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SUMMARY. (X,Y) follows an unknown bivariate distribution with 0 X1 and tho rogression
of ¥ on X is continuous and u sequence of observations on (X,Y) are made.  An eslimate of the nuknown
rogression function basod on these obsorvationa and motivated hy the method of Fractile Graphivul Analysin
has heon suggestodd. Its large samplo propertics, viz., convergence in probability and almost sure uniform

s to the truo regreesion function have boen inveatiguted. Large samplo tosts for o specifiedd
regression function have also heen proposed for tho case when the conditional varianco function of Y on
X is known and for the case whon it is unknown.

1. INTRODUCTION

Let us suppose that X and Y are real valued variables having a certain joint
distribution function such that X takes values in the interval [0, 1] and all conditionsl
absolute moments of order up to p > 3 exist when X is fixed at any point z. If we can
make & sequence of independent observations on (X, Y) the question naturally arises
a8 to how we can construct from these observations an-estimate of the unknown
regression funotion of ¥ on X, possessing certain properties like convergence in
probebility, almost sure uniform convergence etc., to the true regression function.
Another important problem is that of constructing Bt least a large sample test for a
specified regression function. In Section 2 we shall make use of the technique of
Fractile Graphical Analysis suggested by Mahalanobis (1958) to estimate the regression
and analyse its large sample properties and in Section 3, construct a large sample
test for the regression. The crucial part of our analysis consists of the utilization of
certain results concerning the error of approximation by the central limit theorem
and an upper bound of the tail probabilities in the distribution of sums of independent
and bounded random variables. ~These results are given in the Appendix for reference.

2. ESTIMATION OF THE REGRESSION FUNCTION

Lot (25, 41), (%2 ¥2)s ...} (Ziw» Yas) be independent observations on (X, Y),
i) the r-th order statistic in the set of observed values of X and yy, = y; if 2y, = ;.
Throughout this secfion we shall assume that the distribution funotion of X is continuons
and strictly inereasing so that the probability of any two observations on X being
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equal is zero. Then the statistios z,,, are defined unambiguously for almost all samples.

In order to simplify notation we write forr = 1,2, ..., ¥ands =1, 2, ...,n,

Ti=ine ) = Ty Yo=1m+0) = Yros
E[Y|X =z]=0y(z), E[Y*|X =2z]=E(2)
E[|Y—p(2)|™| X = a] = fulz), m = 2,3, ..., p,
#(zr) = v EZr) = Evor B (2rs) = Prar
o=Lyum, o= E viim,

# =§l Pnln ’} = P:,f:/”'
B =E Banin, &= Ealn.

Now we define two functions f,; (x) and ¢ () a8 follows :
Julz) =13, if 0%,

=g, if 2 <T KTy =2, ... k=1
=4 if zmu<zgl
@@= f  0<2< o

=9 if z2in <2 % r=2...k=1
=g f z—. <zl

(2.1

(2.2)

(2.3)

Lemma 1: If the random variable X has a sirictly increasing continuous

disiribution function F(z), then

A

1 o [ -t 1= )]

for every fixed positive inleger m.
Proof : We have

Pea<d="% (*)n—Fap Fer=—.

Applying Theorem (A 2) to the sam 8, of N independent

variables each with probsbility for success equal to p, we have

oxp ,p"loa( +Jl+— )]ir >4

P8y > Np+8)] <

o [ 57 (gt 4 2] itp <
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which, if )'i and )% are less than unity, becomes

oxp [Nt I—I‘tl)]ﬂp >q

P8y > N(p+0)] < (2.6)

Lexp [—Nm( 1—4»‘;)]ifp<q-
We have
g ) <zm<F—1(l:_+2»lk),r=l,2,...k—l]

zl"EP["KF-I(%_;k”_?P "'">Fl(k+2lk)]

fal

which, after using (2.4) and an application of (2.5) for § = % and two binomial sums

1

with probability for successes I::_ lé and 1— LL‘_% and number of summands

equal to nk, becomes greater than 4m. exp [ _lﬁ J +2k. exp [ %l: ( 1— 8}”‘)] for

every fixed integer m.
Lemma 2: Under the condilions of Lemma | if ¢(z), the regression function
of Y on X is conlinuous then for any ¢ > 0

P 0cakl loat (@)=t >€j<c(e’ ’)[ m“p[ 63 | Thesp [_M'(l_ i;m )]

Jor every fized inleger m, and whese cle, y) is a constant which depends on € and ¢ only.
Proof : Let &fa,b] = max |e(z;)—plz,)]

agzy, 2, <o
b= mas 0.2 (L[ () 74 ) o[ (=) )
It F-l(;— )g:u,,<F'( +L)r_12 k=1
then du ()= wup [en(2)— ()] < b - (28)

Thus

Pldy (v)> €] < [ Pldye> €| P ("T*) & B € F (’*.;‘J),r= L2 k-1]

+1-P [ F d) € T < P (’—"'*-) ],r= L2k .. (27)

Because of (2.8) the firat term on the right side of (2.7) becomes less than
P(8; >¢). Since F is continuous and striotly inoreasing F-! is oontinuous. Since
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#(z) is uniformly continuous we have 8§, < ¢ for k > k¢, ). Thus the first term

vanishes for k > ks, §). The second term becomes less than 4m exp [ + 2k

ok
oxp [ :k_" ( 1— 8-:")] because of Lemma 1. Combining the two we get the required
inequality.

Hereafter, for simplicity, we shall assume that £, (2) > ¢, > 0 and g, (z) < ¢,
forall m =2,..., p and all 2. However from the proofs we can see that all our
rosults hold good under more general conditions.

Lemma 3: If Byz) > ¢y > 0 and B,(z) < cgforallm = 1,2, ..., p and all
z, then for any € > 0

k

P [oup | fuz—pui®)| > 6] < C.
0z 1 7

where C is a constant depending only on €, p, ¢, and ¢,.
Proof : We have

Ple)="P [sup |fu @) —pue (2)} > ]2y, ..., T30)
0z

=P fup |Gl > ez

| I

| Yr—or eVn] 2.8
QZ_: [\/B.ln>\/c, .« (28)

Making use of (A7) and noting that T, < ‘/ we hake

i;/n > v4{p—2)log T,, for n > nfe).

Hence by Theorem Al we obtain

[
Plo) < 220 ( i‘—/!') - . (29)
Ve gy (fﬁ‘ )’ 22
Ve »c
where ¢, = 4;—;;; and 6, is a positive constant which depends only on p end
1
= H _l_ —i3f2 . e —x1j2 .
0)(2)—-_[”\/54 dt. Since ®(—z) < \/211:: e , >0, (2.9) gives, for n>n(e).
_.n
Doy’ g cok
P(€)<€1// e +9 o 7:"“

A .
= (6.2 &, €3) [ W e % + =
which completes the. proof.
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Now we shall state and prove the main result of this seotion.

Theorem 1: If the p-th conditional absolute moment of Y exists when X is
fized at any point z, p > 3, X has a striclly increasing continuous distribution function
in [0, 1), the regression ¢(z) of Y on X s conlinuous and Bo(x) > ¢, > 0, B,,(x) < cq for
al m=1,2, .., p and for all 2, then for n > (4+8) k log k, § > 0,
dy = sup | f,4(z) —@(z) | converges to zero in probability as k— co and for n > (84-8)

- I
k loy k, & > 0, d,, converges almost surelij to zero as k— co.

Proof : The first part of the theorem is an immediate consequence of Lemmas

2 and 3 and the second part follows from the same lemmas and Borel-Cantelli
lemma.

3. LARGE SAMPLE TEST OF A SPECIFIED REGRESSION FUNOTION
In this section we shall consider the problem of testing the null hypothesis H,
that the regression function ¢(z) is equal to a specified function x(z).
Consider the statistic

Tot sul 'yr —Hy |

Ttk VBl

_ X uz,)
where §, and B,, are as defined in (2.1) and g, ='=! P If we hed lmown the

probability distribution of 7,, under the null hypothesis, then for any given level of
significance 0 < @ < 1 we could apply the following test:

Rejeot H, if and only if 7., > 7,(«)
where Pty > Tule) | H) = .
TFheorem 2 enables us to apply such a test at least in the large sample.

Theorem 2: If Ayz) > ¢; > 0 and fu(z) < ¢ < oo for all z and
m=1,2,...,p, p >3 then we have for n > (klog k)if?—2

x_u:l:o Pl7,y < A¢|Ho] = oxp [— 71'1" H]

where

Ay = +/2(0+ log k—} log log &).
Proof: Under H,, we have
P(A) = P, < Apl2ys ooy 4]

K 15v-d, 3
Y ]
,U. P [«W < Al s, z.u] = | wow—o-ro+en
‘where because of (A8) and the fact that A, < \/4(p—2) log T, for k > ky(6) we get
(LA} _ 1
lerk|<%[ 7# e Al"‘l' &}2_]
n
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where ¢ is a constant depending on p, ¢y, ¢;. Thus

log P(A,) = k log [®O(An)—®(—Ag)]+ %y,
whero 2z I3 e
17 <X fog [14 g0 G _an ]I

Since for sufficiently large &

e
=Ry =
and log (142) = z+wd,|v] <1 for |z <},
14-A} - 1
121 < ok [W sy - ,,___3-] BTRY

Substituting for A, in (3.1) we have

A
1zl <a T

Vlogk etp —— ] . (32)
n 2_

Since 2 > (k log k)¥»-1 it is easy to see from (3.2) that | Z,|— 0 as k— co. This

completes the proof.

The statistic 7, defined above can be used only when f,(x) is known. The
natural way of modifying this in the case of unknown variance function is to replace
By, by y2—3" where y2 and §, are as in (2.1). Since this leads to certain complications
in evaluating the limiting distribution we replace it by

EH =11‘ 5 [Yre—(z,)]* (Where z,, is as in (2.1)) and write
=]

s = renab V. |!71+l"r|
L2, y
To show that this repl t does not change 7, effectively in large samples we prove

the following lemma.
Lerama 4 : If X has a conli s distribution function and Y is a bounded
random variable, fy(x)>¢,>0 and if n3>(log k)3+%, 6> 0 then under the null hypolhesis Hy

. El
lim log &. 5 _1|=o,
st |WiE

with probability one.
Proof: We have for any ¢ > 0,
[supJ_—l logln 5] < EP[ ?' ll|>ltT:76]
<Er[ia-p>2]
<}_51P [ -k 21:;1:]"',%1)[ .f'-'-l PreYn— Vs >-4—’%"7c
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Then from Theorem A2 we get

X &ty —bn

ExP [ v-b(> 2log k |21 +e0s Za ] < 2k oxp [ (log Ic)']

5 - n .2 NECy - b,n
and ZP[| 5 nta—st| >0 ] < Beomp [~

where b; and b, are constants depending on ¢,, ¢ and the upper bound of |¥|. Thus
whenever = > (log k)?t® the series

.
Ep[m ~/,;—;~1‘>10-§—,,-]

converges. An application of Borel-Cantelli lomma completes the proof of the lemma.

Remark : It is possible to show that if » > k (log k)2+%, 8 > 0 then log k

53
sup :\/ ;—; —1 ‘ converges to zero in probability even when ¥ is not & bounded random

variable.

The following theorem enables us to use the statistio £, for testing a specified
regression function when the conditional variance funotion is not known.

Theorem 8: If X 42 a rand table with a conti distribution in
[0,1), Y s a bounded random variable and Byz) > ¢, > O then for n > (k log k)¥P-3
for some p > 3 we have

. B R
&P[‘,&.( A | Hy = exp[ v ¢ ]

where Ap = 4/2A0+log k—§ log log k).
Proof; ‘It is easily seen that
Plrg < A1+ V) Ho) € Pitoy < M| Hol € Plroy < A0 +U)[Hy) ... (3.3)

where 7, is aa in Theorem 2, U,, = gup (./fl_l ) and V,; = inf ( ‘_?_E_} ) .
4 By ’ Be
Further, Pfry < A(1+V,,)] = P [\Tﬁt —2log ’°2+ oglogk 7 @ 4w < 0]

where Z,, converges to unity in probability and v, converges to zero inprobability

because of Lemma 4. This fact together with an application of Theorem 2 leads
to the result

kl—laLEn Plry < A1+ V,5)] = exp [—_‘/1"_ i ] .. (3.4)
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A similar procedure leads to the result

Jim Prus < A4(1:+0Up] = oxp (- \/‘" ). o (35)

(3.3), (3.4) ad (3.3) complete the proof.

Finally we shull state a theorem concerning the order of change in the
lovel of significance if wo apply the test ‘reject H, if and only if 7,, > A, where

[tb(/\,)—d)(—/\,)]; = 1—a instead of the test ‘reject H, if and only if 7,, < 7,{@) with
Plry € Tofa) | Hy] = 1—a.

Theorem 4: Let A, satisfy O((A)—P(—A)f=1—2anda < 1— [I_N/z”,v .
Then under the condilions of Theorem 2 we have

) (log :—)—’_

Py < A|Hol—(1-a) (<. —n

where ¢ is a conslant depending on p, ¢, and c,.

4. REMARKS

In this paper we have not given any consideration to the power of the
7, and 1 tests proposed in Section 3. It would be very interesting if lower bounds
for the power of these tests could be given in terms of the supremum distance between
the regression functions under the null hypothesis and the alternative hypothesis.
Though this has not been done, we cen at least easily verify that if the regression
functions under null hypothesis and the alternative hypothesis are both continuous,
the 7, and ¢, tests are consistent, i.e., for any given level of significance 0 < a < 1,
the probability of rejecting H, tends to unity as k—» co.

For the validity of the above theorems we have imposed certain conditions
on the regression function ¢ and the variance function f; separately. In some cases
(e.g. Binomial on Possion distribution) 4, is & funotion of ¢. This however does not
affoct our analysis in any way 8o long aa the conditions on ¢ and f, remain valid
separately.

For simplicity in proof we assumed that Ay(z) and 8, (x) are bounded away
from zero and bounded above respectively. However, it is easy to show that thoorems
1, 2 and 4 are valid under the weaker assumption that E[f,(z)]-**-®? and B
E[By{z)]*>/7 are finite.

*4 (z) is tho usual norme!l . distribution funotion.
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Appendix

In this seotion we shall state and sketch the proof of some of the results which
were utilised in our paper.

Let X,, X, X, ... be a seq of independent random variables with
EX, = 0and EX? = o2 and f,, the v-th absolute moment of X,. We shall suppose
that the moments of order k > 8 exist. We write

B,, = %(ﬁn‘l’ v +Ben)s Pn=

B,n v
By T = i (A1)
Then 1< pn <o, v=2,3,...,k . (A2)
Let f,(t) and F () be the characteristic function and distribution function
of %‘ We now state two lemmas one of which is due to Cramér (1937)
nh,

and the other due to Esseen and Berry.

Lemma Al : (Cramér). For |t| < T}3 we have

| .
L P
v=1 in

YT

where P (i) =,‘3 Cpun (i2)+,
]
H-il

=c Ph and ¢, and c, are constanis depending only on k, ¢, being positive.
Lemma A2 : (Berry-Esseen). For |t| < T,

~fn(‘)—e_"I’[< —T% T e~

i o=~ [ 14 F 2],

(A3)

Hereafter we shall denote by 0, any positive constant which depends only on k. Then
by using (A1), (A2) and Lemma Al we have

an
<% } Lol Ittt < 6T £l e

l' 5 Pulil

-J!

=8 3 I‘I
<Oy 'z:.” wm- mv+ﬂ<ok 5" % . e (Ad)

w1 o1 T},
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From (A3) and (A4) it is seen that the inequality of Lemma A2 can be rewritten as

Sl R e

|t|’ e~ yg,. T T (AB)

[f.(l) —ga()

Loemma A3: +o h f-(‘)—'ﬂu(‘)

d¢<

—Th

Case 1: Let T, < 1, then T,, < T}f*. Hence applying Lemma Al we get

e U U P

—Ten hl

Cage 2: Let Ti, > 1. From (A2) it is easy to see that 1 < T, € Ty, :

Thus o fn(‘) =90 | g — 2 }"+ .fh ‘f.(‘) 98 | gy
—Ttn Tll! TIIS
= 21,41, say.

In the region of integration of I, Lemma A2 is applicable and for I, Lemma Al is
applicable. Thus from (A5) we have

T 273
i =004, ._ Dy B et s
—Th t

+m
Let Qz) > 0.0 < q) < 1, [ Qeddz = 1.
+o s ¢
qt) = _.L e Q(z)dz, q(t) < WW_T,

jf: (8] #-79(0dt < co. .. (A8)

Lommea A4 : If q(t) satisfles conditions (AB) then for [z| > 1

6 1

B St — a..(l) L
T+[=[F TE®

P(Th) = I

—Tn

glzt)dt <
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Proof: Case 1: Let Ty, < I, then T4, < T.}3. Applying Lemma Al.

Ry e S

O LT g e a0t < !
<7pepEd | (¥ 1=l T

Case 2: Let T,, > 1. Then as before 1 < T;, < Tsp-

Tsn
PTa =2 | + I o= 90| it = 2,41, say.
rip Ty |

As before by applying Lemma Al for [, and Lemma A2 for I, and proceeding
as in Case 1 we obtain

1
P(Ty,) < l_HzI, T

Utilising Lemmas A3 and A4 and proceeding along the same lines as Esseen (1944)
we can prove the following results.

Theorem Al: Lel X,, X,, ...,X, be a sequence of random variables with
mean zero and finite absolule moments of order kik > 3). Then for x> A,

h:)—c»(:)— T Pul=0) A
vl

1
;) < l—‘ﬂ:—“‘ i‘fig and for z < A,

Foe)—0(a)— ( (b) <6 [(1+|z|!)e—2212+ . :|

Ty T2

where = i N low T

0. and 6, are conslants which depends only on k and &, P (—®)
o QVY(2) and ¢,y are as in Lemma A4 1.

Remark:

= 2': (_ l)”’“
FLEY

From the above theorem it can be easily deduced that

0 1
I':,‘,.q_,?forz>/\, .. (A7)

Fy2)—0(z) | <

+
Fo(z)—0(z)| < 6] [M"‘_"” + 1
kn

7?:, for z < A, (A 8)

10}



SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Serizs A

Let E,,E,, ..., &, be n independently distributed random variables with
EE)=0, |& e, i=12,..n E@E+..+E)2=0cand§ =8 +...+E, Then
we have the following theorem due to Prohorov (1959).

Theorem A2: Under the conditions stated above, for x > 0 we have

PIE > 7] <exp [—2_‘: sinht 2],
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