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Abstract.  Let 'H, be a finite dimensional complex Hilbert space of dimension
associated with a finite level quantum system Ay fordi = 1,2, ... (& A subspace §
H = ’Hﬂ]@_"ﬂl =H,® H: & & H, is said to be completely entangled if it has no
non-zero product vector of the formu, ®uy & - & uy, with w, in H, for each i. Using
the methods of elementary linear algebra and the intersection theorem for projective
varieties in basic algebraic geometry we prove that

maxdim S =dds.. & —(dy +-- -+ +E =1,

L17.3

where £ is the collection of all completely entangled subspaces.

When H; = H: and k = 2 an explicit orthonormal basis of a maximal completely
entangled subspace of H, @ H: is given.

We also introduce a more delicate notion of a perfectly entangled subspace for a
multipartite quantum system, construct an example using the theory of stabilizer quantum
codes and pose a problem.
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1. Completely entangled subspaces

Let H; be a complex finite dimensional Hilbert space of dimension d; associated with a
finite level quantum system A; foreachi = 1,2, .. k. A state p of the combined system
ApAsz .. Ag inthe Hilber space

H=H @Hr&@ - @ H; (1.1}

is said to be separable if it can be expressed as

L
p=) Pipn ®p® -8 pit, (1.2)
=1

where py; is a state of A; for each j, p = O foreach i and }]_, p; = 1 for some

finite m. A state which is not separable is said 10 be entangled. Entangled states play an
important ole in quantum teleportation and communication [3]. The following theorem
due 1o Horodecki and Horodecki [2] suggests a method of constructing entangled states.
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Theorem 1.1 [2]). Let p be a separable state in H. Then the range of p is spanned by a
set of product vectors.

For the sake of readers’ convenience and completeness we fumish a quick proof.
Proaf. Let g be of the form (1.2). By spectrally resolving each pg; into one-dimensional
projections we can rewrite (1.2) as

o
p=7 gilun @uix @ @uighlun Uiz @ -+ D uigl, (13)

i=1

where u;; is a unit vector in H; foreach i, j and g7 > 0 foreach with 37 s = 1. We
shall prove the theorem by showing that each of the product vectors u; | @2 G- - - By 15,
indeed, in the range of p. Without loss of generality, consider the casei = 1. Write (1.3)as

p=qiu @up @ Bupge Bup@.  Bug|+T, (1.4)

where gy = 0 and T is a non-negative operator. Suppose 1 # 0is a vectorin o such that
Thiry = O and {uy @z @ --- @ugfdr) £ 0 Then pl} is a non-zero multiple of the
product vector wy @ w2 @ - - @ wyg and v @z @--- @ wyp € Rip), the range of
. Now suppose that the null space N(T) of T is contained in {1 @ w12 @ - - @ ugl.
Then RiT) 2 {uy) @12 @- - - @ 0y} and therefore there exists a vector 1 % 0 such that

Th)=lu) @ui2® --- B ug}.

Note that g} £ 0, for otherwise, the positivity of o, T and g in {1.4) would imply
Tlury = 0. Thus (1.4) implies

oy = lgifu ) Bup @ --- Buhlr) + 1) [y Bu2@--- @)

COROLLARY

If a subspace § © H) @ Ha @ --- @ Hy does not contain any non-zero product vector af
the form ) @ uz @ - - - @ wg where u; € M for each i, then any state with support in 8§ ix
entangled

FProaf. Immediate. O

DEFINITION 1.2

A non-zero subspace § © H is said to be completely entangled if § contains no non-zero
product vector of the form ) 8wz & --- @ ug with w; € H; foreachi.

Denote by £ the collection of all completely entangled subspaces of H. Our goal is 1o
determine max g dim §.

PROPOSITION 1.3
There exists § € £ satisfving

dim § =dyda.. .dy —(d) +da+---+dp) +k— 1.
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Proof. LetN = dy+da+- - -+dy —k+1. Without loss of generality, assume that H; = C%
for each i, with the standard scalar product. Choose and fix a set {hy, o, ... Ayl C C
of cardinality N. Define the column vectors

1
Aj

Mjj = i A =i=N, 1l=ji=k (1.5)

and consider the subspace
S={uy ®upn @ Buy, l1=i=N+TcCH (1.6)
We claim that § has no non-zero product vector. Indeed, let

O£y @rm@E---8we s weH;.

k
[Twilwijt =0, 1=i<nN. (1.7)
=1

If

E;j={il{vjluy} =0} C {1,2,..., N}, (1.8)
then (1.7) implies that

2 N A By

and therefore

k
N <) #E;
i=l

By the definition of N it follows that for some j, #E; = d;. Suppose #E;, = dj,. From
(1.8) we have

{vgluip) =0 for [ =i,82,..., J'-,,rlu,

wheref] =< fz =< --- = f"r-u . From (1.5) and the propery of van der Monde determminants
it follows that vy, = (), a contradiction. Cleardy. dim § = dyda.. . dy — (dy +--- + di)+
k—1. O

PROPOSITION 1.4

Let § < 'H be a subspace of dimension dyda . dy — {d) + - -+ dp) + k. Then § contains
a non-zero product vector.
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Proof. 1dentify H; with © for each j = 1,2, ..., k. For any non-zero element v in a
complex vector space V denote by [v] the egquivalence class of v in the projective space
F{1). Consider the map

T:PCM) xPC?) x - x FCY) - PIC" @ C% @ - @ C%)
ziven by

Tiley ] [zl oooJuel) = [uy @ --- @ ng].
The map T is algebraic and hence its range B(T) is a complex projective variety of dimen-
sion EF=|{:I‘- — 1). By hypothesis, F{§) is a projective variety of dimension djdy . dy —
(dy +---+di)+ k— 1. Thos

dimP(S) +dim R(T) =dda. .. dy — 1

=dimPC" @Ch®...@ CH).
Hence by Theorem 6, p. 76 in [4] we have
F(S)NMR({T) £ 4.

In other words, § containg a product vector. O

Theorem 1.5. Let £ be the collection of all completely entangled subspaces of 'H) ®
Ha - 3@ Hy. Then

mﬂgdimﬂ:dldg...d;—{rh +ds+---Fdp)+ k- 1.
Se

Proaf. Immediate from Propositions 1.3 and 1.4, O

2, An explicit orthonormal basis for a completely entangled subspace of maximal
dimension in C" @ C"

Let {lx}.x =0,1,2, ... ,n— 1} be alabelled orthonormal basis in the Hilbert space CF.
Choose and fix a set

E={A1,22,... Az} C
of cardinality 2n — 1 and consider the subspace
S={w, @u,.1<i=<2n—1}",

where

n—1
I = A xy, Ae .
x=0

By the proof of Proposition 1.3 and Theorem 1.5 it follows that § is a maximal completely
entangled subspace of dimension n” — 2n+ 1. We shall now present an explicit orthonormal
basis for §.
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First, observe that § is orthogonal 1o a set of symmetric vectors and therefore § contains
the antisymmetrc tensor product space T ~ T which has the orthonommal basis

|xy} — lyx)

Thus, in order o construct an othonormal basis of §, itis sufficient 1o search for symmetric
tensors lying in § and constituting an orthonormal set. Any symmetric tensor in § can be

0=x=y=n—-1;. (2.1}

By =

exprossed as

Y. f Py, (22
N=x=n—1

N=y=n—1
where fix, v) = f{y, x) and

Y fleNT =0, 1=i<2n-],
N=x=n—1

N=y=n—1
which reduces to

Y flxj-x)=0 VY0=<j<2n-2 (2.3)
N=x=n—1

0= j—x=n—1
Define K; to be the subspace of all symmetric tensors of the form (2.2) where the coefficient
function f is symmetric, has its supportin the set {{x, f —x), 0 =xr =n—-1,0= j—x =
n— 1} and satisfies (2.3). Simple algebrashows that Ky = K} = K1 = Ka—2 =0and
S=HrHSS3'K;.

We shall now present an orthonormal basis B for ;.2 = j = 2n — 4. This falls into
four cases.

Case l. 2= j=n—1, jeven

1 (21— g%
Bi=4{——w—xs {Em_,r'—m}+!j—mm}}—j|— —)
; ! i +1}[ mz=t] |2 2
1 -1 _ j
u 7 mz=!] TP (Imj —m) 4 |j —mm)), 1=p< i

Case2. 2= j=n—1, jodd

L= _
Z eHTme/+Dam i — m) + |j — mm)),

4 _,r +1 =i

B; =

Fe=1
l=p= 3 ]
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Case3. n = j=2nm—4, jeven

| (2 —2— 1/ 2—1
B; = =TT [ ,HZ=;] (lj—n+m
+1ln—m—-1}+n—m—-1ij—n+m+41})
—(2n—2— j}i%%)i“
| ((Zn-2-j)/n-1 _
) 1:'1""?"’”""3”_2_-"]{!5_{ —n+m

Win—2—j mZ=¢]

+1ln—m—1}ln—m—1j—n+m+1}),

Cased. n = j=2n—4, jodd

i [(Zn—1-7)/2)—1]
Z C—h’::.lup.n’["_’n— 1—j1
=i g =l

+i{lfj—n+m+ln—m-—-1}4+m—m—1j5ij—n+m+41}),

2n—1—j
leps~=——7— —1]-

B; =

The set By 2 L.'_:'-":;BJ.-, where Bp is given by (2.1) and the remaining B ;s are given by
the four cases above constitute an orthonommal basis for the maximal completely entangled

subspace §.

3. Perfectly entangled subspaces

Asin §1, let H; be a complex Hilben space of dimension d; associated with a finite level
quantum system A; foreachi = 1,2, ... k. Forany subset £ < {1,2, ...k} let

‘H{E} ires. @J’&E’HI,
d(E) = [ [ .
igE
s0 that the Hilbert space M = H({1,2, ... . k}) of the joint system A As .. Ag can be
viewed as H(E) @ H{E"), E" being the complement of E. For any operator X on o we
wrile

X(E) = Trpen X.

where the rght-hand side denotes the relative trace of X taken over H{E"). Then X{E)
is an operator in H(E). If p is a state of the system Ay Az .. Ag then o E) describes the
marginal state of the subsystem A; A .o A, where E = {iy,i2, ..., iy}

i
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DEFINITION 3.1

A non-zero subspace § © K is said 1o be perfectly entangled if forany E < {1, 2, ...k}
such that d{E) = d{E") and any unit veclor ¥ € & one has

Ig

(rHw]) (E) = AHE)

where [ denotes the identity operator in HiE).

For any state p, denote by S(p) the von Neumann entropy of o 1f r is a pure state in
H then S{{[ i {w VW EY) = SO 08 CE")). Thus perfect entanglement of a subspace S
is equivalent 1o the property that for every unit vector ¥ in S, the pure state |1} {yr| is
maximally entangled in every decomposition H{ E) @ H{E'), ie.,

S HEDE)) = S HEIED) = log, d(E)

wheneverd( E) = d{ E'). In other words, the marginal states of [} (W] in H{E) and H{ E")
have the maximum possible von Neumann entropy.

Denote by P the class of all perfectly entangled subspaces of H. It is an interest-
ing problem to construct examples of perfectly entangled subspaces and also compute
maxgep dim S.

Note that a perfectly entangled subspace S is also completely entangled. Indeed, if
& has a unit product veclor W = 1) ® w2 @ -- - @ wg where each w; is 8 unil veclor
in H; then (|3 E) is also a pure product state with von Neumann entropy zero.
Perfect entanglement of § implies the stronger property that every unil vector ¥ in S is
indecomposable, e, yr camnol be factorized as ) @ v where ¥ € H(E), Un € H(E")
for any proper subset £ < {1,2, ...k}

PROFPOSITION 3.2

Let § © H be a subspace and et P denote the orthogonal projection on 8. Then S i
perfectly entangled if and only if. for any proper subset E . {12, ...k} with d{E) =
d(E"),

Tr FX

(PXPWE)= 4(E)

Ig

Sforall operators X on 'H.

Proaf. Sufficiency is immediate. To prove necessily, assume that § is perfectly entangled.
Let X be any henmitian operator on A, Then by spectral theorem and Definition 3.1 it
follows that { PX P E) = a{X) /g where o(X) is a scalar. Equating the traces of both
sides we see that w(X) = d{E}_l Tr PX_If X is arbitrary, then X can be expressed as
Xy +iX; where X and X5 are hermitan and the required result 15 immediate. O

Using the method of constructing single ermrorcormrecting 5 qudit stabilizer quantumcodes
in the sense of Gottesman [1, 3] we shall now describe an example of a perfectly entangled
d-dimensional subspace in 7™ where h is a d-dimensional Hilbert space. To this end we
identify i with L7{A) where A is an abelian group of cardinality d with group operation +
and null element (). Then h'l:'s is identified with L2(A%). For any X = {xp, ¥, X2, &3, X4) 10
A? denote by [x) the indicator function of the singleton subset {x} in A7 Then {|x}. x € A7)
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is an orthonormal basis for 1% . Choose and fix a non-degenerale symmetric bichameter
{., .} for the group A satistying the following:

[{a,byl=1,la,. by = b, a), la.b+cy={a, bila,c} Ya,bce A

and @ =0 if and only if {a, x} = | forall x € A. Define

4
x, ¥} = I—[{_r,-, ¥}, X, y € A”.

1=l
(Mote that (x, ¥} denotes the bicharacter evaluated atx, y whereas (X [y} denotes the scalar

product in H = L?{A”).) With these notations we introduce the unitary Weyl operators
Uy, Vp in'H satisfying

Ualx} = la +x}, Valx) = {b, x} |x), x € A”.
Then we have the Weyl commutation relations:
Uallp = Uas. VaVo = Vasp. Vol = (a, b)Us Vo

for alla, b € A°. The family {d /U, Vy.a.b € A7} is an othonormal basis for the
Hilbent space of all operators on H with the scalar product { X|¥) = Tr XY between two
opertors X, Y.

Introduce the cyclic permutation o in A7 defined by

al{xg, X1, x2, X3, %4)) = (x4, X0, X1, X2, X3). (3.1)
Then o is an automorphism of the product group A° and

o~ (g, 11, X2, X3, x14)) = (x1, X2, X3, X4, ).
Define

T(X) = (0 + o (x). (3.2)
Let © © A7 be the subgroup defined by

C={xlxpg+x1 +x2 +x34+ x4 =0}
Define

W = (X, 02 () UxVrx), X €A (3.3)

Then the correspondence x — Wy is a unitary representation of the subgroup C in H.
Define the operator P by

Pec= d= Z Wy. (3.4)
xel

Then Pr is a projection satisfying Tr Pr = d. The range of P is an example of a
stabilizer quantum code in the sense of Gottesman. From the methods of [ 1] itis also known
that Pr is asingle error correcting quantum code. The range R{Pe) of C is given by

R(Pc) = (|} |Wxld) = |} forallxe C}.
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Our goal is Lo establish that B{ P ) is pedectly entangled in LE{A}@E.T{’} this end we prove
a couple of lemmas.
Lemma 33, Foranya,b € A° the following holds:
0, if Y3 ola; — b)) £ 0,
(alPclb) =
d=a.a*(@a)}(b.o2(b)). otherwise.
Proaf. We have from (3.1)-(3.4) that

(alPelb) =d ™" Y. (% (0 Hr(x), b {alx + b)

XX 4 dxy =0
which vanishes if Z';}:n{ﬂ; — by} # 0. Now assume that Zfﬁ]{ﬂ; — ) = (). Then
(alPelb) =d *a—b.a (a—h)}{c (a—b).bj{a—b, a (b))

= d~"a, a’(a)} (b, a2(h)}.

Lemma 3.4, Consider the tensor product Hilbert space

XA =Hy @M @ H: @ H3 @ Ha,

where H; is the i-th copy of L*(A). Then for any ({i, j}) © {0,1,2,3, 4l and a. b € A°
the operator ( Pelaj{b| Po) (i, j1) is a scalar multiple of the identity in H; @ H ;.

Proaf. By Lemma 3.2 and the definition of relative trace we have, for any xq, 1y, vo,
i £ As

{xg. [P lapb] P (0L 1D v, v}

= Z {xp, xp. x2, a3, x| Pelai bl Pe v, v, v, v, 1)
XXy, Ay eA

=d-8 5% (x. o (x)}{a, a2(a)} (b, o (h)}
X2 +x% +X4 =E i —Xn—x)

rrrrg=y bi—w—¥

% ¥, V1. X2, X3, X4, T2V, Y1, X2,%3, X))
The right-hand side vanishes if Z{ﬂ" — B} &£ xp+ x1 — v — v Now suppose that
¥ la; — bi) = 20 4+ 21 — yo — ¥1. Then the right-hand side is equal o
d7%(a, ﬂz{ﬂ}'}{hﬂzih}'}{z @j — X — X, X+ X — Yo — ¥

® Z {x2, y1 — x x4, Yo —xo)

Xy, X4EA

! 0, if xg+# w or x # ¥,

| d%a, o 2(a)i{b, a2(b)}, otherwise.



374 K R Parthasarathy

This proves the lemma wheni =10, 7 = 1. A similar (but tedious) algebra shows that
the lemma holds wheni =10, j = 2.

The cyclic permutation o of the basis {|x}. x € A7} induces a unitary operator U, in
A% Since o leaves C invariant it follows that 7, Pr = Pl and therefore

Us Pclaj(b| Pc U = Pelata)o(b)| Pe.
which, m tum, imphes that
{x1. x21(Pc|ah{bl Pe) ({1, 2DIy1. y2}
= (x1. 22| Pele ~ @) o~ )1 )0, 1D Iy, v2).

By what has been already proved the lemma follows for i = 1, j = 2. A similar
covariance argument proves the lemma for all pairs {i, j}. O

Theorem 3.5. The range of Pr iv a perfectly entangled subspace of L’;{A}gﬁ and
dim Pr = #A.

Progf. Immediate from Lemma 3.3 and the fact thal every operator in L2(A®)isalinear
combination of operators of the form |a){b| as a. b vary in A7 O

Note added in Prool. The example in §2 has been recently generalized and simplified
considerably by B ¥V Rajarama Bhat. See arXiv: quant-ph/0409032 V1 6 Sep. 2004,
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