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To compare two multivariate random vectors of the same dimension, we define a
new stochastic order called wpper erthant dispersive ondering and study its prop-
erties. We study its relationship with positive dependence and multivariate hazard
rate ordering as defined by Hu, Khaledi, and Shaked (Journal of Multivariate Analy-
siz, 20020 It is shown that if two random vectors have a common copula and if
their marginal distributions are ordered according to dispersive ordering in the same
direction, then the two random vectors are ordered according to this new upper
orthant dispersive ordering. Also, it is shown that the marginal distributions of two
upper orthant dispersive ordered random vectors are also dispersive ordered. Exam-
ples and applications are given.

1. INTRODUCTION

It is of interest Lo compare lwo random variables in terms of their vardability. Although
this topic has been studied extensively in the univardate case, several atlempts have
been made o extend it to the multivanate case. Important contnbution s in this case
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have been made by Giovagnoli and Wynn [8], Shaked and Shanthikumar [21 ], and
Fernandez-Ponce and Suarez-Llorens [ 7], among others,

Let X and ¥ be two univarate random variables with distdbution functions F
and G and with survival functions F and G, respectively. A basic concept for com-
paring variability in distributions is that of dispersive ordering. X is said to be less
dispersed than ¥ (denoted by X =4, Y) if

FUpg)—F Ya)=G'(B)—G '(a) wheneverD<a=g<1, (LI

where F ! and G 1 are the right continuous inverses of the distribution functions
F and @, respectively. This means that the difference between any two quantiles of
X is smaller than the difference between the corresponding quantiles of Y. In case
the random variables X and ¥ are of continuous type with hazard rates rp and rg;,
respectively, then X =g, ¥ if and only if

ral G pN = re(F~ ' (p)), wpE[01]. (L.2)

For more details on dispersive ordering, see Shaked and Shanthikumar [ 20, Sec. 2B .

In analogy with the characterization (1.2) of the univariate dispersive order-
ing, we introduce a new order in the multivariate case, which we call upper orthant
dispersive ordering and study its properties. According to (1.2), X =y, Y if and
only if the hazard rates of X and ¥ at the quantiles of the same order p are ordered
for all values of p € [0,1]. To this end, we first recall the definition of hazard rate
ior hazard gradient) in the multivariate case. Consider a random vector X =
(X1,....X,) with a partially differentiable survival function F(x) = P{X = x}.
The function B = —logF is called the hazard function of X, and the vector rx of
partial derivatives, defined by

{1hya {un} i i ;
Px(X) = (rx (X)....rx (X)) = (T RiX), ..., oy Rm),
|

(i3 ox,

for all x € {x : F(x) = 0}, is called the hazard gradient of X (see Johnson and Kotz
[11] and Marshall [15]). Note that ry (%) can be interpreted as the conditional haz-
ard rate of X; evaluated at x;, given that X; = x; for all j # i; that is,

f, ( N{x,> .5-})

{ibro i
X I:_ﬁ'.j o i} ]
F,(.r, ﬂ{x;}.g])

Jd

where f;(- | M+ X; = x;}) and Fi(- [M % i1X; = x;}) are respectively the conditional
density and the conditional survival functions of X;, given that X; = x; forall j # i.
For convenience, here and below we set re | (X) = oo for all x € {x: Fix) = 0}. Now,
we define upper orthant dispersive ovdering.
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DeFNITION 1.1: Let X = (Xy,..., X,)) and ¥ = (¥\,.. .. Y,) be two random vectors
with respective mrumf_fm:c'nam F and G. We say that X is unﬂﬂfr than Y accord-

ing to upper orthant dispersive ordering (denoted by X e Y) if for all w; €
[0.1].j=1on j# i,

(x, N X > F 'y, _r}) Ediﬂ,( N1y > G () }) (1.3)

Jwi iwi
Jori=1l,...n

In case the distibutions under consideration are absolutely continuous, the upper
orthant dispersive ordering can be equivalently expressed in terms of the hazard
eradients at the quantiles of the same orders of the conditional distributions. If we
denote by x;(8;u) and v, {F;u), the Sth guantiles of the conditional distributions
(XM il X; = .‘1’;"(1:J W) and (¥ MY = (FJ"I:HJ}}}, respectively, then

g clisp

x f—ﬁ Y “JI:FI Il:ul}s LX) J:I||:u1_|},_l‘ll:ﬁ;I_I},...,F:,;-II:I!“”
=y (G ) G (g ) v Biu)s . G M), (14)

forevery B € [0,1],u € [0,1]" ", andi =1,...,n, where rx ' and ry ' stand for the
ith components of the hazard gradients of X and Y, respectively.

The following slightly modified version of a theorem of Saunders and Moran
[19] provides a useful tool for establishing dispersive ordering among members of
a parametric family of distributions.

THEOREM 1.1: Let X, be a random variable with distribution function F, for each
a E R such that the following hofd:

(i) F,is supported on some interval (x'", x'*") C (—o0,50) and has density f,

derk 1 Thy
that does not vanish on any subinterval of (227, x2').

{it) The derivative of F, with respect to a existy and is :I.-.'nmm’ by F,

Then

X =

a Sdisp Xy Sfora,a’ ER, and a = a”, (1L5)
if and only if,

Elix)/f,ix) is decreasing in x. (1.6)

In the next example we identify conditions under which two bivariate normal

random vectors are ordered according o upper orthant dispersive ordering. More
examples are discussed in Section 4.
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Example 1.1 {Bivariate Novmal Distribution): Let X and Y follow bivariate Nor-
mal distributions, each with mean vector (0,0) and with dispersion matrices

5 "T|: PF & "T|: T
3t = . and E' = I
T (T3 o5 P T o3

respectively, with a; = 0 for i = 1,2, For the time being, we are assuming that the
marginal distributions of X and Y are identical. The general case is considered later.
We use Theorem 1.1 to prove that in case p and p' are of the same sign, then

ugeclisp

lp'l =lpl=2X <" Y.

Let us denote by G, the distribution function of {X,|X: = v} (we are suppress-
ing its dependence on y for the clarity of notation). Then

1 X al= =)
G,l(x)= m J-_*J: Sy, x,(,0) du dv

1

N mf P(X, = x|Xa=v)fy,(v)dv

Py
X v

1 J""’* " o5 1 {'ﬁ i) .
= — gl —_— - J——
P(X:=y) J, al—p? )2 o "\, o

and the comresponding conditional density function is

Py
o

- 1 J""’* o L 3] 2 i
g”('r}_Plik’:ip_\']'rrulil—ﬂz}"": 5 B ai(1—p?)'"? o)

Now we compule

i
Gulx)= — G,lx)
ip

. v(on(1—p*)' )+ o ABLE (.-.' 2 u)
T, - p

1 J‘—ar, 2 |:1 Z}I,f! "72
CP(Xa=y) ), ai(1—p?)
Py
Xr—=—r—n
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which simplifies to

Frleg]
y . —-r
L,—i.'r'_.']:r,_':l +o0 o

P':X: = _1.'}"4 DT B ﬁ;ﬂ.::“ . P:}?‘"::

1 Py 42
Hoexpl| — - — v — dv
251 — p=) o

E—I.‘r"-"]:r,_":l 1 e S
PO, > -2 T 22—\ e ) )

Gilx) =

(1.7)
Similarly, the conditional density function g, (x) can be written as
- I.'r'_-"]:r,":l J‘—-:r.- 1
JAx) = O TR
g0 () P(X, = v)V27e, 3 @il —p? )2 2m)' "
1 prer 4t
X exp| —— — o — = du. (1.8)
2a5(1 — p7) o
This gives
(7, (x)
hix) = ——— = —ma ru L ¥h
B pixh

where r.,,r-‘I:._i denotes the hazard rate of W, a normal random variable with mean
pxers fery and variance a3 (1 — p°). It is known that the family of normal random
varigbles with a fixed variance but with different means is ordered according 1o
hazard rate order and the one with the smaller mean has the greater hazard rate,
Using this fact, it follows that if e ;{‘Pﬂ, then hi(x) is increasing in x. Hence, by
Theorem 1.1, 0=p' =p =X = Y.If p <0, then h{x) is decreasing in
x; hence, (X, X3) is increasing in p in the sense of upper orthant dispersive order-
ing. This proves the required nesult. L

The organization of the article is as follows. In Section 2 we study some prop-
erties of the upper orthant dispersive ordering as defined eadier. It is proved that if
two random vectors have the same dependence structure (copula), then they are
ordered according o upper orthant dispersive ordering if and only if their corre-
sponding marginals are ordered according 1o univanate dispersive ordering. In Sec-
tion 3 we consider the special case of nonnegatl. e random variables (more generally,
if the conditional distributions have common left end points of their supports). 1t is
shown that if two random vectors have the same marginal distributions and they are
ordered according to upper orthant dispersive ordering, then their bivariate copulas
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are ordered, implying that one random vector is more dependent in the sense of
positive quadrant dependence than the other. We also study the connection between
upper orthant dispersive ordering and multivariate hazard rate ordering as intro-
duced by Hu, Khaledi, and Shaked [9]. The last section is devoted to some exam-
ples and applications. 1t is shown that if’ two univariate distabutions are ordered
according to dispersive ordering, then the corresponding vectors of order statistics
from them are ordered according o upper orthant dispersive ordering.

2. PROPERTIES OF UPPER ORTHANT DISPERSIVE ORDERING

In this section we establish an interesting property of the upper orthant dispersive
ordering that if two n-dimensional random vectors X and Y have the same depen-
dence structure in the sense that they have the same copula, then dispersive order-
ing among the marginal distributions implies upper orthant dispersive ordering and
vice versa, The notion of copula has been introduced by Sklar [23], and studied by,
among others, Kimeldrof and Sampson [13] under the name of uniform represen-
tation and by Deheuvels [5] under the name of dependence function. A copula C is
a cumulative distribution function with uniform margins on [0,1]. Given a copula
C, if one defines

Fix)=C(Fl(x LFilx;),...F,(x,)) xeE RY, (2.1)

then F is a multivariate distribution function with margins as F, Fa,..., F,. For any
multivariate distribution function F with margins as F, F,,...,F,, there exists a
copula C such that (2.1} holds. If F is continuous, then C is unique and can be
constructed as follows:

Clu) = FIF7 W W F (b b ooy 70w, ) ue[0,1]" (2.2}

It follows that if X and Y are two n-dimensional random vectors with margins as

(Fl Fa,. B and (G, Ga, ... Gy ), respectively, and if they have the same copula,
then

I:FII:XI }s FZI:XZ }s* “FII(XJI ” ; I:fj'||:}"|h (;Zl:-rl}s“* EFJII:?:II}}" [.2’-3'}

Fori =1.....n, let us denote by Hfu the cumulative distribution function

{cdf) of the conditional distnbution (X;|M;.4X; = F'(u;)}) and by HY, that of

(YN pwilY; = G : (1e;)}). To prove the next theorem, we first prove the following

lemma, which may be of independent interest.

Lemma 2.1: If two n-dimensional random vectors X and Y have the same copula,
then, fori=1,...n,

FoeHY ' (B)=G,=H! '(B). Be[01],uel0o,1]"" (2.4)
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ProoF: Proving (2.4) is equivalent to proving that fori =1,...n andu € [0,1]"',
HY e F'(v) = HY, o G7'(v), YeE[0,1]

N x> F ', }}]

<:5P[X, > F'(v)

J#i
_p [r, =G\ | N1y > G;'l:u;}}]], vu € [0,1]
il
o P[F,I:x,} >u| N {FX) > u;-}]
J#i
e [G‘,E?’,} > v | 1G,(¥) = uJ}], Yo € [0,1],
J#i
which is true because of (2.3), since X and Y have the same copula. L]

THEOREM 2.1: Let X and Y be two n-dimensional random vectors with the same

copula. Then X mémp Y if and only if X; =g Y i=1,....n.

Proor: By definition,

ugr=clisp

X< Yo Y, (B)—HY, '(B)isincreasing in 8 € [0, 1],
uneE[01]" 1 fori=1, ..., n {2.5)

It follows from (2.4) that if X and Y have the same copula, then fori = 1,...n and
ue [0,1],

HI,'(B)—HY, '(B)=G '« F(HY, '(B)) — HY, '(B), (2.6)

fori=1,...nand forevery 8 € [0,1].

It is easy Lo see that the right-hand side of (2.6) is increasing in 8 if and only if
G ! Fi(x) — x is increasing in x (i.e., if and only if X; =4, ¥, i= L...,n). This
proves the desired resull. L

Recently, Miiller and Scarsini [16] have investigated some other multivariate
stochastic orders for which results parallel to Theorem 2.1 hold for those orders.
The following interesting property of the upper orthant dispersive ordering imme-
diately follows from Theorem 2.1,

CoroLLary 2.1: LetrY = (o X, + b, 0. X + ba,. a0, X, + B,). Then fora, =1,

bj- E m1 X u“é'_:”p Y_

Proor: Since X and Y have the same copula, the required result follows immedi-
ately from Theorem 2.1, L
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Example 2.1 { Multivariate Novmal Distributions): Let X follow the p-variate multi-
variate Normal distribution with mean vector g and dispersion matrix % = ((o7;)),
with o; = pyoney, g = Loy = 0, and i,j = 1,...,p. Let Y follow the p-variate
multivariate Normal distribution with mean vector g' and dispersion matnix &' =
(o witheo), = pyo/ o/ o/ =0, and i, j=1,....p. E’i‘iiknunn that X and Y have
the same Lupulu 1t follows from Theorem 2.1 [hal X Y if and only if o7 = o
fori=1,...,p. This result in conjunction with l:.x.impIL 1.1 leads us to the follow-
ing result for comparing two bivariate Normal distributions.

Let X and Y follow bivariate Normal distributions with dispersion matrices

o poo ai*  plojoi
%= a 5 3 = O - i
pody Oy p'or s oy
respectively. If0 < o; < o7 for i = 1,2 and | p'| = |p| < 1, then X 27 Y.

It will be interesting 1o find necessary and sufficient conditions undur which
two multivariate nommal random vectors will be ordered according 1o upper orthant
dispersive ordering in the general case,

It follows immediately that if two mndom vectors are ordered according 1o
upper orthant dispersive ordering, then so are their corresponding subsets. In par-
ticular, their marginal distributions will be then ordered according to univariate dis-
persive ordering.

THFC:RFM 22: Let X and Y be two n-dimensional random vectors such that
[TER I.ip
X Y. Then

g clisp

X = Y,

=

where I = {i}, f5y.o00ip C©1L2,..0,00 X, = (X, X, ), Yy = (X, ¥, ), and
k=1,....n

The proof of the next result is also immediate.

Tueorem 2.3: Let X ... .. X, be a set of independent random vectors for which the
dimension of X; is k;, i = 1,....m Let Yy,.. ., Y, be another set of independent
random variables for which the dimension of X; isk;, i = 1,...,m. Then

X, T Yo by e R B T (Y Xy (2.7)

Remark 2.1; Aconsequence of (2.7) is that if X,,.. ., X, is a collection of indepen-
dent univariate random variables and ¥,.. .. ¥, 18 unulhiﬁr set of independent ran-
gk |1p
¥ X.

dom variables, then X, = i=1,....n implies X

—'

In general, there does not seem o be any direct connection between upper
orthant dispersive ordering and the multivariate dispersive orderng as introduced
by Femandez-Ponce and Suarez-Llorens [7]. According to their definition, X =
Y may not imply that X; =4, ¥; for i = 1,..., 0. Also, the multivariate dispersive
ordering as defined by them may not be preserved under permutations of the vari-
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ables. On the other hand, the upper orthant dispersive ordering is invariant under
the same permutation of the two vectors and their marginals are also ordered accord-
ing to univariate dispersive ordering. Obviously, if X m:-%“]’ Y, then r 2y = 1ir Xy,
where X, and X, denote the dispersion matrices of X and Y, respectively.

3. THE CASE OF NONMNEGATIVE RANDOM VARIAELES

In this section, we will restrict our attention 1o the case in which the mndom vectors
under consideration are nonnegative or, more generally, they have a finite common
left end point of their supports. We will see that certain results hold in this case that
may not hold in the general case. The following assumption will be made at some
places in this article.

AssUMPTION A: The random variables {X;|MNAX; = F'(u)}} and
il Nl = G )Y} have a finite common left endpoint of their supports for
allu and fori=1,...,n

In the umivariate case, for nonnegative random vanables, there 15 an intimate
connection between hazard rate ordering and dispersive ordermg and which 1s made
more explicit in the following result of Bagai and Kochar [1]. We use this theorem
to prove some of the results of this section.

THEOREM 3.1: Let X and Y be two univarniate random variables with distribution
Sfunctions F and G, wspectively, such that F(0) = Gi0) = (L. Then the following
hold:

{a) If Y = X and either F or G is DFR (decreasing failure rate ), then ¥ =, X.

(b)) IFY =, Xand either F or G is IFR {increasing failure rate), then ¥ =, X

For a bivariate random vector (5, T), we say that Tis right tail increasing in §
if P[T = t|5 = s]is increasing in 5 for all ¢, and we denote this relationship by
RTL(T|5). If § and T are continuous lifetimes, then T is right tail increasing in 8 if
and only if r(s|T = t) = ris|T = 0) = rg(s) for all ¥ = 0 and for each fixed r. The
RT1 property is weaker than the RCSI (right comer set increasing) property, but
stronger than PQD (positive quadrant dependence). In the next theorem, we study
the effect of positive dependence on upper orthant dispersive ordering for nonneg-
ative random veclors.

THEOREM 3.2: Let X = (X, X,) be a bivariate random vector such that the left end
point of the support of {X;|X; = F; ' (u)} is finite and independent of u € [0,1] for
i,j =12 Let X' = (X],X?%) be a random vector of independent random variables
such that X; - XLi=12

fa) If X;is RTlin X;, i # j, and X; ix DFR for i, j = 1,2, then

ugeclisp

I:X“X:_F ="£ I:X{sX§' [.3'1}
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(b)) If (X1, X2) m_{'q’ (X1,X%) and X; is IFR for i = 1,2, then X; is RTI in X

P+ ij=1.2.
PrOOF:
(a) Note that RTIX;|X;) if and only if, for allw =10,
1Xi|X; = F )} = X (3.2)

1t follows from Theorem 3. 1{a) that if, in addition, X, is DFR, then

XX, > F7 ()} =g X 2 X1 (3.3)

Since this hi’}ldh for i,j = 1,2, the required result follows.
(b) (X, X2) = (x1,x1) implies for all u = 0,

1

{X:|X; = F ()} =up X! = X0, i¥Fjij=12

This together with the assumption that X, and X; are IFR implies (3.2) by
Theorem 3.1(b). This proves that RTLX;| X;), i #j. i.j = 1.2, L]

THEOREM 3.3: Ler X mm’ Y be two n-dimensional mndr.rm vectors satisfving A ssump-
& ’ 15
tion A and such that XJ Y.i=1..,n Then X Y implies that

l':JxJ = [-'JYJ for 's..'l =L ....ni :'E"h {34}

where Cx (.':1’]. denotes the copula of (X, X;) (¥, ¥;)).

Proor:
X"ET Y= (X, X) ST (YY),  i#jij€{l..,n}, (3.5

from which it follows that

{Xlli = F;_ II:HJ }} E-:Ii.-i]'ln {rj }j = [;j_ : I:HJ}}!' uJ S {ﬂ, 1]!'

and which, in turn, implies

%1% = F ()} = {%|Y =G (), w€[0,1] (3.6)
under Assumption A since dispersive orderng implies stochastic ordering when the
random variables have a finite common left end point of their supports. If we denote

by F',;J- I:(},-‘J-]I the joint survival function of (X, X;) (¥, ¥;)), then (3.6) can be writ-
Len as
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.‘TLI:.-.',F;" II:MJ N = E?,_J(.t',EFJ' '(:!J.].]. forx =0,u; €[0,1]
& F(F7 (L F ) = G (F ' (), G (g ) for all g, u, € [0,1]
& FF ) F ) = Gy (G (), G () for all wy,u; € [0,1]
(since X; = ¥, i=1, ..., n)
= ﬁ_',fﬂ(u,,uJ} = I'L_',K.-I:u,,uJ_b for all u;,.u; € [0,1]

= C,ﬂ-l{u,,:g} = C,T;I:u,,uJ]l for all u;,u; € [0,1],

where Clu,p) =1 —u —v + Cluw). |
If (3.4) holds and the margins of (X, X;) and (¥, ¥;) are equal, then we say that
(¥, ¥;) is more PQD than (X, X;) (cf. [10, p. 36] ). Note that CfJI:uJ,uJ]I = w;u; in

the case X; and X; are independent and C}:(JI:u,, ;) = w;; for all u;,u; € [0,1] in the
case X; and X; are PQD. Thus, according Lnu:l:Eiuﬂn:m 3.3, if Assumption A holds
and if X and Y have the same margins and X = Y, then the ¥;'s are more depen-
dent than the X;'s according 1o PQD ordering. We obtain the following result as a
special case.

CoroLLary 3.1: Let X = (X, X, ) be a bivariate random vector such that the left
end point of the support of {X;|X; = F; ' (u)} is finite and independent of u € [(,1],
Jori# jand i,j=12. Let X' = (X1, X)) be a random vector af independent ran-
dom variables such that X; = X!, i=1,2 Then

ugeclisp

|:X|,X3} = I:X{sX§}=’XEJ'PQD‘ [:3'-?}

Contrast this result with Theorem 3.2(b), which is a stronger one since RT1
implies PQD. However, here no assumption on the monotonicity of the hazard rates
15 made in the second case.

Remark 3.1: Assumption A is very crucial for Theorem 3.3 and Corollary 3.1 1o
hold. As a counterexample, let ¥, and ¥, be two independent L7(0,1) random vari-
ables. Let X, = X, be uniformly distributed over ((),1) also. Note that X, and X, are
strongly positively dependent, as they satisfy the Frechet upper bound. Let us com-
pare (X, X,) with (¥, ¥;) according to upper orthant dispersive ordering. The rel-
evant conditional distributions 1o compare are

[X,|X,=u] and [¥,|¥,> u], O<m-<1.

The left-hand conditional distnbution !f (1, 1) and the right-hand conditional dis-
tribution is {7 ({0, 1). Hence, (X, X;) = = (¥.¥,) but Cf, = C',, contradictory to

i3.4). The reason for this contradiction is that unless Assumption A is satisfied,
dispersive ordering may not imply stochastic ordering.
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THEOREM 3.4: Let X and Y be two n-dimensional random vectors satisfving A ssump-
ugeclisp

tion A and such that X = Y. Then
w=CcYh=cl;, =1 T E Fih, {3.8)
implies
Cov (h, (X)), 1 (X)) = Cov (b (Y3), k(X)) (3.9)
Sforall increasing convex functions h and h, for which the above covariances exist.

Proor: Without loss of generality, let i = 1 and j = 2. The survival functions of
(h (X)), ha(X5)), hy(X,), and hs(X,) are, respectively, H(x,x,) = F(h7'(x,),
hy'(x,)), Hy(x)) = Fi(h7'(x,)), and Haix2) = Fy(hy ' (x,)). Similarly, the survival
functions of (f,(¥;), h2(Y2)), b (¥,), and ha(¥:) are, respectively, K(x,, x2) =
Glhy' (x,), h3' (x5)), K\(x,) = G, (k7' (x,)), and K;(x,) = G,(h7"'(x;)). Covari-
ance between fy (X)) and ha(X;), if it exists, can be expressed as

Covih (X )L h(X,))= J-J-':ﬁ':-'-'n-'-':} — H,(x,)Hy(x,)) dx, dx,

= f (F(hy'(x0), hz'(x2))

— F(hy' (x, ) Falhs ' (x2))) dx, dx,

=J‘ (FOF7 (), Fy o)) — (1 —u)(1 —v))
v —1 ) -1 i
S (afa_.l:F._I iu_}_})(h_:l:Fil I:u_r_}) i
JICFT u)) FalF: (v))
| 1
=J‘ f (C(mw) — (1 —u)(1— o))
(1] 1]

-h'||:F|_I|:H}} IIE(F:_IKU}.F
) (.f'.liFr () )(I:EF:" @) ) — i
ugrclisp

where hy'(x,) = F/ '(w) and h3'(x:) = F:'(v). The assumption X = ¥
implies that X; =, ¥, from which it follows that f;(F'(u)) = g,(G ' (u)) and
FrYu) = G7 Yu), i = 1,2, under Assumption A, Now f( x) is increasing in x since
fix) is convex. Combining these facts, the required result follows from (3.8). W

THEOREM 3.5: Let X and Y be two n-dimensional random vectors satisfving the
Assumption A and let ¢, ..., b, be increasing convex functions on IR . Then

uaeclisp useclisp

X = Y=2(d(X ) o (X) < (@10,
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Froor: Note that the cdf of ¢;(X;) is Fylx) = F;I:qb;'(.r]l}, with ils inverse as
Fjal (u) = ob;(F;~ ' u)). We have to prove that fori = 1,...,n, u; €(0,1),j=1,...,n,
JjFL,

(-:f.r,IZX,} N, (X,) > Fy'(u))} ﬂdiﬁ,,(fﬁ,u:} ﬂ{qm;}:;-r:;;cu)}});
J#i J#i
that 1s,

(fﬁ. (X | Ny (X,) = (- 'cujmj

i*i

< (-:ﬁr,(?’,} Nid(¥) > (G I:ujm),

Pl

which is equivalent 1o

(qb,u:x,} N {x,> ﬂ-'lzuj}}) =inp (qb,u:m Ny = G;'I:uj}}).

J"f‘ 4 J"f‘ 4

Using Assumption A, fori=1,....n, 5, € (0,1}, j=1,....m,j# i,

(x, n{xj:?ﬂ-'l:ujn) =5 (h ﬂ{};-}r;;'cum)

J' *i J i

implies
I:Xll{XJ = F;J'_ II:HJ .r]'.r =a I:YJH,}; = (J‘j_ I I:uj}}}*
Now the required result follows from Theorem 2.2 of Rojo and He [18] since
b5 are increasing convex functions. L
Hu et al. [9] gave the following definition of multivariate (weak) hazard rate
orderng.

Derinimion 3.1 Let X and Y be n-dimensional random vectors with hazard gra-
dients ry and ry, respectively. We say that X is smaller than Y according to weak
hazard rate ordering (written as X =, Y) if

(xl Ni{x, HJ-}_) Eh,(h ﬂ{n::-.g-}),

J"f il A *i

fori=12,....nx &€ R" that is, if

re (X)) = ry (X), i=1.2,....n,XxER.
In the next theorem we establish results analogous to Theorem 3.1 between
upper orthant dispersive ordering and multivariate weak hazard rate ordering under
Assumplion A,
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THEOREM 3.6: Let X and Y be two n-dimensional random vectors satisfving A ssump-
tiem A

fa) If Y Ew],,g_{ and either ry (%) or ry (X) is decreasing in x, fori=1,....n,
uskclisp

thenY = X

Uik

{b) IfY -:{.H X and either r (X)) or ry (%) is increasing in X, fori=1,....n,
then¥ =, X.

whr

ProoF:

ia) Under Assumption A, Y =4, Ximpliesthat ¥; =, X;.i = 1,...,n, whichis
equivalent to G Ww) = F W) foru € [0,1],i=1,....n Again, ¥ =, X
implies that for i= L...,n, (¥l = 5} = (X[ N0dX = x5},
Taking x; = F; ' () j=1....nj+ i, we find that this implies vi( S;u) =
x; [ Biu), where v/ (S8;u) is the Sth quantiles of the conditional distribution
(¥:|Mjsil¥; = F'(u;)}) and x:( B u) is as defined eadier. On the other
v (%) decreasing in x implies that

hand, ry
(yj N1y = .g}) = (]rj My = .1;'}),

J'f‘j J'f‘j

forx;=xj,j=1...,n,j#i. This, along with G; '(u;) = F; ' (u;), implies
that

¥ (Bin) = yi( fiu) = x,( Biu), i=1,....n
Using these observations, we obtain
rx (F7'(uy)see o F2 (g )ox;(Biw), oo F (1)
= g (F7 ) o Eo () x (B0, e B ),

since Y =, X. The right-hand side of this inequality is less than or

equal 1o

whr

r‘t’ I:(‘_ ; I:“ | }s -“sGJ_—II I:uj— | },_}',(ﬁ:u},.. *s(;.u_ . I:“.u”

since ry (X)) s dL‘Ll‘L.i‘élnﬁ in 'h'. This completes the proof of (a).
ib) From the assumption Y * X, it follows that

r,?JI:F,' o oo oo B o x (Bia) oo F e, ))

= ry (G 0y b GEY (g ) il B, G 0, ) (301D
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and

(x, Nix; > F;'I:uj}}) zﬂ(r, N, = G;'I:um),

J"rj ij

which implies that x;(8;u) = y;( B;u) and F; 'I{uj} =Gr ' (w).j=1,....m,
j# i. Using these facts and the assumption that ry () is increasing in x, it
follows that, for i = 1,...,n, the rght-hand side of ({3.11) is less than or
equal o

r':'nl:Fl_ II:HI }s“* sFJ:II I:uj— I },.l’,(ﬁ: IJ},. ses F:II- I I:u.u ” . i’{-”(x}:

that 15, we have shown that fori = 1,....n,

r;c”(x} = r;.”(x]l

and hence the required result. L

Remark 3.2: 1If r¢'(X1,.0. . Xi4 ..., X, ) increases in x; for i = 1,...,n, then we say
that the random vector X has a multivariate increasing hazard rate distribution (cf.
Johnson and Kotz [11]). The condition ry '(x,...,x;,...,x,) increasing in x;, j =
lLi...on, j # i, i =1,...,n describes a condition of positive dependence that is
equivalent to saying that the random vector X has RCSI; that is,

s s o, iy i
PlX1 = X1y X x| X0 > xl0en Xu > 1]
increases mx;, = 1,...,n8.

We will now study some preservation properties of the upper orthant disper-
sive order under random compositions. Such results are often referred to as preser-
vations under “random mapping” (see Shaked and Wong [22]), or preservations of
“stochastic convexily” (see Shaked and Shanthikumar [20, Chap. 6] and Denuit,
Lefiévre, and Utev [6], and references therein).

Let {Fy, # € X} be a family of n-dimensional survival functions, where X'is a
subset of the real line. Let X(#) denote a random vector with survival function Fj.
For any random variable ® with support in A and with distribution function H, let
us denote by X(8) a random vector with survival function G given by

Gix)= f F,(x)dH(#), x©&EIR".
x
TueoreM 3.7: Consider a family of n-dimensional survival functions {F,, # € X}
as above. Let B and O, be two random variables with supports in X and distribu-

tion functions Hy and Ha, wespectively. Let ¥} and Y3 be two random vectors such that
Y, =, Xi0,),i=12 that is, suppose that the survival function of Y; is given by

c';,(x}=J‘ﬁj|:me,m}, YER,i=1.2
X
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if
fa) X(#)=,,.X(#') whenevert =48, (3.12)

() B and B. are ordered in the univariate hazard rate order; that is,

B =y, 81, (3.13)

(] o= - - i .
{c) rx"”(.-.',,...,.-.'“} iy decreasing in Xpj= L.ni=l...n

then

¥, =Y (3.14)

Proor: Hu et al. [9] proved that assumptions (a) and (b) imply that ¥, =, Y.
MNow, we show that fori=1,.... 8, r#f(.-;.,...,.-;,,} is decreasing inxp, j=1,...,n,
then the required result will follow from Theorem 3.6(a). Assumptlion (a) is equiv-
alent to Fy(x) being TP, (recall from Karlin [12] that a function f: B> — & is said
o be totally positive of order 2 (TFPa) if flx,, v )f{xa, va) = fix, v ) flea, v,
forx; = x and y; = y) in (f,.x;), j = L....n. Fa(Xyse.0,x,) decreasing in
X j = Lao,n, j# i is equivalent to Fplxy,....x,) being TP; in (x,x;), L,j =
l,...,n, j # i. Using these ohservations, it follows that G,(x) is TP, in (xrxs)
ij=1,....n (cf. Karlin [ 12]), which is equivalent to r;;:(.r,,...,x“]l decreasing in
x5 j = Looon, j# i1t is worth noting that Py (X1s ..., X, ) decreasing in x; is
equivalent to the fact that {X;|M;.;1X; = x;}} is a DFR random varable, i =
l,....n. Now, (7(x) can be wrllen as

G,(x) = J-P,j(x, ~ _r,lﬂ (x; > _rJ-}) P,,(ﬂ (X > a0 j=Loeosnj# f) dH (6);

P P

that is, (¥, ..., ¥} 15 a sort of mixture of DFR random variables; therefore,
—ilog G;(x)/dx; is decreasing in x;, which is equivalent 0 ry'(x,...,x,)
decreasing in x;. This completes the proof. L

4, EXAMPLES AND APPLICATIONS
Example 4. I { Multivariate Pareto Distributions): Fora =0 let X, = (X, 1..... Xoa)
have the survival function F, given by

Ll

FoR y pnns ki) = (E.r, —n +1) . EmFELI=L2....0

im=]

see, for example, Kotz, Balakrishnan, and Johnson [ 14, p. 600]. The corresponding
density function is given by

Flx.ox)=ala+ ). (lat+tn— I}(E.r, —n+ 1) p

im=]

x.=1,i=12,....n
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Hu et al. [9] showed that X, =, X,, whenever a; = a». On the other hand,
X = .ra,-'rI:ZJ x;—n+ 1), |~,¢du_n_,d_umg in x;, j = l,...,n. Then from Theo-
rem 3.60a) it f{}llt)mi.u that X, e X., WthL'\-‘LF d] = da.

=

iy

Example 4.2 (Bivariate Farlie-Gumbel-Morgenstern Distributions): For o €
i—1,1), ket X, = (X,1, X, 1) have the survival function F, given by

Folxi,x2) = Fl':-'-'l}ﬁz':-'-':}[l + a(l— Fi(x )1 _F:':-'fl}:']
and Y, = (¥,,,¥, ;) have the survival function G, given by
ﬁa':-'-'n-'-':} = ﬁll:-'-'l}ﬁll:xl}{l +all— ﬁl':-'-'l}}':l = (}zi-l'l}}]s

where F., F], E?. , and (?; are arbitrary univariate survival functions (which hap-
pen o be the marginal survival functions of X, |, X, 2, ¥, 1, and ¥, 5, respectively,
independently of a). Assume that X ¥, = 1,2. It is easy 1o see that

= a, i _dlip o, i 1.|-:s s
C¥(w,v) = CY={w,v). Then, from Theorem 2.1, it follows that X, o ¥...

Example 4.3 {Multivariate Gumbel Exponential Distributions): For positive param-
eters A =_{.11,«:f CiL2,....nhi# &) let X3 = (X1, Xa,.... X,) have the survival
function F, given by

f=y

Folxaxsiiig) pr{ E—Jlfn. } (x1,Xa40.0,x,) = (0,0,,..,0);

see Kotz et al, [14, p. 406]. For another set of positive parameters A* = {A: 71 C
1L,2,....,nL 0 # &), let ¥,- = (¥, ¥a,... . F,) have the survival function G-, Let
Xi=a ¥ i=1,....,n;that 1s, A; = A}, We show that if A= A%, then fori=1,....n,

(x, Nix,> F ' }}) f_rd-ﬁp( Ny, > (;;'(u”}) w € [0,1]. (4.1)

J'f‘j ij

Since X; =, ¥;,i=1,...,n, (4.1) is equivalent to

(X, n {X; = .g}) = (]r'J n {¥; = .1';}), i=1,...,0 4.2)

- it
Let X; = (Xpaee o Xiogs Xistsennon) .« The survival function of (X;|M+4X; = x;}),
denoted by Fi{x;:%;), is

Fix;x) —pr{—r {.11 - EJLU x + 2 A X Xy + e +.11,3___“I—_[.rj”. (4.3)

FFk FEi

Similarly, the survival function of {¥;|¥; = x;, j# i}, denoted by GilxisXg), is

Gilxi;x }—L‘Ep{—l {.11 +2& +E XX+ oo +JL‘,3___”H.1'J”. i44)
Jek

i
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Mow, the ratio

Gi(xi:x;) "
Fi(xi5x:) ke

1% Increasing in x;; that s,

(x, ﬂ{x;::.g}) 5,,,( N, >x ) F=10 (4.6)

J"!'j 0y .

On the other hand, the random variable {X;|X; = x;, j # i} has an exponential
distribution that is DFR. Combining this observation with (4.6), it follows from
Theorem 3.1(a) that (4.2) holds. Now, applying Theorem 3.3 to this example, we
get that C; 1s decreasing in A, where C3; denotes the copula of (X, X;)

Application 4.1 (Order Statistics): Let X,,.... X, (¥,,....¥,) be a andom sample
from a univariate distribution with strictly increasing distribution function F ().
Eurluszuwiuz[E] has shown that F =, Gimplies X, =, ¥;,.i=1,....,n, where
Xin (¥e,) is the ith-order statistic of the X sample (¥ sample). We will strengthen

this resull o prove that F =4, G implies

disp
I:XI:JH“‘!'XM:M u“dnp I:YI me ’}:I:JI}" [.4'?}

We first show that in the case of random samples from continuous distribu-
tions, the copulas of order h[u[i!ilil.‘hu.l‘l_‘ independent of the parent distributions. Note

that ¥,., = G 'Fi(X.,). i= .n. Since the function GG ' F is strictly increasing, it
follows from Theorem 2.4. ‘i nl Nelsen [17] that C(X,,.X,.,) = C(Y,.,.Y,.,), for

i.j =1,...,n.1t now immediately follows from Theorem 2.1 that F =
(4.7).

Since the order statistics from a random sample are positively associated (cf.
Boland, Hollander, Joag-Dev, and Kochar [4]) and since (X1.,,.... X, and (¥,
¥, .. ) have the same copula, the conditions of Theorem 3.4 are satisfied. Hence, for
i.j €1{1,...,n},

Covih X, )L h(X

= g O Implllﬁh

)= Covih, (Vo) ha( ¥,

for all increasing convex functions fi; and fi; for which the above covariances exist.
This result was originally proved by Bartoszewicz [2] using a different method. A
similar resull can be established for record values,

Application 4.2 (Record Values): Let X,,....X,.... (¥.....¥,,...) be a sequence
of random variables from a univu.riutudi.u[rlbumm F' (7). luis kmmn that F=4, . G
implies & Zrp R, where R (R}) is the mth record value of the X sequence (¥
sequence ). We first show that in the case of random sequences from continuous
distributions, the copulas of record values are independent of the parent distribu-
tions. Then it will immediately follow from Theorem 2.1 that F =, G implies
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LRE oo RE YNGR (RS iR, (4.8)

g s oy st

Let Mix) = —log Fix); then the distribution function of RY can be expressed as
Fex(x) = G(M(x)), where GG, x) is the distribution function of a Gamma random
variable with scale parameter one and shape parameter m. Similady, let Nix) =
—log €5 (x); then the distribution function of R is Fyrix) = G, (N(x)). Now, both
MiX))... . M(X,),... and N(¥p),... ., N(¥,),... are sequences of independent and
identically distributed (ii.d.) exponential random variables with mean one. Using

this observation, it follows that

s

(Roysee s B )= (M7YRL ) . MRS D)

and

(B iiie i B ) = (N T HRE Y cens N R

where R, is the mth record value of a sequence of ii.d. exponential random vari-
ables with mean one.

SRE i jx: .
C x (H s+ “s“u} = FR"‘I:FRﬁIII:uI }w“ sFR;}II (H“”
=-F|:Rf|-|_5 _f.'::llll:ul}s“w-ﬁﬁﬂﬂ _f;l;ﬁll I:u.u}}
= PI:M_II:R:H} == M_I(J‘_Im._l:ul}s“*sM_ll:R;‘uﬂ}
=M'Gy (1))
= PR, =G_l(u),...R; =G.'(u,))
=P(N"' (R, )=N'G, ! (u)),....N"' (R} )=NT'G. ()
= PRy =F,'(u).....R} =Fg'(u,))
m m,
L
= C® (1w, ooty
This proves the desired resulL
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