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We consider three-dimensional sinusoidal frequency model in a random field. Three-dimensional
frequency model has wide applications in statistical signal processing. In this anticle, we mainly con-
sider the wsual least squares estimators and the estimators that can be obtained by muximizing the
perodogmm function. We obtain consistency and asymptotic normality prmoperty of both the estima-
tors. It is observed that they are asymptotically equivalent. Finally we penemlize the results to the
multi dimensional case.
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1. Introduction

In this paper, we consider the following three-dimensional {3-D) frequency model:

o
yimy, na, n3) = Z [AE 1:0!-‘.{:1.)-.5:, + J!glj:g + J'!_alf_q}l -+ Bf' !ii[!{!!|)-.5:| + n_:.}'-.i'_; + H_q)-.i'_;}l]

k=1
+ Xi{n, na, n3), (1)
forn;=1,..., N, j=1,2 and 3. Here, A} and B} are unknown real amplitudes and

)-.j:l i )-.5:2 and )-.1’3 are unknown {requencies, )-.j:l i .i'-.iz'2 i )-.5:3 = (0}, 7). The ermror random variable
X(ny,na,ny)is from a stationary random field, and it satisfies Assumption 1 (will be defined
in the next section). The number of components ‘p’ is assumed 1o be known. Given a sample
[yl na,n3)m;=1,..., N, f= 1,2 and 3}, the problem is to estimate Ag's, B;'s and
)'..l:_.i R

This is an important problem in statistical signal processing. See, for example, the sie
hitp:/fwww. mddsp.enel ucalgary. cafpeoplebrutonfe nel699/chap 1 _ 2002 pdf of Professor Len
Bruton, where the author has demonstrated several applications of this particular model in
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signal processing. For some other applications on multudimensional (m-D) perniodic signals,
such as the radar imaging of scatterers, real aperture radar imaging and m-D NMR data, the
readers are referred 1w Hua [ 1], Liang ef af [2] and Chylla and Markley [3].

Note that model (1) is an extension of the one-dimensional ( 1-D) frequency model

p
yin) =" [A] cosinr)) + BY sin(nd{) ] + X(n). (2)
k=1

Here, {X{n)} is a sequence of 1-D stationary linear process satisfying the 1-D analog of
Assumption 1. For a detailed description of X (n), see Assumption 1 of Kundu [4]. Note that
model (2) is a very important and well-discussed model in time series and signal processing
literature. Several authors, for example, Fisher [5], Hannan [6, 7], Walker [8], Kundu [4,9]
and Rice and Rosenblatt [ 10], consider this or similar kinds of models and discuss different
properties of the comresponding estimators. Stoica [ 11] provides anextensive listof references
related to model (2) all that tme.

It may also be mentioned that the 3-D model (1) is also an extension of two-dimensional
(2-D) frequency model, which can be written as follows:

vim,n) = Z [A:: um{ml” + n ”&}' -+ B“ 5in {m)-.“ - nuf}l] + Xim,n). (3

k=1

Here, ) and pf are unknown frequencies and { X (m, n)} is a 2-D sequence of a stationary
random field. This is also a very important and well-studied model in statistical signal
processing and texture analysis. Several authors consider model (3) or 1ts vanants under
different assumptions on X (m, n). See, for example, Barbieri and Barone [12], Cabrera and
Bose [13], Chun and Bose [14], Hua [15], Kundu and Gupta [16], Lang and MeClellan [17],
Kundu and Mitra [18], Nandi and Kundu [19], Kundu and Nandi [20, 21]. Rao et al [22] and
Mitra and Stoica [23]. Estimation of different parameters, asymplotic properties of different
estimators and Cramer—Rao lower bound are obtained when X ({m, n)’s are independent and
identically distributed (i.i.d.) or when they are from a stationary linear process.
We use the following notation in this article.

n=i{n, N, ny) =, j2. Ja
n—j=(n— ji,n — j2.n3— ja) A= (h dads)

b= Gursdaada) A = (AL Ah Al

O, = (Ag Be, d. s, la) ﬂ“ (AR By kg K hyy) Ttk =100, r
0=(0....0,) &=0....0))
N=N -N-Ny Ny, =min{N,, Ny, Ny}
N NN M
";1 - ;E ;E ,E 12 Z—'h J‘Z—"- J*—Z—'ﬂ-
sup = sup a.s. = almost sure convergence;

A ik Xy
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P,
iy = Z‘.A.’: cos(rhyy +Rakga +r3dgs) + By sindn Ay ok + radgs))
k=1
b
= E (Ag cos(n - &) + By sin(n - A;)).
k=1

The main aim of this article is 1o consider the 3-D frequency model and o study different
properties of the estimators under the linear stationarity assumption on X (n). The stationanty
assumplion we impose on X (n) is & natural extension from 1-D or 2-D case w the 3-D case.
The two estimators we propose are strongly consistent and their asymptotic distributions are
also obtained. 1t gives an idea of the rate of convergence of the proposed estimators and they
can be used 1o construct confidence bounds of the unknown parameters. We propose mainly
two different estimators. The first one is the usual least squares estimators (LSEs), which can
be obtained by mimmizing

3

N » 2
¥ [1;{n} — Y (Accos(n- k) + By sin(n -lk}}:| (4)

n=1 k=1

with respect to the unknown paramelers.
The second estmators are called the approximate least squares estumators (ALSEs) and
they can be obtained by maximizing the pedodogram function defined as follows:

% iz {n}m“""”i i (5)

n=1

Note that once the frequencies are estimaled, the unknown parameters A s and By 's can be
obtained by using the simple regression technigue and it will be discussed in section 3. 1t
is observed that the LSEs and ALSEs are asymptotically equivalent under Assumption 1. Both
of them provide consistent estimators and they have the same asymptotic distribution.

The restof the article is organized as follows. In section 2, we provide the consistency of the
LSEs and also obtam their joint asymptotic dismbutions. The consistency and the asymplotic
normality results of the ALSEs are discussed in section 3. Section 4 extends the results o the
general m-D case, and finally, we conclude the article in section 5.

2. Consistency and asymptotic distributions of the LSE"s

In this section, we provide the consistency of the LSEs of the parameters of model (1). For
brevity, first we consider p = 1 and in that case, we will use &, )-.f:, j=1,2.30 and §*
suppressing k. Therefore, the LSEsof 8 = (A", B%, Y, 1%, 1Y) can be obtained by minimizing

N
Ox(0) =) (y(n) — ()’ (6)
n=1

with respect 10 @ = (A, B, Ay, ks, h3). The LSE of 8" will be denoted by 0=
(A, B,k ha.hs). We need the following assumptions o prove the consister v of the LSEs.
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ASSUMPTION | Let uy denote the set of positive integers by Z (X (n,na n3d: ny.na,ny € 2}
can be wepresented as follows:

=

Xin) = E al fi. ja. fadelng — jiuna — ja.ny — j3),

j=—mc
where al i, fa. j3) s arve real constants such that

=

Z la(fi. fa. j2)| = oc,

f—

and {e(n), na, n3);ny, o, ny € Z} is a seguence of i.0 d. real-valued random variables with
. - 2
mean Zemw and finite varianee o,

AssumpTion 2 Let A" and B" be arbitrary real numbers and |A"| + | B"| = (.

THEOREM 1 Under Assumptions I and 2, the LSEs of the pavameters of model (1) are strongly
Consistent.

Proaf of Theovem I See Appendix AL

Now, we oblain the asympiotic distribution of the LSEs of the parameters of model (1).
First, we consider the case p = 1, and then we generalize the result for arbitrary p. We use
the following notation. The first derivative of Oy (8)is a 1 x 5 vector as

!?fvl[ﬂ}=|:ag~w}. dQn () QN0 FQN16) HQ.»I['B}}

dA aB T Ak T dka T dky

and 'y (#) is the 5 x 5 second dervative matrix of Q@ (#). Therefore, expanding 0, (#
around ", we obtain

O (8) — Oy (8% = (0 — 6”05 (8), 7

where @ is a point on the line joining between 8 and 8. As @', (8) = 0, therefore equation (7)
can be wrillen as

& - -1
@—0" D" = -, 6" D [DQ{.:. w}.n] 3 (8)
whene
N0 0 0 0
0 N-W2D 0 0 0
Pl 18 0 NpINTUR 0 0 :
0 () 0 N}—I N 0
0 ] 1] 0 Nj—l N

We will show that [}Q’I.C.{E}l[} is a full rank matrix as. for large Ny, therefore for large Ny,
DO} (6)D is invertible as.
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The different elements of Q' (6")D are as follows:

il i
A Oni(8")y =-2 Z X(n)cosin - A",

n=1

i il
9B Oni(f")y=-2 Z X(n)ysin{n-A"),

n=1
J i . 0. 0 0 o
o On(0") =2 Y nX(m)[A%sin(n - 1%) — B cos(n - A", fork =1.2,3.
[LEN

n=1

We need the following tigonometric results for &y, s, by € (0, 7):

N N

1 a ]- 9 ].
h e osTn-A)= him — sincin-A) = =, 9
N..“_m'x - Eu 57 ) oL Ehm { ) 3 k]|
1
im — Euus{n -A)sin(n - ) = 0, (10)
Ner-o0 IV, n=1
andfork =1,2.3
N 1 N 1
L cost(n-A) = lim sinf(n- i) = =, 11
.\',.I.—w: N anu s ) .\'_.,,I—m.; NN an sin=( | 3 (11}
n=1 n=1
[ e 1
lim —— Y nicos’in-A)= lim —— ¥ nisin®(n-i) = -. (12)
Ny —ae J"UIEN E ~ Ny —ae J‘_’N ; * 6

Results (99(12) can be found in Mangulis [24]. Let us look at the mathix:
limy,, — [DO}(8")D]. The (1, 1)th element of the limiting matrix can be written as:

N e I L R ., .

lim — = lm F&Zu}s in-&) =1 (using (9)).

Ny—oe N BAT T Ny—m
n=1

Similarly, using equations (9312}, it follows that

lim [DQ,#")D] =X,

Ayp—=e

| En En
E_[Ezu E_u]

where

and

I | —

£
&4
Il
—
=
.
+
=1
T
e ] L
B L] — g
L] — ] — Buf—
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As @ converges to 8", [[}{rf{.{é}l}] converges Lo [DQI.:.{E”}D] =% =0 %0 [[}QL{E}D],
is o full rank matrix a.s. for large Ny Now, using the central limit theorem of the linear
process [23, pp. 251-256] and using the eadier mentioned trigonometric results, it follows
that [Q {E“}ID] me:rgu: Lo a S-varate normal distribution, with mean vector zero and
dispersion matnx 2a°c X, where

[

Ii {j}u“'i"""| ; (13)

and X is defined eadier. Therefore, from equation (8), we have the following result.
THECOREM 2 Under Assumptions | and 2, the {imiting distribution of
(NU2(A— A%, NUD(B — B%), NN (R —3Y), MaNY(Ra =29, NN 2R —29))

as Ny, — oo iv a S-variate normal distribution with mean vector zem and dispersion matrix
20%cE ™, where £ has the following structure

-AIF & 1{}3(?! _J;LAUIBII? _ﬁBi? _ﬁBi? —ﬁB“-
_gatgt 1(};—’1"! + B”’l 64" GAY L
1
= S S —6B8" 64" 12 0 0
( ™ ) —6RY aA" 0 12 ]
L —6RY 6A" ] ] 12 |

For the general model (1), the following assumption is reguired.

AssUMPTION 3 Let A, ..., A‘; and By, ..., B:: are arbitrary real numbers such that Af; and
Bj;’ are not simultaneowsly equal to zemw for all . The frequencies )-.‘I’j _____ ‘J"Trj’ F=1,273

e distinct.
Then the result for the general model (1) can be stated as follows.

THECREM 3 Under Assumptions | and 3, the {imiting distribution of

1/

(ND(AL — A, NUB (B — B MNP (R =40 NaN 2Ry — i),
NaN 2 (s — ay))

as Ny — oC s a S-variate normal distribution with mean vector zew and dispersion matrix
Eﬂzckz;', whew the expressions for o and Ek_l can be obtained by replacing A", BY,
.I'-.‘l', Xo, .}'-.':{' mf!: AL Bl M. Al LY, respectively. Moreover, (A, By, 3. Ao Apq) and
{Am B,,, )-.,.,,. w2 hap1) are asvmptotically independent for k # m.

3. Consistency and asympiotie distribution of the ALSEs

In this section, we consider the ALSEs of the different unknown parameters. Here also first
we consider model (1) with p = 1. As in section 3, we suppress & for brevity. The ALSEs of
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Aq. hs and Ay can be oblained by maximizing the periodogram function

| N 12
T = Ftr |E_v{n}c"“"”| . (14)
|

|m=1

IfA = (A, &2, i3) maximizes (), then X is called the ALSE of 1”. Once we obtain &, along
the same lines as Hannan [6] and Walker [8], we propose the ALSEs of A and B as

o T .
A=~ § vin) cos(k - n}, (15)
s . -
B= E}'{n} sin(i - n). (16)

We have the following results.
THEOREM 4 Under Assumptions [ and 2, the ALSE, X converges to A almost surelv.
Proaf of Theovem 4 See Appendix B.

THEOREM 5 Under Assumptions I and 2, the ALSES, Aand B, as defined in equations (15)
and (16), are strongly consistent estimators of A and B", respectively

Proaf of Theorem 5 See Appendix B,

THEOREM 6 Under Assumptions [ and 2, the limiting distribution of

NUAA — A%, N8B — B, MNP (3 — 20, NaNTY2 (0 — 2D,

J"i'r_?l J||'||r[|‘l,-3:| {i:‘ o )u.“}l .

as Ny, — o, is same as that of the LSEs.

4. Multidimensional model

In this section, we consider the m-D frequency model. For avoiding repetitions, we mainly
consider the LSEs; similar results follow for the ALSEs also. For brevity, we use the following
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notation in this section, and they should not create any confusion with the previous sections.

n=imny,..., Rye) j e {_ﬂ ----- j.ur}
n _j = (n — _ll:| ----- Ry — jur} A=k .. Al
Moo=kt i) AL = 00000,
Br= (Ap, Bridnaeo i) B9 = (AL BLAY, .. A0 fork=1,..., P

0=0,.....0,) 0°=@.....00

N=MN.,..., N J"i'r”:' = miﬂ{hﬁ ..... J"i'l:."}

N N N

n=1 =l =1 J=—mc | =— fu=—00

it = Z{Ak Cos(n hyy + .o Rgdop) + Brsindndyy + o+ Badin ))
k=1
p
= Z{Ak cos(n - ) + By sin(n - ) .

k=1
With the above mentioned notation, the most general m-D sinusoidal model is as follows:
o
y(m) =" [A cos(n - 1)) + B sin(n - A)] + X (n). (17)

k=1

Here, A}, B; and A} satisfy similar assumptions as defined in section 1 and X (n) satsfies
assumption 4, which is an obvious modification of Assumption 1.

AssuMPTION 4 X (n) can be represented as folfows forny, o, Ry € £
=
X(m) = Y a(jen—j).
J=—m

where al j)'s are real constants such that

Z la( j)l = oc,

J=—¢

and {eln);ny. ..., Hy € Z}isa m-D sequence of i i d. random variables with mean zero and
= - a
Jinite variance a-.
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First, we consider LSEs of the unknown parameters and they can be obtained by minimizing
N

On(6) = (y(n) — u(8)), (18)

n=1

with respect o the unknown parameters. For notational simplicity, let us consider p = 1, ie.
we consider the following model
yin) = A"cos(n - A") + B" sin{n - ") 4+ X (n). (19)

IfA, B.A(= (1. .... o)) denote the LSEs of A, BY and A", respectively, then we have the
following results (the proofs are available in Appendix C).

THEOREM 7 Under Assumptions 2 and 4, A, B and L are strongly consistent estimators of
A", BY and 1", respectively.

THEOREM 8 Under Assumptions 2 and 4, the limiting distribution of
(NUD(A — A%, NY(B — B, NNUP(Ey =29, ..., Nu NP, —30))

as Ny, — ocis a{m + 2)-variate normal distribution with mean vector zero and dispersion
matrix 2a’cE ™", where the matrix £~ has the following structure

FA® + (3m + 1)BY —3mAE? —6B" —6B8"7
—3mA" " (3m + DAY + B¥  64? 64"
o R, —68" 6A° 12 0
( A0 + E:rf}
—6B" 6A" 0 12|

and ¢ is same as defined in (13), but with the new notation.

This distribution says that provided all Ny 's are same, all frequencies can be estimated with
equal accuracy whatever be the dimension of the model, whereas the asymptotic variances of A
and B increase with increasing number of dimension. In addition, the asymptotic dependence
between A and every frequency is same in each dimension. The same is roe for B also.
Moreover, Theorem 8 can be extended for arbitrary p in the same way as Theorem 3.

5. Conclusions

Inthis article, we first consider the 3-D and then the m-D sinusoidal models in the presence of
additive stationary errors. We have considered two different estimators mainly the LSEs and
the estimators obtained by maximizing the periodogram function, known as the ALSEs. We
have obtained the consistency and the asymptotic distributions of both the estimators, and it
is observed that the two estimators are equivalent. Owr results generalize several 1-D or 2-D
results to the m-D case. One important problem that we did not address 15 the computational
aspects of the two estimators. It is well known that even for one or two dimensions, the
computational problem is quite challenging; therefore, itis expected that for higher dimension,
the problem will be more challenging. More work is needed in that direction.
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Appendix A
We need the following lemmas to prove the necessary results.
LEmma 1 Let us denote

Ssm={0:0=(A, B, %, 2,33),10—0° =55 |1A— A% = M, |B- B = M},

Jorany § = Oand for some M < oo, if

liminf inf E[Q.u[ﬁi}l—g.u[ﬁi“]:41 as., (20)

M= EF';...”

then # is a strongly consistent estimator of 0",

Proafof Lemma 1 The proof is similar 1o that of Lemma 1 of Kundu and Nandi [21], see
also Wu [26]. [ |

LEmma 2 IF X(n) satisfy Assumption I, then as Ny, — o,

SUF‘ EX{H}'L“"M — 0 ax
n=1 |
Proof of Lemma 2 Ohserve that
1 | i | . N
sup — ZX{H}L‘”'“ Z Z a(jle(n — j}Lnnlj
» N |n=1 |n_1j_—m_ |
; . | arnlj|
< 2 la@isup 3 em—pe™?|.
J=— A |n_1 |
Therefore,
L, O W L -
( Z {H}L“"“) = Z la(DIE (Sup Zcin—j}u‘“""-‘)
j——ﬁ"l A |n=1 |

12

¥

< i al (sup|ZL{n j}“'"“i) - @21

n=1
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Mow consider

HUP|ZL{H j}lL‘“'”i

n=1

il N

= % E sup (Zu{n — jicosin - l}) + E sup (Zc{n — jisinin - l}l) . 22)
A A

n=1 n=1

Using the 1-D result of Kundu [4, p. 225], it follows that the right-hand side of equation (22)
is of the order

1123

% [N+ N = i,

Therefore, the right-hand side of equation (213 is (N~ Now if we take any subsequence
[N} = (N} - NJ.NJ} of [N}, where § = 4, then the right-hand side of equation (21) is
summable over that subsequence. Let us take § = 3, therefore by Chebyshey’s inequality and
using the Borel-Cantelli lemma, we can say that

o —
: Ea= o I X
h:p T |ZX{I']}IL —+ 0 as.,

n=1

N3 i
as Ny oo, here } 7 = Zm_l Zm | En _- Now consider

S ‘-‘,up %upii i i X{I‘]}IL'“”‘:' Z Z; Z X{H}LHHMI

=1 ni=1 m=lI =1 m=1m=I

where R denotes therangeof By, Ry and Ryand Nj <= By = (N + 17 Nj < Ry = (Na+1)°,
Ni <= Ry = (N3+ 1)°. Observe that

J

e sup sup|zl i Z X (m)e!md) ZI i i X{n}l““'”i

I.'||—I.'|'- | oa=l1 =1 ma=1 ni=l

= "-'UP “’UPIZ Z Z X{H}L‘["MI + (two similar terms)

mnp=lny=l .= \l,‘+|
| ¥ Ry R,
+ — sup sup |E E X{n}lc‘”"j‘:'| + (two similar terms)
N4 ek 1=l iy =N+l =N 41

||\,+|: (N1 (N1 |

|Z Y, 2y X“’}"“"“|

.'||='h +I.'|-.—'h-.+l.l|a. 'h +1
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Mow consider

e} qup sup IZI i Z X(n)e'™ J.nI

m =1 1=l ny=Nj+l

| R Nt '

S= sup Y} |Vl Y Y.
i

E ) ¥ 5
3 Ay Ri<iNi41) "3=~:li+| E J|'|=N;+|

whene
|

ol v !'[M Ny Z Z X (mye!trea)

m=1un=1 |
From Kundu and Nandi [21], it follows that E|¥ (n3)] = Q(N, Na)™ | therefore
[ N3+ 1F
E(= ) 1Yl ] = 0(MN) % ON77).

]
N3 it
T m=Nj+1

Using the Borel-Cantelli lemma, it implies that
NE M |
(33 3 x| 0 s
j=1na= Lag=N341 i

MNoww constder the term

(M5 41)7
| i
—aup s-up X(ne!™| < = Y 1zim),
1=l ya= 'h'-.+| =N+ 1 2 n'-=.'h'§+|
whene
Niom |
1Z{ns)] = - sup sup |E Z X{n}.;ﬂmu.m.mn|_

19Y9 Ay Ny Ry = (N3+105
1 4%y ApAa Ny Ry s+ |“|=|m=.\';:+| |

It 15 observed in Kundu and Nandi [21] that

E(1Z(n)]) = O(N;W/YN,
therefore
(el _
E(5 X 1Zm) = 0N, (N N3) ).
a ]
= ma=N7+1

Again using the Borel-Cantelli lemma, it implies that

X{H}IL‘“' J.:|

N" hup aup — 0 as

|“I |.l|'-—'h-.+|m 'h-|+|
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Then, the term

|r\|+|; (Ma1F (M1 | (N4 M (ALY

Z Z Z X(n)e'™)| < 'vi Z Z Z IX(n). (23)

.'||—'\|'I +1 .'|'-—'h-.+l m—'h+| .l||=.'h'i‘+l .'|1=.'h';+l m=.'h'i.‘+|

k.up

As the mean-squared errors of the right-hand side of equation (23) is of the order
OUN NaN )~ 3} Litalso converges to zero using the Borel-Cantelli lemma and that proves the
lemma.

Following the proof of Lemma 2, it can be shown that as Ny, — oo,

| ]
| NJq +1 hl.Jc-.+|J,‘u.-

sup i Zn n, Yy X{n}m‘“'“! —s 0 as. 24)

n=1

fork; =1,2,...and j =1,2,3.
Note that Lemma 2 is a very strong result. It extends several 1-D and 2-D results 1o the 3-D
case. |

FProof of Theprem 1 Nole that

1 R 5. B
2 (Qn(0) — On(8%) = EZ{H{EH}—MW}} - EZX{H}{M{EH}—M{H}}- (25)

n=1 n=1

Observe that the second term of the right-hand side of equation (25) converges 1o zero because
of Lemma 2. Therefore, using Lemma 1, 1o prove the consistency of 8, it remains o prove that

liminf inf f(f) =10 as, (26)

M=o fes,,

1 ;
where f(f) = = Y (1(8") — (). Consider the following sets

=[0:0=(A,B,0.0.1),|1A— A"| = §,|A] = M, |B| < M},
={0:0=0(A,B, M2, 03),|B—BY =4, 4| < M, |B| < M}, (27)

A={0:0=(A,B A do.ha) |l — Al 28, |A| = M, |B| =M}, k=123
then 55 a0 © Az U By U A U Ay U Asg. Thus, to prove equation (26), 1018 ¢nough 1o prove
that

liminf inf f(#) = 0 as, (28)

Nip—oe fep
where R is any one of the sets defined in equation (27). First suppose 8 = A, then

N %
liminf inf — E{uw”}—uw}}——m“ ,-’1} |.m Zu}s n-A) = € o0 &8

Ay — o0
M Beas N n=1 n=1

Similarly, it can be proved for other sets. This proves the theorem. |
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Appendix B
To prove Theorem 4, we need the following lemma.

LEmma 3 Let us denote
Le={k=(Ada.Ma)ihi Ao s € (0,7m), A — A9 = 3¢},

Jor any ¢ = (L If there exists ¢ = 0, such that

1
lim sup sup — [f0)—1a%] <0 as.,

M=o Jep, !
then h — W a.s as Nyjy — o<

Proaf of Lemma 3 The proof follows along the same line as Lemma 1 and it is omited. W

Froaf of Theprem 4 Consider

3

N =
% [10)—10%] = [;_J ¥ (A%cos(n - 1%) + Bsin(n - 1%) + X(n)) cos(n -1}}

n=1
1

1 N . L 2
+ " Z (A" cos(n - 1"y + B"sin(n - ") + X(n)) sin(n -l}:|

L n=1
2

Iy
_ i'v Z (A" cos(n - ") + B"sin(n - ") + X (n)) cos(n -1"}}

n=1

2

N 2
- LV Z (A" cos(n - 1") + B"sin(n - ") + X (n)) sin(n -1”}:| ;

n=1

Let us write L, = L. U La. U Ly, where
Lie={A=Qunisda)i M 2o, a €@ m), A —Afl > ¢}, 1=1,2,3,

Now using Lemma 2 and the tdgonometric identities, we have for L, [ = 1,2, 3,

. 1 [
lim sup sup — [7(x) — T (A")]
T = ) .JLFL.'. hr

N 2 N 2
1 1

= — lim su — % A%cos?m-AM| +| =% B%sin’(n-i°

map [ 3 a2t +[ 3 w2

i n=1 n=1

1 ¥ ¥ i

= —1 ( + B ) =< () a.s
Therefore, the result follows using Lemma 3. B

LemMA 5 Suppose L is the ALSE of A" and D, = diag {N," NN } then

THIES L) e | G
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Proafof Lemma 5 Let us denote the 1 x 3 fisst derivative vector of T{d) by I'{3) and the

3 % 3 second dervative matrix by I"(3). The multivariate Taylor series expansion of I'(L)
around A" yielkds

Iy —I'" =G —a"1" ).
where X is a point between % and A%, As T'(L) =0, we have

- G g
(A—2"D7' = - [F[u"}m] [ED'I {1}[}.] :

Let us consider the different elements of (1/N{A"D,. Note that the &th element is

. 1] N N
V..l = d;{i : ™ 2...#.,- [Z_v{n}cus{n -1"}} g [—an}‘{n} sin(n -1"}}
INE = INE = INT

n=1 n=1
2 d N
+ N; - N2 |in=1 vinm)sinin -;Lﬂ}.:| . [gnk_«;{n} cos(n -J..“}:|

n=1

1 s _
=2 [F Z (A" cos(n - ") + B" sin(n - A") + X (n)) cos(n -1”}:|

N
* Iile E:zk {Ai'unsin A+ BYsinin - A" + X{n}} sin(n - lu}i|
12| i (A%cos(n - A") + B"sin(n - 1) + X (n)) sin(n - 17)
N n=1

P
® [’Vk = an (A" cos(n - 1") + B"sin(n - L") + X (n)) cos(n - J._“}:|

n=1

o) (l,-i“) ® (13”) +2(13”) * (la“) =0, k=123
2 4 2 4

Thus (1/M)IA"Dy — 0, almost surely. In a similar way, it can be shown that
[(1/MDI@)D ] — (1/24) (A” + B ) L therefore the result follows. ]

el

FProof of Theorem 5 Note that

N

T 2 [ 1] 0 - 1] . N
A= FE{fi cos(n - ") + B"sin(n- ") + X(n)) cos(n - X). (29)

n=1

Using Lemma 2, it follows that as N, — o

3 N .
jEX{n}ms{n-l}—rﬂ as.

n=1

Expanding cosi(n - A) around the point - A% by Taylor series and using Lemma 5, it follows
that as N, — o¢

5 N :
= EA”uus{n Meosin-d) — A%, as.

n=1
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and
3 tad
e 0 My enein - 1) — :
NEA sin(n - A")cos(n-1) — 0, as.
n=1
Similarly, it can be shown that B — B almost surely, there fore the result follows. |

Proaf of Theorem 6 Observe that

N

N
%Q.\'{ﬂ} = % Z _1.‘{I1}I2 — % Z_r{n} {Acos(n-A) + Bsin(n-4))

n=1 n=1

N
+ % ; (A cos(n - ) + Bsin(n - &)

N

1 - 1
=~ D - S In(0) + (}(N-),

n=1
whene

1 ;e : b e
~In(0) = L"-.#E”"} (Acos(n - 1) + B sin(n - 1)) — 5 (4% + B%).

n=1

Let us denote

(1 Ay (0) 1 3Jy(0) 1 3Jy0) 1 aJy(@) 1 a_rh.w})

1 =
— S8 = - ; - . - s ; . %
N o dA N dB Noodky N dla N dds

N
After some calculations, it can be seen that
A
1 dJyi8" 2 i ( 1 )
_— = — Xinjcosin-4")+ 0| —
N a4 5 2 XEyoos(a - 1) N

n=1

. 0 N
13n8) 2 Y X(msin(n-1%) + 0 (%)

N 4B F"ﬂ (30)
1 6@ 2 in X () (—Asin(n - 1%) + B® cos(n - 1%) + o( 1 )
—_———— k =T b 5 z ; IR 1
N kg o ot
fork=1,23.
Therefore,
oy
O(1)
Q) (8") = —J, (8" + | O(NaN3) | (31)
O(N, N3)
CHN N

Ohserve that @ thatmaximizes Jy (#) isthe same asthe ALSE of 8. Now similar o equation (8),
we have the following:

(6 —0"D" = —[J,,(8")D|[DJ"6)D] " (32)
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Therefore, using equations (31) and (8), equation (32) can be wrillen as

i om0
| on | ]
#—6" D' = | Q8" )D+ | O(NaN3) | D | DI (D] (33)
NI N3)
i O(NN)
i (1)
O(1)
= —(0—8"D'[DOL®D]+ | O(N2N3) | D [DIS@DI'.  (34)
O(NN3)
_ o] |
As

im [DJ@D] = lim [DJ@YD] =— lim [DO}(@)D]
Myp—ac T e A= o

=— lim [DQ}#")D]=-X
Ny—oe :

" (1) "

(1)

lim | O(MaN3) | D=0,
M= (N Ng)

N N

and

it follows that the (§ — 8")D~! and (8 — 8")D~! have the same asymptotic distibutions. W

Appendix C

Modification of Lemma 2

LEmma 2% Ler {X(n);iny, ..., Ryt be a stationary random field satisfving Assumption 3,
themas Ny — o¢
1 | - i) |
sup — Xine — 0 ax
l J‘Ur 1 |

| n=

Proaf of Lemma 2% Proof of Lemma 2* goes along the same line as that of Lemma 2 except
at the last stage, where we need 1o prove

R

m

” N3 NS
Z e E X{n}c‘”"” _ E L E X{I‘I}IL:'””‘:'

|.'||=I =1 =1 n,=l |

1
— SUp § 0 as 35
Ry — e 69
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Here, R denotes the range of Ry, .. ., Ryand N < R = (N + 1%, . N} <= R, = (N, +
1)%. Observe that
o,
—‘éup sup Z Z X{I‘I}IL‘“'M Z Z X{I‘]}L“"M
|.'||—I | m =l n,=1 |
EE RN
ooy *UF" *UP Z Z Z X (n)e!™¥ |:( )Hﬂdltm terms like thu:.]
B i =1 =1 1, =NE+1 |
1
+ . aup X (n)e'™ j~?|
N -|-ff 5
R, Im—l 2= gy, =N g =N3+1

x [(’;‘) additive terms like Lhis]

+ - + - ‘-:up ‘;up

355 xwem)

: rl'|-"I—|.-n_"q +1 =85+ 1 i
i | vty (Mot '
m ) RO Ay iy \arn-l:||
* |:(m e l)dddltm terms like ths] - N h;p Z Z Xin)e
.'||=.'h'i‘+l oy, =Mi+1 |

= O((N o N )YIN) 0 (N o Nom2) ™ (N N ) -4+ O (NTF)

The last inequality follows sequentially from 3-D results. Therefore, all the terms converge 1o
zero and that proves the lemma. |

Proaf of Theorem 7 Using Lemma 1 and Lemma 2%, the result follows using the similar

approach as Theorem 1. B
Proaf of Theovem 8 The proof follows exactly the same way as Theorem 2. |
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