for estimating ratio of vartance componems. For p - nyns b= ng. b =
o) [ra—1}/2, we first obtain the lower bounds to eliciency with respect (o the
competing classes Dgip, b, k). Note that for a block design d € Dy(p. b k)
for diallel crnsses, tr{Cy) = 2blk ~ 1), Mukerjee {1997) has shown that
Migt = nz - 2 where Ay 18 the minimum nonzero eigenvalue of C, with
dy € Dinyng, rynolne — 11/2). Thus, it follows that, Ay < Ag,| < 12 — 2
where d € Dinng, na,m) (e — 13/2) and dy 1s the design ignoring the block
classification of the desipn &, Alsu, we know tha,t fur d & Dalp, b k). Ll‘{(:;‘é}l
is minimum 'whr,n Ag = 2k — 1) ip— 1), ¢ = 1,....p — L. However,
26k — 1)/(p =y — 2+ {naln; — 1) — 2},-"[;; — 1). Thus, in our
design setup, fur block designs d € Dylp.b k), with ny > 1, it follows
that tr(C2) = DP A% = (ny — 2% + {28k — 1) ~ (e - 2}¥/(p - 2) =
Wi, sav. Thus, for a desizn d E Dolp. b k) with ﬂ,l,n?,du,ﬂf fixed, from
2.5, a lower bound o V{T;d, U ﬂz}l is obtained by substituting Hr" and
20k — 1) for w(C3) and (Cy), qupFFtl\Fl}' We denote this lower bound

by Vo (T ny _m.aglag}

Thus, from 2.5, for given ny, ns. a and o2, the A- eﬂi::iﬂn:} of the design
d** € Dyip, b, &) i3 at least as large as eAG'[-n.l iz, cr* a; } where

Vi (Timg, g r;rz o2)
2 = srdlens e bl e 9
y:ge} - ].?(T o gg ?] I{dﬂ]

gy é‘

Eﬁh}(ﬂl: T,

The denominator is nhtained by substituting the values of Ag--;, in tr{ C;‘f..}.
Alsn, tr{ (T ) = 2Bk ~ 1).

Now, for any d ¢ Dip, b, k), where p, b, & are arbitrary but fixed, it is
casy to see that tr(C3)/tr*{Ca) = 1/{p — 1) = W, say. Also. we know that
tr{C3) is bounded above by &7 16{2k(k — 1 — 2z) + pa(x + 1)}, where = is
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the larpest inteper not cxcecding 2k/p (see Das et. al, 1998). Thus, for
a design d  D(p, b k) with p, b, k, ag,ng fixed, from 2.5, a lower bound to

. 12
VIT; {Lng,nﬁ_) is obtained by substituting W for :—:—%‘% and substituting
A i +

E710{2k(k — 1 —2z) + po{z + 1)} for tr{Cy). We denote this lower bound by
VT, p b k,02,02).

P

Thus, from 2.5, for given p, 0k, dg and 72, the A-efficiency of a design
d# € Dlp, b, k) is at least as large as ea{p, b. Fﬂ,crg,crg} where

VHT'ip,b,k.ag,07)

calp, b k,op.0%) = (3.3)

A carlier, the denominator is obtained by substituting the actual values of
tr(Cy} and te{C3,) for the design 4%,

Under classes Dyip, b, k) and D(p, b, k), using 3.2 and 1.3, we obtained
the lower bounds to cfficicncy of & for 2 < ny < 16 and 5 < ne < 15
with ny odd. Here, each of ur; and o2 has been taken within the range of
(0.1, 3.0), with increments of 0.1, It s observed that efliciencies are grealer
than 0.90 in both cases when 2 < ny < 18, 5 < ne £ 15, Furthermore,
the cfficiencics are greater than 0.95 for 43.9% of the parametric sets with
2< ny €16, 5 < mg < 15 and both o2, o2 in the range of (0.1,3.0). For the
parametric range 2 < ny < 15 and ne = 5, (1) efhiciencies are more than 0.90
when 2 < iy < 4, (ii) 94.2% of the designs with 5 < ny £ 15 have efficlencies
greater than 0.9, {iii) the efficiencics are atleast 0.893. We observe that the
cfficicncics arc gencrally robust against the values of variance components,
and depends only on design parameters.

Acknowledgement. The authors thank the referees for usefnl commenis
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