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Abstract. We give a necessary and sufficient condition on a sequence of functions on a
set 82 under which there is a measure on £2 which renders the given sequence of functions
amartingale. Further such a measure is unique if we impose a natural maximum entropy
condition on the conditional probabilities.
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1. Introduction

The notion of measure free martingale is implicit in the construction of equivalent marin-
gale measures in the theory of asset pricing in financial mathematics [1, 2], but it has not
been fully solated and made free of probability. Rather it has remained hidden by specific
processes and erminology of asset pricing theory. We define a maningale purely in tenms
of sets and functions, called measure free martingale, and show that every martingale s
a measure free martingale and conversely that every measure free martingale admits a
probability measure, which may be finitely additive, under which it is 4 martingale. We
describe the convex set (wogether with ther extreme points) of all probability measures
under which a measure free martingale s 2 martingale. Among these measures there is
onge which in some sense 15 most symmetrie or most well spread, and entirely determined
by the measure free martingale. Boltzmann™s entropy maximizing distribution 1s needed
here. To the best of our knowledge probabilist’s have not asked the simple question asto
when a sequence of function is a martingale under some measure. The answer is relatively
easy but has some pedagogic as well as research value.

2. Means of finite set of points

Let xy, x2. 33, .0, 3 be & real numbers, with repetiions allowed. Assume that 1) and
xp are respectively the smallest and the largest of x, x2. ..., xp. Let @ be areal number.
Then there exists a probability vector (py, p2. ... . pe) such that

riprtapr o+ e =a,

ifandonly if x) 2o = 2. Mk = 2 and x| ## 272, such a probability vector i unigue. If
ko= 2,118 not unigue without some additional requirements.
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A result of Bolemann proved using Lagrange’s multipliers says that there is a unigue
probability vector { py. p2, ... . pi) which satisfies vy p) + x2p2 + - + 1 pp = @, and
maximizes the entropy

—pilogp — palog pa —-- - — prlog pr.
It is given by
exp (i)
B e Ty
E{; | exp o)

where L s a constant.

i=1,2,....k,

We will call these probabilities the Boltzmann probabilities forxp, vz, .00, Xp; .
In this connection it should be noted that for a fixed v, xa, ..., a and variable A, the
probabilities
expliyg
pild) = RA%) 5 T T

Yoo, explhx;)

of xp,x2, ..., xp respectively have the mean ELI xj pi () which we denote by mid).

Sinmee x| and xp are minimum and maximuom of o, xa. o0, . we have
; a1 . T
lim pi(h) =—=, lim p;j(h) = —
h——o0 njy h—+oa nj
where n; is the frequency of occurrence of x; in xp, x2, ..., 1. As a consequence,

lim mik) =xq, lim m{i) = xp.
A——na A—o0

A caleulation shows that dm/dh = vik) = 0, where v{d) is the variance of the sys-
tem xp. x2, ... . xp with probabilities po(Ad), paid). ... . peld). Thos mid) is a stricdy
increasing function of & which assumes every value between vy and 1. If mid) = o, then
i), prldd, oo, prid) are the probabilities which maximize the entropy for the con-
straint EL, Py = o (See [3],p. 172 for a related discussion of Boltzmann distribution
in the continuous case. )

Suppose 1), x72, ..., xg are distinet. The set C of probability vectors (pr, p2.... . i)
such that Zﬁ':l Tjpj = a is g convex sel. 1L is casy Lo see thal ils extreme points are
precisely those (pr. p2. ..., pe) € C which have al most lwo non-zero entries.

3. Measure free martingales

Let £2 be a non-empty set. Let f,.n= 1,2 3 ... bea sequence of real valued functions
such that each f, has a finite range, say (x;). 142, ... . Tk, ) and these values are assumed
on the subsets 2,0, S0, ... . £, These sets form a partition of £ which we denote by
[, . We denote by 0, the partition generated by By, By, | [P, and the algebra generated
by T3y is denoted by A, Let A denote the algebra U2 | A,

Define .4, measurable functions m,, , M, as follows: For @ € (J, and @ £ ,

mylw) = 31!5 Jus1lg),

My(w) = max fu1(g).
ged



Measwre free martingales 113

DEFINITION

The sequence (. Ao, is said to be a measure free mattingale or probability free
martingale if

mylm) = fulow) = My(w) Yos Q, n=].

Clearly, for each @ e O, the function f, is constant on . We denote this constant by
fu(@). With this notation, it is easy o see that ( fy. A,)2" | is a measure free martingale
or probability free martingale if and only if for each n and for each @ € O, f{Q) lies
between the minimum and the maximum values of (0" as ' runs over QN4

It is easy 1o see that if there is a probability measure on A with respect to which
{ fie. 4w )32 is a martingale, then (f,. .4, )52 | is also a measure free martingale. Indeed,
let P be such a measure. Then, for any (& in O, fi,(0) is equal 1o

ﬁ Y fei(@)P(Q),
(@' el . ')

so that fo Q) lies between the minimum and the maximum values f (@), ¢ 0N
J;21. The theorem below proves the converse.

Theorem 1. Given a measure free martingale { fy,. A,r}lf;il . there existy for each n = 1),
a measure Py on A, such that

Elr—:l',.qk = Fu. E.li'—l{ﬁr—llft.lr}' = fu

where E, | denotes the conditional expectation with respect to the probability measure
Pys1. There is a finitely additive probability measure P on the algebra A, which may
be countably additive, such that for each n, P|,.4w =

Proaf Define P on A arbitrarily. Having defined P, P, o0, Pyon Ay, Aa, oo A,
such that

PilAj1= P, Ej(fiAj-) =Ffi-1, i=23,...,n,

wedeline F, o on A, asfollows: Chooseanelement @ in ), Let Ay, Az, ..., Aybethe
partition of ¢ induced by f+ so that f,.) assumes ! distinet values, say a), az,. .., ay,
on Ay, Az, .o Ap respectively. Let a = f,(Q) (the valoe assumed by f; on Q). Since
o }lﬁ‘;l 15 a measure free martingale, a lies between the minimom and the maximum
values of f,+ on (2, so there is a probability vector (py, p2. ..., prhsuch that

aypr+arxpr+---+arp =a.
We define
Pop il =piPe(@), i=12,...,L

Cuarrying out this procedure for all & € O, we get a probability measure B, on A, 4
for which it is casy 0 check that

P.lr-i-llA.lr = Py, E.lr—l(ﬁr—lhdl.lr}' o ..f.lr

Induction completes the proof of the existence of the measures Fy; . Define P by selting,
for A € A, PIA) = Pi(A), if A € 4, Thus the theorem stands proved. O
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Remarks. The measure P oon 4., may be called a martingale measure associated to the
measure free martingale ( f;, A,r}lir'm:l . The totality of such measures forms a convex sel
whose extreme points are precisely those P which have the property that for any n and for
any € T}, P (hence By.) assigns positive probability to at most two elements in the
partition of ( induced by f,o . If, for each n and for each @ € O, @ N0, has two or
less elements, then there is only one martingale measure for the measure free martingale
s A,

Let @ be an element in . If we assign Boltzmann probabilities of the values of f, .|
on (o the comesponding elements of the partition of @ induced by fj 21, then we have
the following theorem.

Theorem 2. Let (. A4)002 | be a meavwe fiee martingale. Then there is a unigue prob-
ability measure P on A~ such that

(1) fi. AudiL | is a martingale with respect to P.
(2) Foreachn andforeach O € 0 if Q. Q2. ..., Qrarethe elements of QN0 41, then
P{O PO, PUOD PO, ., PUONPIQ) are the unigue probabilities which

maximize
I
o Z pilog p;.
i=l

subject to the condition Ei:l“i pi = a, where a is the value of fy on Q and
dy, dz, ... . dpare the values assumed by fyo on Q.
(3) The probabilities P(Q:), i = 1.2, ... 1 are given by the formula:

explia;)
ZL | expiiag ) ;

where A iy a constant depending ona.ay.az.. .. . ap.

P{Qi) = FP(Q)-

In a certain sense this disribution P oof Theorem 2 may be viewed as most symmetnic
or most well spread for the given measure free martingale. 1t is determined entirely by
the measure free martingale. One may call P the Boltzmann measure associated to the
measure free martingale ( f. ,A,.r}l":"::l, and the resulting measure theoretic martingake, the
Boltemann martingale.

In the theory of asset pricing in financial mathematics there is an important point of
existence of equivalent martingale. Here, as a consequence of Theorem 2, we have the
following:

COROLLARY

With the notation of Theorem 2 above, if m is a probability measure on A~ for which
there exist two positive constants C and D such that for all A € 22

C=m{A)P(A) = D,

then there is measure on Ao (e.g., P), which is equivalent to m and with respect to which
{fs A }Ij:‘il is a martingale. This martingale measure is unigue, and equal to P, if we
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reguire, for each n and for each O € O, the conditional distribution on Q N0}, to
have maximum entimpy,

A question arises. Note that we can associate the number A to the set @ in Theorem 2.
When we do this forall @ € ), we have afunction g, definedon 2. Is g, n=1,2, 3, ..
ameasure free martingale?

Suppose £ is g compact metric space and that sets in 4., form a clopen base for
its topology. Then any martingale measure for the measure free martingale ((f,. Ay )02,
extends to a countably additive measure on the Borel field B of ©2. The collection C of

all martingale measures for (f,, A, )72, defined on B forms a compact convex set under

weik topology, whose extreme points are already desenbed abowve.

4. A result on convergence

Let £ be acompact metric space and let { /)72 | be a sequence of continuous real valued
functions on £2. Let T, be the partition of 2 generated by f1, f2.. .., fi. Elemenis of CJ,
are closed sets. Say that { fy. Q,r}l;‘ll 15 a martingabke of continuous functions if for cach n
and for each C & T the value of f; on C lics between the minimum and the maximum
value of fie on C. We have the following theorem.

Theorem 3. [f the martingale ( fi. Uy);2, of continuous functions is also an eguicon-
tinuous sequence, i.e., the sequence of functions { fi f:l is equicontinuous, then | _,ﬂr}lf;il

COMVErges pointwise.

FProof Let T, denote the common refinement of all the Cf,.n = 1,2, ... and assume
that T} ., is made of singleton sets. Let e be a point of £ and let C,, be the element of
i}y w which @ belongs, Then I’"lj’f:| Cy = {w}, and since C,;°s are closed, we see that the
diameter of O, tends to zero as r tends 1o oo, By martingale and equicontinuity property
of the sequence U',r}”x:' we conclude that given any € = () there is an ng such that for
n = ng, | falw) — fu, ()] < €. 30 (f, fr'il CONVETZes poinbwise.

If Q. is not made of singletons, then we consider 2 = Q70 equipped with the
quotient topology. Define fore € Q. f,(c) = the constant value of f,, onc. We can view
[ also as a partition of Q. The sequence {;iF'”, (3072, forms a martingale of continuous
functions on the compact set £2 and the functions f,.n = 1, 2, . .. form an equicontinuous
sequence of functions. The common refinement O, of the partitions @, n = 1,2, ...
when considered as partition of £ isthe partition of €2 into singleton sets. By considerations

of the previous paragraph we see that the sequence ( f, oo | converges pointwise, whence
the sequence { f,)2 | converges pointwise. The theorem is proved. O

We conclude by mising a question about Boltemann distobution. Let © be a compact
subset of the real line and let @ be strictly between maximum and minimum points of C.
Let xp, x2, ... L xg, be an e-netin C. Let p,e denote the Boltemann distnibution on this -
net and o, Can one say that g converges weakly to a unigque probability measure on C as
¢ — 0, independent of the choice of the e-nets?
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