A NOTE ON THE DISTRIBUTION OF THE STUDENTISED D'-STATISTIC

Βv

S. N. ROY

STATISTICAL LABORATORY

INTRODUCTION

In an earlier paper' published by the author jointly with Mr. R. C. Bose the Studentised D'-Statistic was defined, its statistical use and object were fully set forth and its sampling distribution was worked out. It is the object of the present note to considerably simplify the derivation of the distribution obtained there, by a twist in the geometrical arguments employed in that paper and a consequent change of procedure. This will incidentally throw fresh light on the use of hyperspace geometry in tackling this class of problems. To make this note intelligible even without reference to the earlier paper', or in other words, to make this note practically independent of that, we have to take over three small sections from that paper, where definitions and notations were laid down and certain preliminaries were also introduced which will suffice for our present purpose,

\$1. PRELIMINARIES.

Consider two samples Σ and Σ' of sizes n and n' from two multivariate normal populations II and Π' with the same set of variances and covariances a_0 $(i, j=1, 2, ..., n_p)$ where $a_0 = p_0$, a_0 , a_0 , and a_0 being, the standard deviations for the i-th and j-th characters respectively, and p_0 the correlation co-efficient between the i-th and j-th characters. The matrix $\|a_0\|$ will be said to be the common dispersion matrix for the two populations. Let a_0 , a'_0 (i, j=1, 2, ..., p) denote the respective variances and covariances of the samples Σ and Σ' , so that $\|a_0\|$ and $\|a'_0\|$ are their respective dispersion matrices. Let a_i , a'_1 (i=1, 2, ..., p) be the means for the i-th character for the populations Π and Π' and let a_1 , a'_1 denote the corresponding quantities for the samples Σ and Σ' .

Let us set

$$c_0 = \frac{na_0 + n'a'_{11}}{n + n'}$$
 ... (1.1)

Let e^{it} as usual denote the minor of e_{ij} in the determinant $|e_{ij}|$ divided by the determinant itself. A like definition holds for e^{it} . Then the Studentised D²-statistic is defined by

$$\oint D^{3} = c^{11}(a_{1} - a'_{1})^{2} + c^{23}(a_{3} - a'_{2})^{3} + \dots c^{2p}(a_{p} - a'_{p})^{2} + 2c^{22}(a_{1} - a'_{1})(a_{1} - a'_{1}) \\
+ \dots \dots 2c^{p-1+p}(a_{p-1} - a'_{p-1})(a_{p} - a'_{p}) \dots (1^{1}5)$$

Likewise if Δ^{1} is the population value of D^{2} , then

$$\dot{p} \dot{\Delta}^{3} = a^{11} (a_{1} - a'_{1})^{3} + a^{77} (a_{2} - a_{3})^{3} + \dots a^{27} (a_{p} - a'_{p})^{2}$$

 $+ 2a^{13} (a_{1} - a'_{1}) (a_{2} - a'_{3}) + \dots 2a^{2-11} a_{p} (a_{p-1} - a'_{p-1}) (a_{p} - a'_{p}) \dots (1.2)$

We know that the joint distribution of the sample readings x_0 , x'_0 , (i=1, 2, ..., n), k=1, 2, ..., n; k'=1, 2, ..., n; is

Const.
$$e = \frac{1}{4} \sum_{j=1}^{7} \sum_{l=1}^{7} a^{ij} \{ n(a_1 - a_1) (a_j - a_j) + n'(a'_1 - a'_1) (a'_1 - a'_1) + (na_0 + n'a'_0) \} \times \Pi dx_{ib} \Pi dx_{ib} \dots (1.25)$$

where Π dx_{tk} stands for dx_{11} dx_{12} dx_{22} dx_{2n} and a similar meaning attaches to $\Pi dx'_{tk}$.

Sample Σ can be represented in the usual Fisherian space S_n of n dimensions, by the points with co-ordinates

$$(x_{111}, x_{12}, \dots, x_{1n}), i = 1, 2, \dots, p.$$
 ... (1.3)

or what is the same thing, by p vectors x_i joining the points to the origin. We take another space S_{in}^* of i^* dimensions absolutely orthogonal to the former space, and represent in it the sample Σ' by p other similar vectors. Let

$$y_{th} = x_{th} - a_{th} \quad y'_{th} = x'_{th} - a'_{th}$$
 ... (1.35)

where $i=1, 2, \dots, k$; $k=1, 2, \dots, n$; $k'=1, 2, \dots, n$

Let y_i , y'_i denote the vectors, with components $(y_{i1}, y_{i2}, \dots, y_{in})$ and $(y'_{i1}, y'_{i2}, \dots, y'_{in})$ lying in the space S_n and S'_n respectively. Then the vectors y_i lie in a flat S_{n-1} of n-1 dimensions, perpendicular to the equiangular line in S_n . Similar considerations apply to the vector y'_i .

Let O be the origin of co-ordinates and let M_1 be the point on the equiangular line in S_n such that $OM_1 = \frac{1}{\sqrt{n}}$ times the projection of x_1 on the equiangular line. Then $OM_1 \approx a_1$. In the same way we can find M'_1 on the other equiangular line such that $OM'_1 = a'_1$. Also if y_1 , y_1 is the scalar product of the vectors y_1 and y_2 , then clearly

$$a_{ij} = (y_i, y_i)/n, \ a'_{ij} = (y'_i, y'_i)/n'$$
 ... (1.4)

Let us now take a new set of (n+n')p variable $a_1, a_1, z_1, z_2, \ldots, p; k=1, 2, \ldots, n-1; k'=1, 2, \ldots, n'-1)$

such that

(i)
$$a_i = \frac{1}{n} \sum_{k=1}^{n} x_{ik} \ (i=1, 2, \dots, p)$$

(ii)
$$a'_i = \frac{1}{n'} \sum_{i,j=1}^{n'} x'_{ik'} (i=1, 2, \dots, p)$$

STUDENTISED D'-STATISTIC

(iii) z_{ik} (k=1,2,.............n-1) are the components of y_i along any n-1 mutually orthogonal lines in S_{k-1} . Then z_{ik} is naturally a linear function of

(iv) Similar considerations apply to z'n.

The distribution (1:25) can now be written in the form

$$con t \times e^{-\frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} \alpha^{i_l} [n(a_l - a_l) (a_j - a_j) + n'(a_1' - a_1') (a_1' - a_1') + (n a_0 + n' a_0')]} \times \prod_{l=1}^{n} da_l \prod_{l=1$$

It should be noted that a_0 's are expressible purely in terms of z_0 's and a'_0 's are expressible purely in terms of z'_0 's

Next we introduce the new variables $a_1 - a'_1$ and $a_1 + a'_1$ in place of a_1 and a't and integrating for $a_1 + a'_1$ we get the distribution in the form

$$const \times e^{-\frac{1}{2} \sum_{i=1}^{n-1} \sum_{i=1}^{n-1} a^{ij} \left[\frac{n}{2} \cdot \left\{ (a_i - a_i^*) - (a_i - a_i^*) \right\} \mid (a_i - a_i') - (a_i - a_i') \right\} + N_{C_{ij}} \right]} \times \prod_{i=1}^{n} d(a_i - a_i') \text{ If } dz_{in} \text{ If } dz_{in}' \dots (1.5)$$

where cu is given by (1.1) and

$$\frac{2}{n} = \frac{1}{n} + \frac{1}{n'}, \quad N = n + n' \qquad ... \quad (1.55)$$

Ju the plane of the equiangular lines of S_a and S'_a, let R_i be the point, whose projections on the equiangular lines coincide with M_i and M'_i. Then if Q_i is the projection of R_i on O Y_i, the external bisector of the equiangular lines

$$O(Q_i = \frac{1}{\sqrt{2}}(a_i - a_i'))$$
 (i = 1, 2,......) ... (1.6)

Let the vector o, be the resultant of the vectors y, and y'i. Then it is easily seen that

$$N c_{ii} = v_i \cdot v_i \qquad \dots \qquad (1.65)$$

where the dot denotes the scalar product,

We may note that the spaces S_{s-1} , S_{s-1} containing the vectors y_s , y_s respectively $(i=1,2,\ldots,n)$ are orthogonal to one another, as also to O Y. Hence the new vectors y_s are also orthogonal to O Y, and lie in the space S_{s+s-1} which comprises both S_{s-1} and S_{s-1} .

Let t_i be the resultant of the vectors u_i and the vector $\hat{u}^i \in Q_i$, where \hat{u} is given by (1.55).

Then

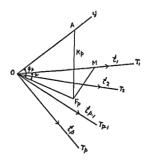
$$t_i$$
, $t_i = \frac{\bar{n}}{2} (a_1 - a'_1) (a_1 - a'_1) + (na_0 + n'a_0)$

$$= \frac{\bar{n}}{2} (a_1 - a'_1) (a_1 - a'_1) + N c_0 = g_0 \text{ (say)}$$
(1.7)

The distribution (1.5) now takes the form

$$-\frac{1}{4}\rho \Delta^{i} - \frac{1}{4}\sum_{i=1}^{n}\sum_{i=1}^{n}a^{ij}\{g_{ij} - \bar{n}(a_{i} - a'_{i}) \ (a_{j} - a'_{i})\}\}$$

$$\times \prod_{i=1}^{n}d(a_{i} - a'_{i}) \prod_{i}dz_{ij} \prod_{i}dz'_{ij}. \qquad (1.75)$$



Let T, denote the extremity of the vector &:

Let OA be the unit vector along OV. We shall denote it by i. Let F₁ denote the perpendicular from A to the space (T₁ T₂......T₁). Let the length AF₁ be denoted by K₁

Let us now consider the length $K_{\mathfrak{p}}$. We shall show that it is very closely connected with $D^{\mathfrak{p}}$

Now
$$K_{g}^{2} = \frac{\text{Vol}(i, t_{1}, t_{2}, \dots, t_{g})}{\text{Vol}(t_{1}, t_{2}, \dots, t_{g})}$$
 ... (1.8)

But Vol (i, t, t, t,t,) is the same as the volume formed by the unit vector and the projections of the vectors t₁, t₂,t_n, on the space perpendicular to OA, which we have earlier called S_{10.0.0.0}. But these projections, from the way in which

STUDENTISED D'-STATISTIC

 $\ell_1, \ell_2, \dots, \ell_s$, have been derived, are at once seen to be v_1, v_2, \dots, v_s . Hence the numerator in (1:95) is numerically equal to vol (v_1, v_2, \dots, v_s)

Therefore,
$$K_{\bullet}^{\bullet} = \frac{\begin{vmatrix} v_1 & v_1 \\ I_1 & I_1 \end{vmatrix}}{\begin{vmatrix} N c_0 + \frac{\tilde{n}}{2} (a_1 - a_1^{\prime}) (a_1 - a_1^{\prime}) \end{vmatrix}}$$
 from (1.65) and (1.7)
$$= \frac{\begin{vmatrix} N c_0 \end{vmatrix}}{\begin{vmatrix} N c_0 \end{vmatrix} + \frac{\tilde{n}}{2} N^{\bullet - 1} \sum C_0(a_1 - a_1^{\prime})} \dots (1.81)$$

 C_u denoting the minor of c_u in $|c_u|$

Therefore from (1·15)
$$K_{\bullet}^{i} = \frac{1}{1 + \frac{p \hat{n}}{2N} D^{i}}$$
 ... (1·82)

Denoting by ϕ_p the angle AOF_p , i.e. the angle between the unit vector i, and the flat (t_1, t_2, \dots, t_p) we have, since $k_0 = \sin \phi_p$

$$D^2 = \frac{2N}{b \bar{\mu}} \cot^2 \theta_b$$
 ... (1.83)

If a statistic similar to D^2 were constructed for the first *i* variates only, then we could denote it by D_i^2 ; we should then have had

$$K_{1}^{a} = \frac{1}{1 + \frac{i\tilde{n}}{2N} D_{1}^{a}}$$
 ... (1.84)

and

$$D_i^3 = \frac{2N}{i\pi} \cot^2 \phi_i$$
 ... (1.85)

It should be noted that consistently with this notation D^* should be preterably replaced by D^* . Let M be the foot of the perpendicular from F_* to ℓ_1 and let v be the angle F_* OM.

§2. DERIVATION OF THE SAMPLING DISTRIBUTION OF D'

It was shown in section 2 of the earlier paper* that D* and Δ^* defined in the present note by equations (1°15), (1°2), and $\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}$ a_{ij} , $\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}$ ($a_{i}-a_{i}$) ($a_{i}-a_{i}$) occurring in the present note in the relation (1°75) are all invariant under any linear transformation. It was further shown in section 8 of the earlier paper* that a special linear transformation could be constructed such that

$$a_{10} = 0$$
, if $i \neq j$, $a_{1i} = 1$
 $(a_{1i} - a_{1i}') = p \Delta^{ij}$... (2-1)
 $(a_{1i} - a_{1i}) = 0$ for $i = 2, 3, p$

Therefore,
$$a^{ij} = 0$$
 if $i \neq j$, $a^{ij} = 1$... (2.11)

We may consider Δ to be given by the positive root of Δ^* and $\checkmark p$ the positive root of p. Then by suitably naming the populations as first and second we can write

$$\alpha_1 - \alpha'_1 = \Delta \sqrt{p}$$
 ... (2.12)

Therefore without any loss of generality we can take the distribution in (1.75) as

$$-\frac{1}{2}\bar{n} \ p\Delta^{5} - \frac{1}{2} \sum_{i=1}^{p} g_{ii} - \frac{\bar{n}}{2} \sqrt{p}, \ \Delta(a_{1} - a'_{1})$$
const × c
$$\Pi d(a_{1} - a'_{1}) \ \Pi dz_{1k} \ \Pi dz'_{1k}.$$
(2.13)

The density factor in (\geq 13) does not contain any mean difference except the first. Therefore integrating out for all mean differences (a_1-a_1') , (i=2,3,......) we have the distribution in the form

$$-\frac{1}{4}\bar{n} \, p \Delta^2 - \frac{1}{4} \, \sum_{i=1}^{N} g_{ii} - \frac{\bar{n}}{2} \, \sqrt{p} \, \Delta(\sigma_i - \sigma'_i)$$

$$d(a_i - \sigma'_i) \Pi dz_{ii} \, \Pi dz'_{ii} \qquad ... \qquad (2.14)$$

$$g_0 = t^2$$
, and $(\sqrt{n}/2)(a_1 - a_1) = \text{projection of OT}_1 \text{ on OY} = t_1 \cos \phi_0 \cos \psi$... (2.2)

The density factor in (2.14) now Zeduces to

$$-\frac{1}{2}\bar{n} \ p\Delta^{2} - \frac{1}{2} \sum_{i=1}^{9} t^{3}_{i} - (\bar{n} \ p/2)^{1/2} \ \Delta \ t_{1} \cos \phi_{p} \cos \psi \qquad ... \quad (2.21)$$

Give now the points $(A, T_1, T_1, \dots, T_p)$ freedom to move subject to the restrictions that I_1 lies between I_1 and I_1+dI_1 (iii), $I_1 = I_1 = I_2 = I_1 = I_2 = I_2 = I_1 = I_2 = I_$

const.
$$(\sin \phi_0)$$
 $(\cos \phi_0)$ $(\sin \psi)$ $(\cos \phi_0)$ $(\sin \psi)$ (2.22)

where N of course is n+n'

Release now the points T₁, T₂,.......T_p subject to the restrictions mentioned before; the volume element described by these points is

STUDENTISED D'-STATISTIC

Therefore, the joint volume element described by (A, T1, T1,...,...T2) i.

const.
$$(\sin \varphi_0)^{N-p-2}$$
 $(\cos \varphi_0)^{p-1}$ $(\sin \psi)^{p-1}$ $d\varphi_0$ $d\psi$ $(t_1, t_2, ..., t_p)^{N-2}$ Πdt_1 ... (2.24)

If we restrict now each of ϕ_0 and ψ to lie between 0 and $\pi/2$ we easily see from (2.21) and (2.24) that the distribution (2.14) now reduces to

$$-\frac{2}{3}\hat{n} \beta \Delta^{2} - \frac{1}{3} \sum_{i=1}^{N} t_{i}^{3}$$
× c cosh (c\Delta t, cos e, cos w) (sin e.) (cos e.) (sin w) (sin e.)

const × c

$$\times d\psi_0 d\psi (t_1, t_2, \dots, t_p)^{N-2} \prod_{i=1}^{p} dt_i \dots (2.23)$$

where
$$c^4 = \bar{n} p/2$$
 ... (2.255)

Integrating out for dl,, dl,...,dl, we have

$$\times d\rho_0 d\Psi t_1^{N-2} dt_1 \dots (2.26)$$

It should be noted that t, varies from O to a and both y, and w vary from 0 to #/2

Using now the well known relation"

$$I_r(z) = \frac{2(z/2)^p}{\Gamma(v+\frac{1}{2}) \Gamma(\frac{1}{2})} \int_0^{\pi/2} \cosh(z \cos \theta) \sin^{2p} \theta \, d\theta$$
 ... (2.8)

which is valid for $R(v+\frac{1}{2})>0$, for the special case v=0, and integrating (2.26) over ψ fr 0 to $\pi/2$ the distribution reduces to

$$\frac{-\frac{1}{4} l^3}{(l_1)} \frac{N - 2 - (p - 2)/2}{(l_2)^2} I_{\frac{p-3}{4}} \left(\cosh_1 \cos \varphi_p \right) \left(\sin \varphi_p \right)^{N - p - 3} \left(\cos \varphi_p \right)^{\rho/3} dl_1 \ d\varphi_p \\ \dots \qquad (2.35)$$

Using now another well known relation(2)

$$\int_{-1}^{\infty} \left[(at) e^{-b^2 t^2} t^{\mu-1} dt = \frac{\Gamma(\frac{1}{2} v + \frac{1}{2} \mu)}{2p^2 \Gamma(v+1)} \cdot {}_{1}F_{1} \left(\frac{1}{2} v + \frac{1}{2} \mu, v+1, \frac{a^2}{4b^2} \right) \right] \dots (2.4)$$

for the special case $b^2 = \frac{1}{2}$, v = (h - 2)/2, $\mu = N - 1 - (h - 2)/2$, $a = c \Delta \cos \varphi_0$, which do not violate the restrictions on the validity of the formula, and integrating (2:35) over t_1 from 0 to ∞ , the distribution of φ_0 is obtained in the form

$${\rm const}\times \left(\sin\phi_{\theta}\right)^{N-p-1}\left(\cos\phi_{\theta}\right)^{p-1}{}_{1}F_{1}\left(\frac{N-1}{2}\;,\;\frac{p}{2}\;\;\frac{c^{2}\;\Delta^{3}\;\cos^{2}\phi_{\theta}}{2}\;\right)d\phi_{\theta}\qquad\ldots\quad(2^{c}45)$$

VOL. 4] SANKHYA: THE INDIAN JOURNAL OF STATISTICS [PART 3

But remembering from (1:83) and (2:255) that

$$D^{2} = \frac{N}{\epsilon^{3}} \cot^{2} \varphi_{b} \qquad ... \quad (2.46)$$

and therefore,

$$d \varphi_{p} = \frac{c \sqrt{N} \cdot d D^{3}}{2 \left(D^{3} \right)^{4} \left(N + c^{2} D^{3} \right)}$$

$$\cos \varphi_{p} = \frac{c \left(D^{3} \right)^{3}}{\left(N + c^{2} D^{3} \right)^{4}} , \quad \sin \varphi_{p} = \frac{N}{\left(N + c^{2} D^{3} \right)^{4}}$$
... (2.5)

we have the distribution of D' given in the form

$$\text{const.} \ \, \frac{\left\{D^{1}\right\}^{(p-2)r_{2}}}{\left(N+\ell^{3} \ D^{1}\right)} \, \frac{N-\rho-2}{2} \, {}_{1}F_{1} \left(\, \, \frac{N-1}{2} \, \, , \quad \frac{\rho}{2} \, , \quad \frac{\epsilon^{4} \, \Delta^{3}}{2} \, \, \frac{D^{3}}{N+\ell^{3} |D^{3}|} \right) \, d(D^{3}) \\ \qquad \qquad \dots \ \, (2 \cdot 55)$$

BIBLIOGRAPHY.

- Bose, R. C. and Roy, S. N.: The Distribution of the Studentised D²-Statistic. The Proceedings of the Indian Statistical Conference, Calcutta, 1938, pp. 19—38.
- 2. Watson, G. N.: Theory of Bessel Functions, p. 79.
- 3. Loc. Cit., p. 100 and p. 393.

Paper received; 22nd June, 10301.